
24 Facility Location

The facility location problem has occupied a central place in operations re-
search since the early 1960’s. It models design situations such as deciding
placements of factories, warehouses, schools, and hospitals. Modern day ap-
plications include placement of proxy servers on the web.

In this chapter, we will present a primal–dual schema based factor 3
approximation algorithm for the special case when connection costs satisfy
the triangle inequality. The algorithm differs in two respects from previous
primal–dual algorithms. First, the primal and dual pair of LPs have negative
coefficients and do not form a covering-packing pair. Second, we will relax
primal complementary slackness conditions rather than the dual ones. Also,
the idea of synchronization, introduced in the primal–dual schema in Chapter
22, is developed further, with an explicit timing of events playing a role.

Problem 24.1 (Metric uncapacitated facility location) Let G be a
bipartite graph with bipartition (F, C), where F is the set of facilities and C
is the set of cities. Let fi be the cost of opening facility i, and cij be the cost
of connecting city j to (opened) facility i. The connection costs satisfy the
triangle inequality. The problem is to find a subset I ⊆ F of facilities that
should be opened, and a function φ : C → I assigning cities to open facilities
in such a way that the total cost of opening facilities and connecting cities
to open facilities is minimized.

Consider the following integer program for this problem. In this program,
yi is an indicator variable denoting whether facility i is open, and xij is an
indicator variable denoting whether city j is connected to the facility i. The
first set of constraints ensures that each city is connected to at least one
facility, and the second ensures that this facility must be open.

minimize
∑

i∈F, j∈C

cijxij +
∑

i∈F

fiyi (24.1)

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F
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The LP-relaxation of this program is:

minimize
∑

i∈F, j∈C

cijxij +
∑

i∈F

fiyi (24.2)

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C

xij ≥ 0, i ∈ F, j ∈ C

yi ≥ 0, i ∈ F

The dual program is:

maximize
∑

j∈C

αj (24.3)

subject to αj − βij ≤ cij , i ∈ F, j ∈ C
∑

j∈C

βij ≤ fi, i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F, j ∈ C

24.1 An intuitive understanding of the dual

Let us first give the reader some feel for how the dual variables “pay” for
a primal solution by considering the following simple setting. Suppose LP
(24.2) has an optimal solution that is integral, say I ⊆ F and φ : C → I.
Thus, under this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j). Let (α,β)
denote an optimal dual solution.

The primal and dual complementary slackness conditions are:

(i) ∀i ∈ F, j ∈ C : xij > 0⇒ αj − βij = cij

(ii) ∀i ∈ F : yi > 0⇒
∑

j∈C

βij = fi

(iii) ∀j ∈ C : αj > 0⇒
∑

i∈F

xij = 1

(iv) ∀i ∈ F, j ∈ C : βij > 0⇒ yi = xij

By condition (ii), each open facility must be fully paid for, i.e., if i ∈ I,
then

∑

j: φ(j)=i

βij = fi.
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Consider condition (iv). Now, if facility i is open, but φ(j) ̸= i, then
yi ̸= xij , and so βij = 0, i.e., city j does not contribute to opening any
facility besides the one it is connected to.

By condition (i), if φ(j) = i, then αj − βij = cij . Thus, we can think of
αj as the total price paid by city j; of this, cij goes towards the use of edge
(i, j), and βij is the contribution of j towards opening facility i.

24.2 Relaxing primal complementary slackness
conditions

Suppose the primal complementary slackness conditions were relaxed as fol-
lows, while maintaining the dual conditions:

∀j ∈ C : (1/3)cφ(j)j ≤ αj − βφ(j)j ≤ cφ(j)j ,

and

∀i ∈ I : (1/3)fi ≤
∑

j: φ(j)=i

βij ≤ fi.

Then, the cost of the (integral) solution found would be within thrice the
dual found, thus leading to a factor 3 approximation algorithm. However, we
would like to obtain the stronger inequality stated in Theorem 24.7. Now, the
dual pays at least one-third the connection cost, but must pay completely for
opening facilities. This stronger inequality will be needed in order to use this
algorithm to solve the k-median problem in Chapter 25.

For this reason, we will relax the primal conditions as follows. The cities
are partitioned into two sets, directly connected and indirectly connected. Only
directly connected cities will pay for opening facilities, i.e., βij can be nonzero
only if j is a directly connected city and i = φ(j). For an indirectly connected
city j, the primal condition is relaxed as follows:

(1/3)cφ(j)j ≤ αj ≤ cφ(j)j .

All other primal conditions are maintained, i.e., for a directly connected city
j,

αj − βφ(j)j = cφ(j)j ,

and for each open facility i,
∑

j: φ(j)=i

βij = fi.
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24.3 Primal–dual schema based algorithm

The algorithm consists of two phases. In Phase 1, the algorithm operates in
a primal–dual fashion. It finds a dual feasible solution and also determines
a set of tight edges and temporarily open facilities, Ft. Phase 2 consists of
choosing a subset I of Ft to open, and finding a mapping, φ, from cities to I.

Algorithm 24.2

Phase 1
We would like to find as large a dual solution as possible. This motivates
the following underlying process for dealing with the non-covering-packing
pair of LPs. Each city j raises its dual variable, αj , until it gets connected to
an open facility. All other primal and dual variables simply respond to this
change, trying to maintain feasibility or satisfying complementary slackness
conditions.

A notion of time is defined in this phase, so that each event can be associ-
ated with the time at which it happened; the phase starts at time 0. Initially,
each city is defined to be unconnected. Throughout this phase, the algorithm
raises the dual variable αj for each unconnected city j uniformly at unit rate,
i.e., αj will grow by 1 in unit time. When αj = cij for some edge (i, j), the
algorithm will declare this edge to be tight. Henceforth, dual variable βij will
be raised uniformly, thus ensuring that the first constraint in LP (24.3) is
not violated. βij goes towards paying for facility i. Each edge (i, j) such that
βij > 0 is declared special.

Facility i is said to be paid for if
∑

j βij = fi. If so, the algorithm de-
clares this facility temporarily open. Furthermore, all unconnected cities hav-
ing tight edges to this facility are declared connected and facility i is declared
the connecting witness for each of these cities. (Notice that the dual vari-
ables αj of these cities are not raised anymore.) In the future, as soon as an
unconnected city j gets a tight edge to i, j will also be declared connected
and i will be declared the connecting witness for j (notice that βij = 0 and
thus edge (i, j) is not special). When all cities are connected, the first phase
terminates. If several events happen simultaneously, the algorithm executes
them in arbitrary order.

Remark 24.3 At the end of Phase 1, a city may have paid towards tem-
porarily opening several facilities. However, we want to ensure that a city
pays only for the facility that it is eventually connected to. This is ensured
in Phase 2, which chooses a subset of temporarily open facilities for opening
permanently.

Phase 2
Let Ft denote the set of temporarily open facilities and T denote the subgraph
of G consisting of all special edges. Let T 2 denote the graph that has edge
(u, v) iff there is a path of length at most 2 between u and v in T , and let H
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be the subgraph of T 2 induced on Ft. Find any maximal independent set in
H, say I. All facilities in the set I are declared open.

For city j, define Fj = {i ∈ Ft | (i, j) is special}. Since I is an independent
set, at most one of the facilities in Fj is opened. If there is a facility i ∈
Fj that is opened, then set φ(j) = i and declare city j directly connected.
Otherwise, consider tight edge (i′, j) such that i′ was the connecting witness
for j. If i′ ∈ I, again set φ(j) = i′ and declare city j directly connected (notice
that in this case βi′j = 0). In the remaining case that i′ /∈ I, let i be any
neighbor of i′ in graph H such that i ∈ I. Set φ(j) = i and declare city j
indirectly connected.

I and φ define a primal integral solution: xij = 1 iff φ(j) = i and yi = 1
iff i ∈ I. The values of αj and βij obtained at the end of Phase 1 form a dual
feasible solution.

24.4 Analysis

We will show how the dual variables αj ’s pay for the primal costs of opening
facilities and connecting cities to facilities. Denote by αf

j and αe
j the contribu-

tions of city j to these two costs respectively; αj = αf
j +αe

j . If j is indirectly
connected, then αf

j = 0 and αe
j = αj . If j is directly connected, then the

following must hold:

αj = cij + βij ,

where i = φ(j). Now, let αf
j = βij and αe

j = cij .

Lemma 24.4 Let i ∈ I. Then,
∑

j: φ(j)=i

αf
j = fi.

Proof: Since i is temporarily open at the end of Phase 1, it is completely
paid for, i.e.,

∑

j: (i,j) is special
βij = fi.

The critical observation is that each city j that has contributed to fi must
be directly connected to i. For each such city, αf

j = βij . Any other city j′

that is connected to facility i must satisfy αf
j′ = 0. The lemma follows. ✷

Corollary 24.5
∑

i∈I fi =
∑

j∈C α
f
j .
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Recall that αf
j was defined to be 0 for indirectly connected cities. Thus,

only the directly connected cities pay for the cost of opening facilities.

Lemma 24.6 For an indirectly connected city j, cij ≤ 3αe
j , where i = φ(j).

Proof: Let i′ be the connecting witness for city j. Since j is indirectly
connected to i, (i, i′) must be an edge in H. In turn, there must be a city,
say j′, such that (i, j′) and (i′, j′) are both special edges. Let t1 and t2 be
the times at which i and i′ were declared temporarily open during Phase 1.

! !

! !
❏
❏
❏
❏
❏❏✡
✡
✡
✡
✡✡❏
❏
❏
❏
❏❏

j′ j

i i′

Since edge (i′, j) is tight, αj ≥ ci′j . We will show that αj ≥ cij′ and
αj ≥ ci′j′ . Then, the lemma will follow by using the triangle inequality.

Since edges (i′, j′) and (i, j′) are tight, αj′ ≥ cij′ and αj′ ≥ ci′j′ . Since
both these edges are special, they must both have gone tight before either i
or i′ is declared temporarily open. Consider the time min(t1, t2). Clearly, αj′

cannot be growing beyond this time. Therefore, αj′ ≤ min(t1, t2). Finally,
since i′ is the connecting witness for j, αj ≥ t2. Therefore, αj ≥ αj′ , and the
required inequalities follow. ✷

Theorem 24.7 The primal and dual solutions constructed by the algorithm
satisfy:

∑

i∈F, j∈C

cijxij + 3
∑

i∈F

fiyi ≤ 3
∑

j∈C

αj .

Proof: For a directly connected city j, cij = αe
j ≤ 3αe

j , where φ(j) = i.
Combining with Lemma 24.6 we get

∑

i∈F,j∈C

cijxij ≤ 3
∑

j∈C

αe
j .

Adding to this the equality stated in Corollary 24.5 multiplied by 3 gives the
theorem. ✷



238 24 Facility Location

24.4.1 Running time

A special feature of the primal–dual schema is that it yields algorithms with
good running times. Since this is especially so for the current algorithm,
we will provide some implementation details. We will adopt the following
notation: nc = |C| and nf = |F |. The total number of vertices nc + nf = n,
and the total number of edges nc × nf = m.

Sort all the edges by increasing cost – this gives the order and the times
at which edges go tight. For each facility, i, we maintain the number of cities
that are currently contributing towards it, and the anticipated time, ti, at
which it would be completely paid for if no other event happens on the way.
Initially all ti’s are infinite, and each facility has 0 cities contributing to it.
The ti’s are maintained in a binary heap so we can update each one and find
the current minimum in O(log nf ) time. Two types of events happen, and
they lead to the following updates.

• An edge (i, j) goes tight.
– If facility i is not temporarily open, then it gets one more city contribut-

ing towards its cost. The amount contributed towards its cost at the
current time can be easily computed. Therefore, the anticipated time for
facility i to be paid for can be recomputed in constant time. The heap
can be updated in O(log nf ) time.

– If facility i is already temporarily open, city j is declared connected, and
αj is not raised anymore. For each facility i′ that was counting j as a
contributor, we need to decrease the number of contributors by 1 and
recompute the anticipated time at which it gets paid for.

• Facility i is completely paid for. In this event, i will be declared temporarily
open, and all cities contributing to i will be declared connected. For each
of these cities, we will execute the second case of the previous event, i.e.,
update facilities that they were contributing towards.

The next theorem follows by observing that each edge (i, j) will be consid-
ered at most twice. First, when it goes tight. Second, when city j is declared
connected. For each consideration of this edge, we will do O(log nf ) work.

Theorem 24.8 Algorithm 24.2 achieves an approximation factor of 3 for
the facility location problem and has a running time of O(m log m).

24.4.2 Tight example

The following infinite family of examples shows that the analysis of our algo-
rithm is tight: The graph has n cities, c1, c2, . . . , cn and two facilities f1 and
f2. Each city is at a distance of 1 from f2. City c1 is at a distance of 1 from
f1, and c2, . . . , cn are at a distance of 3 from f1. The opening cost of f1 and
f2 are ε and (n + 1)ε, respectively, for a small number ε.
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The optimal solution is to open f2 and connect all cities to it, at a total
cost of (n+1)ε+n. Algorithm 24.2 will however open facility f1 and connect
all cities to it, at a total cost of ε+ 1 + 3(n− 1).

24.5 Exercises

24.1 Consider the general uncapacitated facility location problem in which
the connection costs are not required to satisfy the triangle inequality. Give
a reduction from the set cover problem to show that approximating this
problem is as hard as approximating set cover and therefore cannot be done
better than O(log n) factor unless NP ⊆ P̃. Also, give an O(log n) factor
algorithm for this problem.

24.2 In Phase 2, instead of picking all special edges in T , pick all tight edges.
Show that now Lemma 24.6 does not hold. Give a suitable modification to
the algorithm that restores Lemma 24.6.
Hint: Order facilities in H in the order in which they were temporarily
opened, and pick I to be the lexicographically first maximal independent set.

24.3 Give a factor 3 tight example for Algorithm 24.2 in which the set of
cities and facilities is the same, i.e., C = F .

24.4 Consider the proof of Lemma 24.6. Give an example in which αj > t2.

24.5 The vector α found by Algorithm 24.2 is maximal in the sense that if
we increase any αj in this vector, then there is no way of setting the βij ’s to
get a feasible dual solution. Is every maximal solution α within 3 times the
optimal solution to dual program for facility location?
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Hint: It is easy to construct a maximal solution that is 2/n times the
optimal. Consider n facilities with an opening cost of 1 each and n cities
connected to distinct facilities by edges of cost ε each. In addition, there is
another city that is connected to each facility with an edge of cost 1.

24.6 Consider the following modification to the metric uncapacitated facility
location problem. Define the cost of connecting city j to facility i to be c2

ij .
The cij ’s still satisfy the triangle inequality (but the new connection costs, of
c2
ij , do not). Show that Algorithm 24.2 achieves an approximation guarantee

of factor 9 for this case.

24.7 Consider the following generalization to arbitrary demands. For each
city j, a nonnegative demand dj is specified, and any open facility can serve
this demand. The cost of serving this demand via facility i is cijdj . Give an
IP and LP-relaxation for this problem, and extend Algorithm 24.2 to get a
factor 3 algorithm.
Hint: Raise αj at rate dj .

24.8 In the capacitated facility location problem, we are given a number ui

for each facility i, and facility i can serve at most ui cities. Show that the
modification of LP (24.2) to this problem has an unbounded integrality gap.

24.9 Consider the variant of the capacitated metric facility location problem
in which each facility can be opened an unbounded number of times. If facility
i is opened yi times, it can serve at most uiyi cities. Give an IP and LP-
relaxation for this problem, and extend Algorithm 24.2 to obtain a constant
factor algorithm.

24.10 (Charikar, Khuller, Mount, and Narshimhan [40]) Consider the prize-
collecting variant of the facility location problem, in which there is a specified
penalty for not connecting a city to an open facility. The objective is to min-
imize the sum of the connection costs, facility opening costs, and penalties.
Give a factor 3 approximation algorithm for this problem.

24.11 (Jain and Vazirani [140]) Consider the fault tolerant variant of the
facility location problem, in which the additional input is a connection re-
quirement rj for each city j. In the solution, city j needs to be connected to
rj distinct open facilities. The objective, as before, is to minimize the sum of
the connection costs and the facility opening costs.

Decompose the problem into k phases, numbered k down to 1, as in
Exercise 23.7. In phase p, all cities having a residual requirement of p are
provided one more connection to an open facility. In phase p, the facility
location algorithm of this chapter is run on the following modified graph, Gp.
The cost of each facility that is opened in an earlier phase is set to 0. If city
j is connected to facility i in an earlier phase, then cij is set to ∞.
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1. Show that even though Gp violates the triangle inequality at some places,
the algorithm gives a solution within factor 3 of the optimal solution for
this graph.
Hint: Every time short-cutting is needed; the triangle inequality holds.

2. Show that the solution found in phase p is of cost at most 3 · OPT/p,
where OPT is the cost of the solution to the entire problem.
Hint: Remove ∞ cost edges of Gp from the optimal solution and divide
the rest by p. Show that this is a feasible fractional solution for phase p.

3. Show that this algorithm achieves an approximation factor of 3 · Hk for
the fault tolerant facility location problem.

24.12 (Mahdian, Markakis, Saberi, and Vazirani [201]) This exercise devel-
ops a factor 3 greedy algorithm for the metric uncapacitated facility location
problem, together with an analysis using the method of dual fitting.

Consider the following modification to Algorithm 24.2. As before, dual
variables, αj , of all unconnected cities, j, are raised uniformly. If edge (i, j)
is tight, βij is raised. As soon as a facility, say i, is paid for, it is declared
open. Let S be the set of unconnected cities having tight edges to i. Each city
j ∈ S is declared connected and stops raising its αj . So far, the new algorithm
is the same as Algorithm 24.2. The main difference appears at this stage:
Each city j ∈ S withdraws its contribution from other facilities, i.e., for each
facility i′ ̸= i, set βi′j = 0. When all cities have been declared connected, the
algorithm terminates. Observe that each city contributes towards the opening
cost of at most one facility – the facility it gets connected to.

1. This algorithm actually has a simpler description as a greedy algorithm.
Provide this description.
Hint: Use the notion of cost–effectiveness defined for the greedy set
cover algorithm.

2. The next 3 parts use the method of dual fitting to analyze this algorithm.
First observe that the primal solution found is fully paid for by the dual
computed.

3. Let i be an open facility and let {1, . . . , k} be the set of cities that con-
tributed to opening i at some point in the algorithm. Assume w.l.o.g.
that α1 ≤ αj for j ≤ k. Show that for j ≤ k, αj − cij ≤ 2α1. Also, show
that

k
∑

j=1

αj ≤ 3
k
∑

j=1

cij + fi.

Hint: Use the triangle inequality and the following inequality which is a
consequence of the fact that at any point, the total amount contributed
for opening facility i is at most fi:
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∑

j: cij≤α1

α1 − cij ≤ fi.

4. Hence show that α/3 is a dual feasible solution.
5. How can the analysis be improved – a factor 1.86 analysis is known for

this algorithm.
6. Give a time efficient implementation of this algorithm, matching the run-

ning time of Algorithm 24.2
7. Do you see room for improving the algorithm?

Hint: Suppose city j is connected to open facility i at some point in the
algorithm. Later, facility i′ is opened, and suppose that cij > ci′j . Then,
connecting j to i′ will reduce the cost of the solution.

24.13 (Mahdian, Markakis, Saberi, and Vazirani [201]) Consider the follow-
ing variant of the metric uncapacitated facility location problem. Instead of
fi, the opening cost for each facility i ∈ F , we are provided a startup cost
si and an incremental cost ti. Define the new opening cost for connecting
k > 0 cities to facility i to be si + kti. Connection costs are specified by a
metric, as before. The object again is to connect each city to an open facility
so as to minimize the sum of connection costs and opening costs. Give an
approximation factor preserving reduction from this problem to the metric
uncapacitated facility location problem.
Hint: Modify the metric appropriately.

24.6 Notes

The first approximation algorithm for the metric uncapacitated facility loca-
tion problem, due to Hochbaum [124], achieved an approximation guarantee
of O(log n). The first constant factor approximation algorithm, achieving a
guarantee of 3.16, was due to Shmoys, Tardos, and Aardal [239]. It was based
on LP-rounding. The current best algorithm, achieving an approximation
guarantee of 1.61, is due to Jain, Mahdian, and Saberi [138]. This algorithm,
a small modification of the greedy algorithm presented in Exercise 24.12, is
analyzed using the method of dual fitting. The primal–dual schema based
Algorithm 24.2 is due to Jain and Vazirani [141].
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The k-median problem differs from the facility location problem in two re-
spects – there is no cost for opening facilities and there is an upper bound,
k, on the number of facilities that can be opened. It models the problem of
finding a minimum cost clustering, and therefore has numerous applications.

The primal–dual schema works by making judicious local improvements
and is not suitable for ensuring a global constraint, such as the constraint in
the k-median problem that at most k facilities be opened. We will get around
this difficulty by borrowing the powerful technique of Lagrangian relaxation
from combinatorial optimization.

Problem 25.1 (Metric k-median) Let G be a bipartite graph with bi-
partition (F, C), where F is the set of facilities and C is the set of cities, and
let k be a positive integer specifying the number of facilities that are allowed
to be opened. Let cij be the cost of connecting city j to (opened) facility i.
The connection costs satisfy the triangle inequality. The problem is to find
a subset I ⊆ F, |I| ≤ k, of facilities that should be opened and a function
φ : C → I assigning cities to open facilities in such a way that the total
connecting cost is minimized.

25.1 LP-relaxation and dual

The following is an integer program for the k-median problem. The indicator
variables yi and xij play the same role as in (24.1).

minimize
∑

i∈F, j∈C

cijxij (25.1)

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C
∑

i∈F

−yi ≥ −k

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F
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The LP-relaxation of this program is:

minimize
∑

i∈F, j∈C

cijxij (25.2)

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C
∑

i∈F

−yi ≥ −k

xij ≥ 0, i ∈ F, j ∈ C

yi ≥ 0, i ∈ F

The dual program is:

maximize
∑

j∈C

αj − zk (25.3)

subject to αj − βij ≤ cij , i ∈ F, j ∈ C
∑

j∈C

βij ≤ z, i ∈ F

αj ≥ 0, j ∈ C

βij ≥ 0, i ∈ F, j ∈ C

z ≥ 0

25.2 The high-level idea

The similarity between the two problems, facility location and k-median,
leads to a similarity in their linear programs, which will be exploited as
follows. Take an instance of the k-median problem, assign a cost of z for
opening each facility, and find optimal solutions to LP (24.2) and LP (24.3),
say (x,y) and (α,β), respectively. By the strong duality theorem,

∑

i∈F, j∈C

cijxij +
∑

i∈F

zyi =
∑

j∈C

αj .

Now, suppose that the primal solution (x,y) happens to open exactly
k facilities (fractionally), i.e.,

∑

i yi = k. Then, we claim that (x,y) and
(α,β, z) are optimal solutions to LP (25.2) and LP (25.3), respectively. Fea-
sibility is easy to check. Optimality follows by substituting

∑

i yi = k in
the above equality and rearranging terms to show that the primal and dual
solutions achieve the same objective function value:
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∑

i∈F, j∈C

cijxij =
∑

j∈C

αj − zk.

Let’s use this idea, together with Algorithm 24.2 and Theorem 24.7, to
obtain a “good” integral solution to LP (25.2). Suppose with a cost of z for
opening each facility, Algorithm 24.2, happens to find solutions (x,y) and
(α,β), where the primal solution opens exactly k facilities. By Theorem 24.7,

∑

i∈F, j∈C

cijxij + 3zk ≤ 3
∑

j∈C

αj .

Now, observe that (x,y) and (α,β, z) are primal (integral) and dual feasible
solutions to the k-median problem satisfying

∑

i∈F, j∈C

cijxij ≤ 3(
∑

j∈C

αj − zk).

Therefore, (x,y) is a solution to the k-median problem within thrice the
optimal.

Notice that the factor 3 proof given above would not work if less than
k facilities were opened; if more than k facilities are opened, the solution
is infeasible for the k-median problem. The remaining problem is to find a
value of z so that exactly k facilities are opened. Several ideas are required
for this. The first is the following principle from economics. Taxation is an
effective way of controlling the amount of goods coming across a border –
raising tariffs will reduce inflow and vice versa. In a similar manner, raising
z should reduce the number of facilities opened and vice versa.

It is natural now to seek a modification to Algorithm 24.2 that can find a
value of z so that exactly k facilities are opened. This would lead to a factor
3 approximation algorithm. Such a modification is not known. Instead, we
present the following strategy which leads to a factor 6 algorithm. For the rest
of the discussion, assume that we never encountered a run of the algorithm
which resulted in exactly k facilities being opened.

Clearly, when z = 0 the algorithm will open all facilities, and when z is
very large it will open only one facility. The latter value of z can be picked
to be ncmax, where cmax is the length of the longest edge. We will conduct
a binary search on the interval [0, ncmax] to find z2 and z1 for which the
algorithm opens k2 > k and k1 < k facilities, respectively, and, furthermore,
z1 − z2 ≤ (cmin/12n2

c), where cmin is the length of the shortest nonzero edge.
As before, we will adopt the following notation: nc = |C| and nf = |F |.
The total number of vertices nc + nf = n and the total number of edges
nc×nf = m. Let (xs,ys) and (xl,yl) be the two primal solutions found, with
∑

i∈F ys
i = k1 and

∑

i∈F yl
i = k2 (the superscripts s and l denote “small” and

“large,” respectively). Further, let (αs,βs) and (αl,βl) be the corresponding
dual solutions found.
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Let (x,y) = a(xs,ys) + b(xl, yl) be a convex combination of these two
solutions, with ak1 + bk2 = k. Under these conditions, a = (k2− k)/(k2− k1)
and b = (k − k1)/(k2 − k1). Since (x,y) is a feasible (fractional) solution to
the facility location problem that opens exactly k facilities, it is also a feasible
(fractional) solution to the k-median problem. In this solution each city is
connected to at most two facilities.

Lemma 25.2 The cost of (x,y) is within a factor of (3 + 1/nc) of the cost
of an optimal fractional solution to the k-median problem.

Proof: By Theorem 24.7 we have
∑

i∈F, j∈C

cijx
s
ij ≤ 3(

∑

j∈C

αs
j − z1k1),

and
∑

i∈F, j∈C

cijx
l
ij ≤ 3(

∑

j∈C

αl
j − z2k2).

Since z1 > z2, (αl,βl) is a feasible dual solution to the facility location
problem even if the cost of facilities is z1. We would like to replace z2 with z1 in
the second inequality, at the expense of the increased factor. This is achieved
using the upper bound on z1−z2 and the fact that

∑

i∈F, j∈C cijxl
ij ≥ cmin.

We get

∑

i∈F, j∈C

cijx
l
ij ≤

(

3 +
1
nc

)
⎛

⎝

∑

j∈C

αl
j − z1k2

⎞

⎠ .

Adding this inequality multiplied by b with the first inequality multiplied
by a gives

∑

i∈F, j∈C

cijxij ≤
(

3 +
1
nc

)
⎛

⎝

∑

j∈C

αj − z1k

⎞

⎠ ,

where α = aαs +bαl. Let β = aβs +bβl. Observe that (α,β, z1) is a feasible
solution to the dual of the k-median problem. The lemma follows. ✷

In Section 25.3 we give a randomized rounding procedure that obtains an
integral solution to the k-median problem from (x,y), with a small increase
in cost. In Section 25.3.1 we derandomize this procedure.
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25.3 Randomized rounding

We give a randomized rounding procedure that produces an integral solution
to the k-median problem from (x,y). In the process, it increases the cost by
a multiplicative factor of 1 + max(a, b).

Let A and B be the sets of facilities opened in the two solutions, |A| = k1
and |B| = k2. For each facility in A, find the closest facility in B – these
facilities are not required to be distinct. Let B′ ⊂ B be these facilities. If
|B′| < k1, arbitrarily include additional facilities from B − B′ into B′ until
|B′| = k1.

With probability a, open all facilities in A, and with probability b = 1−a,
open all facilities in B′. In addition, a set of cardinality k − k1 is picked
randomly from B −B′ and facilities in this set are opened. Notice that each
facility in B −B′ has a probability of b of being opened. Let I be the set of
facilities opened, |I| = k.

The function φ : C → I is defined as follows. Consider city j and suppose
that it is connected to i1 ∈ A and i2 ∈ B in the two solutions. If i2 ∈ B′, then
one of i1 and i2 is opened by the procedure given above, i1 with probability
a and i2 with probability b. City j is connected to the open facility.

! !

!!
❏
❏
❏
❏
❏❏

.................................

A B

B′

B −B′j

i1 i3

i2

k1 k2

If i2 ∈ B − B′, let i3 ∈ B′ be the facility in B that is closest to i1. City j is
connected to i2 if it is open. Otherwise, it is connected to i1 if it is open. If
neither i2 or i1 is open, then j is connected to i3.

Denote by cost(j) the connection cost for city j in the fractional solution
(x,y); cost(j) = aci1j + bci2j .

Lemma 25.3 The expected connection cost for city j in the integral solution,
E[cφ(j)j ], is ≤ (1 + max(a, b))cost(j). Moreover, E[cφ(j)j ] can be efficiently
computed.

Proof: If i2 ∈ B′, E[cφ(j)j ] = aci1j + bci2j = cost(j). Consider the second
case, that i2 /∈ B′. Now, i2 is open with probability b. The probability that
i2 is not open and i1 is open is (1− b)a = a2, and the probability that both
i2 and i1 are not open is (1− b)(1− a) = ab. This gives
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E[cφ(j)j ] ≤ bci2j + a2ci1j + abci3j .

Since i3 is the facility in B that is closest to i1, ci1i3 ≤ ci1i2 ≤ ci1j + ci2j ,
where the second inequality follows from the triangle inequality. Again, by
the triangle inequality, ci3j ≤ ci1j + ci1i3 ≤ 2ci1j + ci2j . Therefore,

E[cφ(j)j ] ≤ bci2j + a2ci1j + ab(2ci1j + ci2j).

Now, a2ci1j + abci1j = aci1j . Therefore,

E[cφ(j)j ]≤ (aci1j + bci2j) + ab(ci1j + ci2j)
≤ (aci1j + bci2j)(1 + max(a, b)).

Clearly, in both cases, E[cφ(j)j ] is easy to compute. ✷

Let (xk,yk) denote the integral solution obtained to the k-median prob-
lem by this randomized rounding procedure. Then,

Lemma 25.4 E

⎡

⎣

∑

i∈F, j∈C

cijx
k
ij

⎤

⎦ ≤ (1 + max(a, b))

⎛

⎝

∑

i∈F, j∈C

cijxij

⎞

⎠

and, moreover, the expected cost of the solution found can be computed effi-
ciently.

25.3.1 Derandomization

Derandomization follows in a straightforward manner using the method of
conditional expectation. First, the algorithm opens the set A with probability
a and the set B′ with probability b = 1−a. Pick A, and compute the expected
value if k− k1 facilities are randomly chosen from B−B′. Next, do the same
by picking B′ instead of A. Choose to open the set that gives the smaller
expectation.

Second, the algorithm opens a random subset of k − k1 facilities from
B−B′. For a choice D ⊂ B−B′, |D| ≤ k−k1, denote by E[D, B− (B′∪D)]
the expected cost of the solution if all facilities in D and additionally k −
k1− |D| facilities are randomly opened from B− (B′∪D). Since each facility
of B − (B′ ∪D) is equally likely to be opened, we get

E[D, B − (B′ ∪D)] =
1

|B − (B′ ∪D)|
∑

i∈B−(B′∪D)

E[D ∪ {i}, B − (B′ ∪D ∪ {i})].

This implies that there is an i such that
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E[D ∪ {i}, B − (B′ ∪D ∪ {i})] ≤ E[B′, B − (B′ ∪D)].

Choose such an i and replace D with D ∪ {i}. Notice that the computation
of E[D ∪ {i}, B − (B′ ∪D ∪ {i})] can be done as in Lemma 25.4.

25.3.2 Running time

It is easy to see that a ≤ 1− 1/nc (this happens for k1 = k− 1 and k2 = nc)
and b ≤ 1 − 1/k (this happens for k1 = 1 and k2 = k + 1). Therefore,
1 + max(a, b) ≤ 2 − 1/nc. Altogether, the approximation guarantee is (2 −
1/nc)(3 + 1/nc) < 6. This procedure can be derandomized using the method
of conditional probabilities, as in Section 25.3.1. The binary search will make
O(log2(n3cmax/cmin)) = O(L+log n) probes. The running time for each probe
is dominated by the time taken to run Algorithm 24.2; randomized rounding
takes O(n) time and derandomization takes O(m) time. Hence we get

Theorem 25.5 The algorithm given above achieves an approximation factor
of 6 for the k-median problem, and has a running time of O(m log m(L +
log(n))).

25.3.3 Tight example

A tight example for the factor 6 k-median algorithm is not known. However,
below we give an infinite family of instances which show that the analysis of
the randomized rounding procedure cannot be improved.

The two solutions (xs,ys) and (xl,yl) open one facility, f0, and k + 1
facilities, f1, . . . , fk+1, respectively. The distance between f0 and any other
fi is 1, and that between two facilities in the second set is 2. All n cities
are at a distance of 1 from f0, and at a distance of ε from fk+1. The rest of
the distances are given by the triangle inequality. The convex combination is
constructed with a = 1/k and b = 1− 1/k.
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Now, the cost of the convex combination is an + bεn. Suppose the algo-
rithm picks f1 as the closest neighbor of f0. The expected cost of the solutions
produced by the randomized rounding procedure is then n(bε+a2+ab(2+ε)).
Letting ε tend to 0, the cost of the convex combination is essentially na and
that of the rounded solution is na(1 + b).

25.3.4 Integrality gap

The algorithm given above places an upper bound of 6 on the integrality gap
of relaxation (25.2). The following example places a lower bound of essentially
2. The graph is a star with n + 1 vertices and unit cost edges. F consists of
all n + 1 vertices, C consists of all but the center vertex and k = n − 2. An
optimal integral solution is to open facilities at n − 2 vertices of C and has
a cost of 2. Consider the following fractional solution. Open a facility to the
extent of 1/(n− 1) on the center vertex and (n− 2)/(n− 1) on each vertex
of C. This has a cost of n/(n− 1), giving a ratio of 2(n− 1)/n.

! !

!. . .!

! !
!

!
!

!!

❅
❅

❅
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1
n−1

n−2
n−1

25.4 A Lagrangian relaxation technique
for approximation algorithms

In this section we will abstract away the ideas developed above so they may
be more widely applicable. First, let us recall the fundamental technique
of Lagrangian relaxation from combinatorial optimization. This technique
consists of relaxing a constraint by moving it into the objective function,
together with an associated Lagrange multiplier.

Let us apply this relaxation to the constraint, in the k-median IP (25.1),
that at most k facilities be opened. Let λ be the Lagrangian multiplier.

minimize
∑

i∈F, j∈C

cijxij + λ

(

∑

i∈F

yi − k

)

(25.4)

subject to
∑

i∈F

xij ≥ 1, j ∈ C
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yi − xij ≥ 0, i ∈ F, j ∈ C

xij ∈ {0, 1}, i ∈ F, j ∈ C

yi ∈ {0, 1}, i ∈ F

This is precisely the facility location IP, with the restriction that the cost
of each facility is the same, i.e., λ. It contains an additional constant term
of −λk in the objective function. We may assume w.l.o.g. that an optimal
solution, (x,y), to IP (25.1) opens exactly k facilities. Now, (x,y) is a feasible
solution to IP (25.4) as well, with the same objective function value. Hence,
for each value of λ, IP (25.4) is a lower bound on IP (25.1).

We have shown that a Lagrangian relaxation of the k-median problem is
the facility location problem. In doing so, the global constraint that at most
k facilities be opened has been replaced with a penalty for opening facilities,
the penalty being the Lagrangian multiplier. (See Exercise 25.4 for another
application of this idea.)

The next important observation was to notice that in the facility location
approximation algorithm, Theorem 24.7, the duals pay one-for-one for the
cost of opening facilities, i.e., with approximation factor 1. (See Exercise 22.9
for another such algorithm.)

The remaining difficulty was finding a value of λ so that the facility loca-
tion algorithm opened exactly k facilities. The fact that the facility location
algorithm works with the linear relaxation of the problem helped. The con-
vex combination of two (integer) solutions was a feasible (fractional) solution.
The last step was rounding this (special) fractional solution into an integral
one. For the k-median problem we used randomized rounding (see Exercise
25.4 for a different rounding procedure).

25.5 Exercises

25.1 (Lin and Vitter [188]) Consider the general k-median problem in which
the connection costs are not required to satisfy the triangle inequality. Give
a reduction from the set cover problem to show that approximating this
problem is as hard as approximating set cover, and therefore cannot be done
with a factor better than O(log n) unless NP ⊆ P̃.

25.2 Obtain the dual of LP-relaxation to (25.4). (The constant term in the
objective function will simply carry over.) How does it relate with the dual
of the k-median LP?

25.3 Use the Lagrangian relaxation technique to give a constant factor ap-
proximation algorithm for the following common generalization of the facility
location and k-median problems. Consider the uncapacitated facility location
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problem with the additional constraint that at most k facilities can be opened.
This is a common generalization of the two problems solved in this paper:
if k is made nf , we get the first problem, and if the facility costs are set to
zero, we get the second problem.

25.4 (Garg [94] and Chudak, Roughgarden, and Williamson [47]) Consider
the following variant of the metric Steiner tree problem.

Problem 25.6 (Metric k-MST) We are given a complete undirected
graph G = (V, E), a special vertex r ∈ V , a positive integer k, and a function
cost : E → Q+ satisfying the triangle inequality. The problem is to find a
minimum cost tree containing exactly k vertices, including r.

We will develop a factor 5 algorithm for this problem.

1. Observe that a Lagrangian relaxation of this problem is the prize-
collecting Steiner tree problem, Problem 22.12, stated in Exercise 22.9.

2. Observe that the approximation algorithm for the latter problem, given
in Exercise 22.9, pays for the penalties one-for-one with the dual, i.e.,
with an approximation factor of 1.

3. Use the prize-collecting algorithm as a subroutine to obtain two trees, T1
and T2, for very close values of the penalty, containing k1 and k2 vertices,
with k1 < k < k2. Obtain a convex combination of these solutions, with
multipliers α1 and α2.

4. We may assume that every vertex in G is at a distance of ≤ OPT from
r. (Use the idea behind parametric pruning, introduced in Chapter 5.
The parameter t is the length of the longest edge used by the optimal
solution, which is clearly a lower bound on OPT. For each value of t,
instance G(t) is obtained by restricting G to vertices that are within a
distance of t of r. The algorithm is run on each graph of this family, and
the best tree is output.) Consider the following procedure for rounding
the convex combination. If α2 ≥ 1/2, then cost(T2) ≤ 4 · OPT; remove
k2−k vertices from T2. Otherwise, double every edge of T2, find an Euler
tour, and shortcut the tour to a cycle containing only those vertices that
are in T2 and not in T1 (i.e., at most k2 − k1 vertices). Pick the cheapest
path of length k − k1 − 1 from this cycle, and connect it by means of an
edge to vertex r in T1. The resulting tree has exactly k vertices. Show
that the cost of this tree is ≤ 5 · OPT.
Hint: Use the fact that α2 = (k − k1)/(k2 − k1).

25.5 Let us apply the Lagrangian relaxation technique to the following linear
program.

minimize cT x (25.5)

subject to Ax = b
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Then the lower bound is given by

max
y

min
x

(

cT x− yT (Ax− b)
)

= max
y

((

min
x

(cT − yT A)x
)

+ yT b
)

If y does not satisfy AT y = c, then by a suitable choice of x, the lower
bound given by this expression can be made as small as desired and therefore
meaningless. Meaningful lower bounds arise only if we insist that AT y = c.
But then we get the following LP:

maximize yT b (25.6)

subject to AT y = c

Notice that this is the dual of LP (25.5)! Hence, the Lagrangian relaxation
of a linear program is simply its dual and is therefore tight.

Obtain the Lagrangian relaxation of the following LP:

minimize cT x (25.7)

subject to Ax ≥ b

x ≥ 0

25.6 (Jain and Vazirani [141]) Consider the l22 clustering problem. Given a
set of n points S = {v1, . . . , vn} in Rd and a positive integer k, the problem
is to find a minimum cost k-clustering, i.e., to find k points, called centers,
f1, . . . , fk ∈ Rd, so as to minimize the sum of squares of distances from each
point vi to its closest center. This naturally defines a partitioning of the n
points into k clusters. Give a constant factor approximation algorithm for
this problem.
Hint: First show that restricting the centers to be a subset S increases the
cost of the optimal solution by a factor of at most 2. Apply the solution of
Exercise 24.6 to this modified problem.

25.7 (Korupolu, Plaxton, and Rajaraman [176] and Arya et al. [15]) For a
set S of k facilities, define cost(S) to be the total cost of connecting each city
to its closest facility in S. Define a swap to be the process of replacing one
facility in S by a facility from S. A natural algorithm for metric k-median,
based on local search, is: Start with an arbitrary set S of k facilities. In
each iteration, check if there is a swap that leads to a lower cost solution.
If so, execute any such swap and go to the next iteration. If not, halt. The
terminating solution is said to be locally optimal.

Let G = {o1, . . . , ok} be an optimal solution and L = {s1, . . . , sk} be a
locally optimal solution. This exercise develops a proof showing cost(L) ≤
5 · cost(G), as well as a constant factor approximation algorithm.
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1. For o ∈ G, let NG(o) denote the set of cities connected to facility o in the
optimal solution. Similarly, for s ∈ L, let NL(s) denote the set of cities
connected to facility s in the locally optimal solution. Say that s ∈ L
captures o ∈ G if |NG(o) ∩ NL(s)| > |NG(o)|/2. Clearly, each o ∈ G
is captured by at most one facility in L. In this part let us make the
simplifying assumption that each facility s ∈ L captures a unique facility
in G. Assume that the facilities are numbered so that si captures oi, for
1 ≤ i ≤ k. Use the fact that for 1 ≤ i ≤ k, cost(L + oi − si) ≥ cost(L) to
show that cost(L) ≤ 3 · cost(G).
Hint: cost(L + oi− si) is bounded by the cost of the following solution:
The cities in NL(si) ∪NG(oi) are connected as in the locally optimal
solution. Those in NG(oi) are connected to facility oi. Cities in NL(si)−
NG(oi) are connected to facilities in L− si using “3 hops” in such a way
that each connecting edge of G and each connecting edge of L is used at
most once in the union of all these hops.

2. Show that without the simplifying assumption of the previous part,
cost(L) ≤ 5 · cost(G).
Hint: Consider k appropriately chosen swaps so that each facility o ∈ G
is swapped in exactly once and each facility s ∈ L is swapped out at most
twice.

3. Strengthen the condition for swapping so as to obtain, for any ε > 0 a
factor 5 + ε algorithm running in time polynomial in 1/ε and the size of
the instance.

25.6 Notes

The first approximation algorithm, achieving a factor of O(log n log log n),
was given by Bartal [21]. The first constant factor approximation algorithm
for the k-median problem, achieving a guarantee of 62

3 , was given by Charikar,
Guha, Tardos, and Shmoys [39], using ideas from Lin and Vitter [189]. This
algorithm used LP-rounding. The results of this chapter are due to Jain and
Vazirani [141]. The current best factor is 3 + 2/p, with a running time of
O(np), due to Arya et al. [15]. This is a local search algorithm that swaps p
facilities at a time (see Exercise 25.7 for the algorithm for p = 1).

The example of Section 25.3.4 is due to Jain, Mahdian, and Saberi [138].
The best upper bound on the integrality gap of relaxation (25.2) is 4, due
to Charikar and Guha [38]. For a factor 2 approximation algorithm for the
l22 clustering problem (Exercise 25.6), see Drineas, Kannan, Frieze, Vempala,
and Vinay [62].
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