Project Assignment 2

Course: Algorithm Design and Analysis
Semester: Spring 2024
Instructor: Shi Li
Due Date: 2024/6/23

Problem 1. An independent set of a graph $G=(V, E)$ is a set $U \subseteq V$ of vertices such that there are no edges between vertices in U. Given a graph with node weights, the maximumweight independent set problem asks for the independent set of a given graph with the maximum total weight. In general, this problem is NP-hard.

For this programming problem, you need to solve the problem on trees: given a tree with node weights, find the independent set of the tree with the maximum total weight. For example, the maximum-weight independent set of the tree in Figure 1 has weight 47.

Figure 1: The maximum-weight indpendent set of the tree has weight 47. The red vertices give the independent set.

We assume that the nodes of the tree are $[n]=\{1,2,3, \cdots, n\}$. We root the tree at vertex 1 , and for each vertex $i \in[2, n]$, the parent of i is a vertex $j<i$.

Input:

- The input is taken from the standard input (console).
- The first line of input contains one integer n, the number of vertices in the tree.
- The next n lines contain two integers each, where the i-th line contains two integers p_{i} and w_{i}, where p_{i} is the parent of i and w_{i} is the weight of i. We assume $p_{1}=0$, which is useless. For all $i \in[2, n]$, we have $1 \leq p_{i}<i$.

Output:

- The output is printed to the standard output (console).
- You only need to output one integer, the weight of the maximum-weight independent set.

Example Input:	Example Input (Continued):	Example Output:	This is the
11	25	47	example from
015	25		the problem
18	37		
116	42		
118	49	64	
23			

Constraints:

- $1 \leq n \leq 10^{6}$.
- $0 \leq w_{i} \leq 10^{6}$ for every $i \in[n]$.
- It is expected that your program terminates in 10 seconds.

Problem 2. You need to implement the minimum-weight arborescence problem. The input is a directed graph $G=(V, E)$ with edge weights $w \in \mathbb{Z}_{\geq 0}^{E}$. The vertices of the graph are indexed 1 to n. The root of the arborescence is 1 , which does not have incoming edges in G. It is guaranteed that every vertex is reachable from 1 in G, and G does not contain parallel edges.

Input:

- The input is taken from the standard input (console).
- The first line of input contain two integers n and m, indicating the numbers of vertices and edges in G respectively.
- The next m lines give the description of the m edges. Each line contains three integers u, v and w, denoting an edge from u to v of weight w.

Output:

- The output is printed to the standard output (console). It contains a single integer, which is the weight of the minimum-weight arborescence in G rooted at 1.

Example Input:	Example Input (Continued):	Example Output:
1123	656	54
127	6710	
1310	876	
145	595	
236	51010	
438	6107	
523	7108	
358	1189	
362	9108	
465	10910	
743	10114	
487	11106	

Constraints:

- $1 \leq n \leq 1000,1 \leq m \leq 10000$.
- The weights are integers between 0 and 10^{6}.
- It is expected that your program terminates in 10 seconds.

Problem 3. You need to implement the algorithm for the project selection problem. You are given a set of n projects, indexed from 1 to n. Each project $i \in[n]$ has a specific weight $w_{i} \in \mathbb{Z}$, which can be positive or negative. Additionally, there are precedence constraints between the projects: if project i precedes project j, then to select j, you must also select i. The precedence constraints do not induce cycles; that is, if we draw an directed edge (i, j) if i precedes j, then the resulting directed graph does not contain a directed cycle.

The goal of the problem is to select a subset of projects such that the total weight of the selected projects is maximized, while satisfying all the precedence constraints.

Input:

- The input is taken from the standard input (console).
- The first line of the input contains two integers n and m, indicating the the number of projects and the number of precedence constraints respectively.
- The second line contains n integers representing the weights of the projects, with the i-th number denoting the weight of project i.
- The next m lines contains the m precedence constraints. Each line contains two integers $i, j \in[n], i \neq j$, indicating a precedence constraint where project i precedes project j.

Output:

- The output is printed to the standard output (console).
- The output contains a single integer representing the maximum total weight of the selected subset of projects.

Example Input:	Example Output:	The optimum solution selects projects
67	4	$1,2,4$ and 6.
$-3-2-7-1610$		
12		
13		
14		
26		
35		
45		
46		

Constraints:

- $1 \leq n \leq 1000$.
- $1 \leq m \leq 10000$.
- $-10^{6} \leq w_{i} \leq 10^{6}$.
- It is expected that your program terminates in 10 seconds.

