Project Assignment 2	
Course : Algorithm Design and Analysis	Semester: Spring 2024
Instructor: Shi Li	Due Date: 2024/6/23

Problem 1. An independent set of a graph G = (V, E) is a set $U \subseteq V$ of vertices such that there are no edges between vertices in U. Given a graph with node weights, the maximum-weight independent set problem asks for the independent set of a given graph with the maximum total weight. In general, this problem is NP-hard.

For this programming problem, you need to solve the problem on trees: given a tree with node weights, find the independent set of the tree with the maximum total weight. For example, the maximum-weight independent set of the tree in Figure 1 has weight 47.

Figure 1: The maximum-weight indpendent set of the tree has weight 47. The red vertices give the independent set.

We assume that the nodes of the tree are $[n] = \{1, 2, 3, \dots, n\}$. We root the tree at vertex 1, and for each vertex $i \in [2, n]$, the parent of i is a vertex j < i.

Input:

- The input is taken from the standard input (console).
- The first line of input contains one integer n, the number of vertices in the tree.
- The next n lines contain two integers each, where the *i*-th line contains two integers p_i and w_i , where p_i is the parent of *i* and w_i is the weight of *i*. We assume $p_1 = 0$, which is useless. For all $i \in [2, n]$, we have $1 \le p_i < i$.

Output:

- The output is printed to the standard output (console).
- You only need to output one integer, the weight of the maximum-weight independent set.

Example Input:	Example Input (Continued):	Example Output:	This is the
11	2 5	47	example from
0 15	2 5		the problem
18	3 7		description.
1 16	4 2		
1 18	4 9		
2 3	64		

Constraints:

- $1 \le n \le 10^6$.
- $0 \le w_i \le 10^6$ for every $i \in [n]$.
- It is expected that your program terminates in 10 seconds.

Problem 2. You need to implement the minimum-weight arborescence problem. The input is a directed graph G = (V, E) with edge weights $w \in \mathbb{Z}_{\geq 0}^{E}$. The vertices of the graph are indexed 1 to n. The root of the arborescence is 1, which does not have incoming edges in G. It is guaranteed that every vertex is reachable from 1 in G, and G does not contain parallel edges.

Input:

- The input is taken from the standard input (console).
- The first line of input contain two integers n and m, indicating the numbers of vertices and edges in G respectively.
- The next m lines give the description of the m edges. Each line contains three integers u, v and w, denoting an edge from u to v of weight w.

Output:

• The output is printed to the standard output (console). It contains a single integer, which is the weight of the minimum-weight arborescence in G rooted at 1.

Example Input:	Example Input (Continued):	Example Output:
11 23	$6\ 5\ 6$	54
127	6710	
1 3 10	876	
1 4 5	595	
236	5 10 10	
438	6 10 7	
523	7 10 8	
358	11 8 9	
362	9 10 8	
4 6 5	10 9 10	
743	10 11 4	
487	11 10 6	

Constraints:

- $1 \le n \le 1000, 1 \le m \le 10000.$
- The weights are integers between 0 and 10^6 .
- It is expected that your program terminates in 10 seconds.

Problem 3. You need to implement the algorithm for the project selection problem. You are given a set of n projects, indexed from 1 to n. Each project $i \in [n]$ has a specific weight $w_i \in \mathbb{Z}$, which can be positive or negative. Additionally, there are precedence constraints between the projects: if project i precedes project j, then to select j, you must also select i. The precedence constraints do not induce cycles; that is, if we draw an directed edge (i, j) if i precedes j, then the resulting directed graph does not contain a directed cycle.

The goal of the problem is to select a subset of projects such that the total weight of the selected projects is maximized, while satisfying all the precedence constraints.

Input:

- The input is taken from the standard input (console).
- The first line of the input contains two integers n and m, indicating the number of projects and the number of precedence constraints respectively.
- The second line contains n integers representing the weights of the projects, with the *i*-th number denoting the weight of project *i*.
- The next m lines contains the m precedence constraints. Each line contains two integers $i, j \in [n], i \neq j$, indicating a precedence constraint where project i precedes project j.

Output:

- The output is printed to the standard output (console).
- The output contains a single integer representing the maximum total weight of the selected subset of projects.

Example Input:	Example Output:	The optimum solution selects projects
67	4	1, 2, 4 and 6 .
-3 -2 -7 -1 6 10		
1 2		
1 3		
14		
2 6		
3 5		
4 5		
4 6		

Constraints:

- $1 \le n \le 1000.$
- $1 \le m \le 10000$.
- $-10^6 \le w_i \le 10^6$.
- It is expected that your program terminates in 10 seconds.