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Foundations of Data Science
Probability Space



Probability Space



Sample Space (样本空间)

• Sample space : set of all possible outcomes of an experiment (samples).


• Example: all sides of a dice; all outcomes of a sequence of coin tosses; …


• Each  is called a sample (样本) or elementary event (基本事件).


• An event (事件) is a subset  of the sample space.

Ω

ω ∈ Ω

A ⊆ Ω
Pr

Pr

Pr



Discrete Probability Space

• Sample space : set of all possible outcomes of an experiment (samples).


• Example: all sides of a dice; all outcomes of a sequence of coin tosses; …


• Each  is called a sample (样本) or elementary event (基本事件).


• For discrete probability space (where  is finite or countably infinite):


• probability mass function (pmf)  satisfies 


• the probability of event  is given by 

Ω

ω ∈ Ω

Ω

p : Ω → [0,1] ∑
ω∈Ω

p(ω) = 1

A ⊆ Ω Pr(A) = ∑
ω∈A

p(ω)

(Ω, Pr)



Sample Space and Events

• Sample space : set of all possible outcomes of an experiment (samples).


• Example: all sides of a dice; all outcomes of a sequence of coin tosses; …


• A family  of subsets of , called events (事件), satisfies:


•  and  are events (the impossible event and certain event);


• if  is an event, then so is its complement ;


• if (countably many)  are events, then so is  (and )

Ω

Σ ⊆ 2Ω Ω

∅ Ω

A Ac = Ω∖A

A1, A2, … ⋃i Ai ⋂i Ai

“不可能事件” “必然事件”



-Algebra ( -代数)σ σ
• A family  of subsets of  is called a -algebra or -field, if:


• 


•         (where  denotes ’s compliment in )


•        (for countably many )


• Examples: 


• 


•  


•   for any 

Σ ⊆ 2Ω Ω σ σ

∅ ∈ Σ

A ∈ Σ ⟹ Ac ∈ Σ Ac = Ω∖A A Ω

A1, A2, … ∈ Σ ⟹ ⋃i Ai ∈ Σ A1, A2, … ∈ Σ

Σ = 2Ω

Σ = {∅, Ω}
Σ = {∅, A, Ac, Ω} A ⊆ Ω



Sets as Events

ω ∈ Ω
A ⊆ Ω

Ac

A ∩ B
A ∪ B
A∖B

A ⊕ B
∅
Ω

A ⊆ B
A ∩ B = ∅

Notation Set interpretation Event interpretation

 Member of Ω Elementary event

 Subset of Ω Event A occurs

 Complement of A Event A does not occur

Intersection Both A and B

Union Either A or B or both

Difference A, but not B

Symmetric difference Either A or B, but not both

Empty set Impossible event

Whole space Certain event

Inclusion A implies B

Set disjointness A and B cannot both occur



Probability Space (概率空间)

• Let  be a -algebra.


• A probability measure (概率测度), also called probability law (概率律),            
is a function  satisfying:


• (unitary/normalized)  ;


• ( -additive) for disjoint (不相容) :    .


• The triple  is called a probability space. 

Σ ⊆ 2Ω σ

Pr : Σ → [0,1]

Pr(Ω) = 1

σ A1, A2, … ∈ Σ Pr (⋃i Ai) = ∑i Pr(Ai)

(Ω, Σ, Pr)

Andrey Kolmogorov

Андре́й Колмого́ров


(1903-1987)

(Ω, Σ, Pr)



Classical Examples of Probability Space

• 古典概型 (classic probability): discrete uniform probability law 
Finite sample space , each outcome  has equal probability.


For every event :  


• ⼏何概型 (geometric probability): continuous probability space such that


For every event :   


• Bertrand’s paradox

• Buffon’s needle problem

Ω ω ∈ Ω

A ⊆ Ω Pr(A) =
|A |
|Ω |

A ∈ Σ Pr(A) =
Vol(A)
Vol(Ω)

Pr ∝ ∠



Buffon's Needle Problem (蒲丰投针问题)

• Suppose that you drop a short needle of length  on 
ruled paper, with distance  between parallel lines.


• What is the probability that the needle comes to lie 
in a position where it crosses one of the lines?  


• For , this probability is calculated as:





• A Monte Carlo method for computing 

ℓ
d

ℓ < d

Pr(A) =
Vol(A)
Vol(Ω)

=
2

dπ ∫
π

0

ℓ
2

sin(x) dx =
2ℓ
dπ

π

: angle between the needle 
and the parallel line below it


: distance from the center 
of the needle to the closest parallel line

x ∈ [0,π]

y ∈ [0,d/2]

Event A = {(x, y) ∈ [0,π] × [0, d
2 ] ∣ y ≤ ℓ

2 sin(x)}

(Georges-Louis Leclerc de Buffon in 1733, and in 1777)



Probability Space (概率空间)

• Let  be a -algebra.


• A probability measure (概率测度), also called probability law (概率律),            
is a function  satisfying:


• (unitary/normalized)  ;


• ( -additive) for disjoint (不相容) :    .


• The triple  is called a probability space. 

Σ ⊆ 2Ω σ

Pr : Σ → [0,1]

Pr(Ω) = 1

σ A1, A2, … ∈ Σ Pr (⋃i Ai) = ∑i Pr(Ai)

(Ω, Σ, Pr)

(Ω, Σ, Pr)

Andrey Kolmogorov

Андре́й Колмого́ров


(1903-1987)



Basic Properties of Probability

• 


• 


• 


• 


• 


• Not even wrong: “自然数是偶数的概率为 ”

（然⽽ “[0,1]中均匀实数是有理数的概率为0” 却是正确的）

Pr(Ac) = 1 − Pr(A)

Pr(∅) = 0

Pr(A∖B) = Pr(A) − Pr(A ∩ B)

A ⊆ B ⟹ Pr(A) ≤ Pr(B)

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

1/2

     (the probabilistic method)Pr(A) > 0 ⟹ A ≠ ∅

All followings can be deduced from the axioms of probability space:



Union Bound
• Union bound (Boole’s inequality): for events 





• Example: A system has  types of errors, each occurring with probability at most 


 

A1, A2, …An ∈ Σ

Pr (
n

⋃
i=1

Ai) ≤
n

∑
i=1

Pr(Ai)

n p

Pr[ no error occurs ] = 1 − Pr (
n

⋃
i=1

Ai) ≥ 1 − np

Holds unconditionally. 

(tight if all bad events are disjoint)

= Pr (
n

⋂
i=1

Ac
i )

Let  be the event that type-  error occurs.Ai i



Balls into Bins
• Throwing  balls into  bins, every bin receives at most  bins 


w.h.p. (with high probability, with probability )


• Proof: Define event  : some bin receives  balls (  to be fixed)

   and events  : bin-  receives  balls


Then by union bound: 


For each , define event  : bin-  receives the balls in 


By union bound: 

n n O ( ln n
ln ln n )

1 − O(1/n)

A ≥ k k
Ai i ≥ k

Pr(A) = Pr (
n

⋃
i=1

Ai) ≤
n

∑
i=1

Pr(Ai)

S ∈ ([n]
k ) Ai,S i S

Pr(Ai) = Pr
n

⋃
S∈([n]

k )
Ai,S ≤ ∑

S∈([n]
k )

Pr (Ai,S) = (n
k) 1

nk
≤ ( en

k )
k 1

nk
≤ ( e

k )
k

≤
1
n2

Choose k = 3 ln n/ln ln n

≤
1
n

🥎

🥎🥎🥎🥎 🥎🥎🥎🥎🥎🥎 🥎
🥎🥎🗑 🗑 🗑 🗑 🗑 🗑 🗑

  ⟹ Pr(Ac) ≥ 1 −
1
n



Principles of Inclusion-Exclusion
• Principle of inclusion-exclusion: for events ,





• Boole-Bonferroni Inequality:  for events , for any 


A1, A2, …An ∈ Σ

Pr (
n

⋃
i=1

Ai) =
n

∑
i=1

Pr(Ai) − ∑
i<j

Pr(Ai ∩ Aj) + ∑
i<j<k

Pr(Ai ∩ Aj ∩ Ak) − ⋯

= ∑
S ⊆ {1,2,…, n}

S ≠ ∅

(−1)|S|−1 Pr (⋂
i∈S

Ai)
A1, A2, …An ∈ Σ k ≥ 0

∑
S ⊆ {1,2,…, n}
1 ≤ |S | ≤ 2k

(−1)|S|−1 Pr (⋂
i∈S

Ai) ≤ Pr (
n

⋃
i=1

Ai) ≤ ∑
S ⊆ {1,2,…, n}

1 ≤ |S | ≤ 2k + 1

(−1)|S|−1 Pr (⋂
i∈S

Ai)



Derangement (错排)
(le problème des rencontres, 1708)

• The probability that a random permutation  has no fixed point 
(i.e. there is no  such that ).


• Let  be the event that .

π : [n] → [n]
i ∈ [n] π(i) = i

Ai π(i) = i

=
n

∑
k=1

(n
k)(−1)k−1 (n − k)!

n!
Pr (

n

⋃
i=1

Ai) =
n

∑
k=1

∑
S∈({1,2,…, n}

k )
(−1)k−1 Pr (⋂

i∈S

Ai) = −
n

∑
k=1

(−1)k

k!

= 1 +
n

∑
k=1

(−1)k

k!
=

n

∑
k=0

(−1)k

k!
 as  →

1
e

n → ∞

1-1

onto

Pr (⋂
i∈S

Ai) =
(n − |S | )!

n!

Pr[ π has no fixed point ] = 1 − Pr (
n

⋃
i=1

Ai)= Pr (
n

⋂
i=1

Ac
i )



Continuity of Probability Measures*
• Let  be an increasing sequence of events, and write  for their limit


 .


Then .


• Proof: Express  as a disjoint union . Then 


 

A1 ⊆ A2 ⊆ A3 ⊆ … A

A =
∞

⋃
i=1

Ai = lim
i→∞

Ai

Pr(A) = lim
i→∞

Pr(Ai)

A A = A1 ⊎ (A2∖A1) ⊎ (A3∖A2) ⊎ ⋯

Pr(A) = Pr(A1) +
∞

∑
i=1

Pr(Ai+1∖Ai)

= Pr(A1) + lim
n→∞

n−1

∑
i=1

[Pr(Ai+1) − Pr(Ai)]

= lim
n→∞

Pr(An)



Continuity of Probability Measures*
• Let  be an increasing sequence of events, and write  for their limit


 .


Then .


• Let  be an decreasing sequence of events, and write  for their limit


 .


Then .


• Proof: Consider the complements  which is an increasing sequence.

A1 ⊆ A2 ⊆ A3 ⊆ … A

A =
∞

⋃
i=1

Ai = lim
i→∞

Ai

Pr(A) = lim
i→∞

Pr(Ai)

B1 ⊇ B2 ⊇ B3 ⊇ … B

B =
∞

⋂
i=1

Bi = lim
i→∞

Bi

Pr(B) = lim
i→∞

Pr(Bi)

Bc
1 ⊆ Bc

2 ⊆ Bc
3 ⊆ …



Null and Almost Surely Events*

• An event  is called null if .

• A null event is not necessarily the impossible event .


• An event  occurs almost surely (a.s.) if  .

• An event that occurs a.s., is not necessarily the certain event .


• A probability space is called complete, if all subsets of null events are events.

• Without loss of generality: we only consider complete probability spaces      


(if we start with an incomplete one, we can complete it without changing the probabilities)

A ∈ Σ Pr(A) = 0
∅

A ∈ Σ Pr(A) = 1
Ω



Conditional Probability



• Frequently, we need to make such statement: 

“The probability of  is , given that  occurs.”


• For discrete uniform law:   


• Let  be an event, and let  be an event that . 

The conditional probability that  occurs given that  occurs is defined to be


A p B

p =
|A ∩ B |

|B |

A B Pr(B) > 0
A B

Pr(A ∣ B) =
Pr(A ∩ B)

Pr(B)

Conditional Probability
Ω

A
B

=
|A ∩ B | / |Ω |

|B | / |Ω |
=

Pr(A ∩ B)
Pr(B)

A ∩ B



Conditional Probability

• Let  be an event, and let  be an event that . 

The conditional probability that  occurs given that  occurs is defined to be





•  is a well-defined probability law:


• sample space is 


•  is a -algebra


• the law  satisfies the probability axioms

A B Pr(B) > 0
A B

Pr(A ∣ B) =
Pr(A ∩ B)

Pr(B)

Pr( ⋅ ∣ B)
B

ΣB = {A ∩ B ∣ A ∈ Σ} σ
Pr( ⋅ ∣ B)

Ω

A
B

A ∩ B



Fair Coins out of a Biased One
(von Neumann’s Bernoulli factory)

• John von Neumann (1951): “Suppose you are given a coin for which the 
probability of HEADS, say , is unknown. How can you use this coin to 
generate unbiased (fair) coin-flips.”


• Protocol:   Repetitively flip the coin until a  or  is encountered, 

output  if  is encountered, and output  if otherwise.


• Consider any two consecutive coin flips:


 

p

𝙷𝚃 𝚃𝙷
𝙷 𝙷𝚃 𝚃

Pr(𝙷𝚃 ∣ {𝙷𝚃, 𝚃𝙷}) = Pr(𝚃𝙷 ∣ {𝙷𝚃, 𝚃𝙷}) =
p(1 − p)

2p(1 − p)
=

1
2



The Two Child Problem

• Martin Gardner (1959): “Knowing that I have two children and at least one of 
them is girl, what is the probability that both children are girls?”


• Consider a uniform law  over 
Pr Ω = {𝙱𝙱, 𝙱𝙶, 𝙶𝙱, 𝙶𝙶}

Pr({𝙶𝙶} ∣ {𝙱𝙶, 𝙶𝙱, 𝙶𝙶})

(boy or girl paradox)

=
Pr({𝙶𝙶})

Pr({𝙱𝙶, 𝙶𝙱, 𝙶𝙶})

=
1/4
3/4

=
1
3



Laws for Conditional Probability
• Chain rule:





• Law of total probability: For partition  of ,





• Bayes’ law: For partition  of ,


Pr (
n

⋂
i=1

Ai) =
n

∏
i=1

Pr (Ai ∣ ⋂j<i Aj)
B1, B2, …, Bn Ω

Pr(A) =
n

∑
i=1

Pr(A ∩ Bi) =
n

∑
i=1

Pr(A ∣ Bi) Pr(Bi)

B1, B2, …, Bn Ω

Pr(Bi ∣ A) =
Pr(Bi) Pr(A ∣ Bi)

Pr(A)
=

Pr(Bi) Pr(A ∣ Bi)
Pr(A ∣ B1) Pr(B1) + ⋯ + Pr(A ∣ Bn) Pr(Bn)



Chain Rule
(General Product Rule / Law of Successive Conditioning)

• Assuming that all the involved conditions have positive probabilities, we have





• Proof:   Due to the telescopic product





Pr (
n

⋂
i=1

Ai) =
n

∏
i=1

Pr (Ai ∣ ⋂j<i Aj)

Pr (
n

⋂
i=1

Ai) =
Pr (⋂n

i=1 Ai)
Pr (⋂n−1

i=1 Ai)
⋅

Pr (⋂n−1
i=1 Ai)

Pr (⋂n−2
i=1 Ai)

⋯
Pr (A1 ∩ A2)

Pr (A1)
⋅ Pr(A1)



Birthday “Paradox” 
“⼀个班级若想要100%地保证有两个⼈同⼀天过⽣日，需要班上有超过366⼈；                         

但若仅想让这件事发⽣的可能性超过99%，则班上有超过57⼈就⾜够了。” 

• Consider uniform random mapping 





• Balls-into-bins model:  throwing  balls into  bins one-by-one at random

  


f : [n] → [m]

Pr[ f is 1-1 ] =
m!/(m − n)!

mn
=

n

∏
i=1

(1 −
i − 1

m )
n m

Pr[every ball is thrown to an empty bin]

=
n

∏
i=1

Pr[ball i is in thrown into an empty bin ∣ every ball j < i is in an empty bin] =
n

∏
i=1

(1 −
i − 1

m )
≈ exp (−

n

∑
i=1

i − 1
m ) ≈ exp (−

n2

2m )

 for  = ϵ n ≈ 2m ln(1/ϵ)



Law of Total Probability 

• Let events  be a partition of  such that  for all . 
Then:





• Proof:   are disjoint and 


   


Moreover:    .

B1, B2, …, Bn Ω Pr(Bi) > 0 i

Pr(A) =
n

∑
i=1

Pr(A ∩ Bi) =
n

∑
i=1

Pr(A ∣ Bi) Pr(Bi)

A ∩ B1, A ∩ B2, …, A ∩ Bn A =
n

⋃
i=1

(A ∩ Bi)

⟹ Pr(A) =
n

∑
i=1

Pr (A ∩ Bi)
Pr (A ∩ Bi) = Pr(A ∣ Bi) Pr(Bi)



Monty Hall Problem
(three doors problem)

• Suppose you’re on a game show, and you’re given the choice of three doors: 
Behind one door is a car; behind the others, goats. 


• You pick a door, say No.1, and the host, who knows what’s behind the doors, 
opens another door, say No.3, which has a goat. He then says to you, “Do 
you want to pick door No.2?” Is it to your advantage to switch your choice?


• Define event  : you win at last  

event  : you pick the car at first 


 

A
B

Pr(A) = {

☞

Pr(B) if not switching= 1/3

if switchingPr(A ∣ B) Pr(B) + Pr(A ∣ Bc) Pr(Bc)
= 0 + 1 ⋅ 2/3 = 2/3



Gambler’s Ruin
(Symmetric Random Walk in One-Dimension)

• A gambler plays a fair gambling game: At each step, he flips a fair coin, earns 
1 point if it’s HEADs, and loses 1 point if otherwise. He starts with  points, 
and will keep playing until either his points reaches 0 (lose) or  (win).


• Define events : the gambler loses; and : the 1st coin flip returns HEADs


• Let  be the law that the gambler starts with  points.

k
n > k

A B

Prk k

0 nk

+1−1

= 1
2 Prk+1(A) + 1

2 Prk−1(A)

Prk(A) =

1
2 (Prk+1(A) + Prk−1(A))
1
0

if 0 < k < n
if k = 0
if k = n

= 1 − k
n

Prk(A) = 1
2 Prk(A ∣ B) + 1

2 Prk(A ∣ Bc)



Bayes’ Law
(Bayes’ Theorem)

• For events  that , we have 


 


• Let events  be a partition of  such that  for all .       
If event  has , then


A, B Pr(A), Pr(B) > 0

Pr(B ∣ A) =
Pr(B) Pr(A ∣ B)

Pr(A)

B1, B2, …, Bn Ω Pr(Bi) > 0 i
A Pr(A) > 0

Pr(Bi ∣ A) =
Pr(Bi) Pr(A ∣ Bi)

Pr(A)
=

Pr(Bi) Pr(A ∣ Bi)
Pr(A ∣ B1) Pr(B1) + ⋯ + Pr(A ∣ Bn) Pr(Bn)



Dominating False Positives
• A rare disease occurs with probability 0.001.


• 5% testing error:


• A person with the disease tested ; a person without the disease tested 


• If a person is tested “+”, what is the probability that he/she is ill? 

{+ 95 %
− 5 % {+ 5 %

− 95 %

Pr(𝚒𝚕𝚕 ∣ + ) =
Pr(𝚒𝚕𝚕) Pr( + ∣ 𝚒𝚕𝚕)

Pr( + )
=

Pr(𝚒𝚕𝚕) Pr( + ∣ 𝚒𝚕𝚕)
Pr( + ∣ 𝚒𝚕𝚕) Pr(𝚒𝚕𝚕) + Pr( + ∣ ¬𝚒𝚕𝚕) Pr(¬𝚒𝚕𝚕)

=
0.001 × 95 %

95% × 0.001 + 5% × 0.999 ≈ 1.87 %



• Results of clinical trials for 2 drugs:


• Which drug is more effective?

• Drug-II is better: overall success rate 219/2020 (I) < 1010/2200 (II) 

• Drug-I is better: for women 1/10 (I) > 1/20 (II), for men 19/20 (I) > 1/2 (II)


• In Probability:  It’s possible that for events  and partition  of 


• in case for each , the occurrence of  has positive influence on :

 for all 


• but overall, the occurrence of  has negative influence on :


A, B C1, …, Cn Ω
Ci B A

Pr(A ∣ B ∩ Ci) > Pr(A ∣ Bc ∩ Ci) i
B A

Pr(A ∣ B) < Pr(A ∣ Bc)

Women Men
Drug I Drug II Drug I Drug II

Success 200 10 19 1000
Fail 1800 190 1 1000

Simpson’s Paradox



• Example:  Correlation between hours for studying and grades.


• Overall, it appears that lengths of studying have negative impact on grades. 
(The longer the students study, the worse their grades are!)


• But truly the they are positively correlated in every course.

Simpson’s Paradox
(Edward H. Simpson in 1951; Karl Pearson in 1899; Udny Yule in 1903)



Independence



Independence of Two Events
• The occurrence of some event  changes the probability of another event , 

from  to .


• If the occurrence of  has no influence on that of , i.e. ,          
then  is said to be independent of .


• The two events  and  are called independent if 





• Propositions: if :      


    

B A
Pr(A) Pr(A ∣ B)

B A Pr(A ∣ B) = Pr(A)
A B

A B

Pr(A ∩ B) = Pr(A) Pr(B)

Pr(B) > 0 Pr(A ∣ B) = Pr(A) ⟺ Pr(A ∩ B) = Pr(A) Pr(B)
Pr(A ∩ B) = Pr(A) Pr(B) ⟺ Pr(A ∩ Bc) = Pr(A) Pr(Bc)



Independence of Several Events
• A family  of events is called (mutually) independent 


if for all finite subsets 





• An event  is called (mutually) independent of a family   of events 
if for all disjoint finite subsets 


{Ai ∣ i ∈ I}
J ⊆ I

Pr (⋂
i∈J

Ai) = ∏
i∈J

Pr(Ai)

A {Bi ∣ i ∈ I}
J+, J− ⊆ I

Pr(A) = Pr (A ∣ ⋂
i∈J+

Bi ∩ ⋂
i∈J−

Bc
i )



Product Probability Space
• Probability space constructed from a sequence of independent experiments.


• Consider discrete probability spaces .


• The product probability space  is constructed as:


• sample space 


• :  pmf 


• For general probability spaces , the product probability space  
can be constructed similarly, where  is the unique smallest -algebra that contains , and 
the law  is a natural extension onto such  from the product probabilities: 


, 

(Ω1, p1), (Ω2, p2), …, (Ωn, pn)

(Ω, p)
Ω = Ω1 × Ω2 × ⋯ × Ωn

∀ω = (ω1, …, ωn) ∈ Ω p(ω) = p1(ω1)⋯pn(ωn)

(Ω1, Σ1, Pr1), …, (Ωn, Σn, Prn) (Ω, Σ, Pr)
Σ σ Σ1 × ⋯ × Σn

Pr Σ
∀A = (A1, …, An) ∈ Σ1 × ⋯ × Σn Pr(A) = Pr(A1)⋯ Pr(An)



Dependency Structure

• The followings are all possible:


• are mutually independent and  are mutually 
independent, but  and  are not independent for every .


• For every ,  and  are independent, but for every 
, neither  and , nor  and , are independent.


• For an arbitrary undirected graph  on vertices , 
each  is mutually independent of all ’s that are not adjacent to  in .

A1, A2, …, An B1, B2, …, Bn
Ai Bi 1 ≤ i ≤ n

1 ≤ i ≤ n Ai Bi
1 ≤ i < j ≤ n Ai Aj Bi Bj

G(V, E) V = {A1, …, An}
Ai Aj Ai G



Limited Independence
• A family  of events is called pairwise independent 


if for all distinct 





• Mutually independent events must be pairwise independent.


• Pairwise independent events are not necessarily mutually independent.


• Example: parities (XOR’s) of random bits

: coin-1 is ;  : coin-2 is ;  : coin-3 is ;  


: coin-1  coin-2;  : coin-2  coin-3;  : coin-3  coin-1;

 : # of  in coins-1,2,3 is odd;

{Ai ∣ i ∈ I}
i, j ∈ I

Pr(Ai ∩ Aj) = Pr(Ai) Pr(Aj)

A 𝙷 B 𝙷 C 𝙷
D ≠ E ≠ F ≠

G 𝙷



Triply Independent but not pairwise

•  but no pairwise independence


• Example and figure is from George, Glyn, "Testing for the independence of three 
events," Mathematical Gazette 88, November 2004, 568

Pr(A ∩ B ∩ C) = Pr(A) Pr(B) Pr(C)



Error Reduction (one-sided case)
• Decision problem .


• Monte Carlo randomized algorithm  with one-sided error: 


• :    


• :    


• : independently run  for  times, return  of the  outputs


  


• The one-sided error is reduced to  by repeating  times.

f : {0,1}* → {0,1}

𝒜

∀x ∈ {0,1}* f(x) = 1 ⟹ 𝒜(x) = 1

∀x ∈ {0,1}* f(x) = 0 ⟹ Pr[𝒜(x) = 0] ≥ p

𝒜n 𝒜 n ∧ n

f(x) = 0 ⟹ Pr[𝒜n(x) = 1] ≤ (1 − p)n

ϵ n ≈
1
p

ln
1
ϵ



Binomial Probability
• Consider  independent tosses of a coin, in which each coin toss returns 

HEADs independently with probability . 


• We say that we have a sequence of Bernoulli trials (伯努利实验), in which 
each trial succeeds with probability .


• Binomial probability:   

     


   

n
p

p

p(k) = Pr(k successes out of n trials)
= ∑

S∈([n]
k )

Pr(∀i ∈ S : ith trial succeeds) Pr(∀i ∈ [n]∖S : ith trial fails)

= ∑
S∈([n]

k )
p|S|(1 − p)n−|S| = (n

k)pk(1 − p)n−k
 is a well-defined pmf on p(k)

Ω = {0,1,…, n}

 (binomial Thm.) 
n

∑
k=0

p(k) = 1



Controlling a Fair Voting
• In a society of  isolated (independent) and neutral (uniform) people, how many people 

are there enough to manipulate the result of a majority vote with 95% certainty.


• Consider  independent coin tosses of a fair coin.





 








n

n
Pr[ |#𝙷𝙴𝙰𝙳𝚜 − #𝚃𝙰𝙸𝙻𝚜 | ≥ t] = Pr[#𝙷𝙴𝙰𝙳𝚜 ≤ n

2 − t
2 ] + Pr[#𝙷𝙴𝙰𝙳𝚜 ≥ n

2 + t
2 ]

= ∑
k≤(n−t)/2

(n
k)2−n + ∑

k≥(n+t)/2
(n

k)2−n

= 21−n ∑
k≤(n−t)/2

(n
k)

≤ 21−n+nH( 1
2 − t

2n )
≈ 2 exp (− t2

n )
where 
H(x) = − x log2 x − (1 − x)log2(1 − x)

H(x) ≈ 1 −
2

ln 2 (x −
1
2 )

2

+ O ((x −
1
2 )

3

)

 when ≤ 0.05 t ≥ 2 n

(entropy bound on the 
volume of a Hamming ball)



Error Reduction (two-sided case)
• Decision problem .


• Monte Carlo randomized algorithm  with two-sided error: 


• :   


• : independently run  for  times, return majority of the  outputs





• How to calculate this?

f : {0,1}* → {0,1}

𝒜

∀x ∈ {0,1}* Pr[𝒜(x) = f(x)] ≥
1
2

+ p

𝒜n 𝒜 n n

Pr[𝒜n(x) ≠ f(x)] ≤ ∑
k< n

2

(n
k) ( 1

2
+ p)

k

( 1
2

− p)
n−k

≤ exp(−p2n)

(concentration inequalities)
 when ≤ ϵ n ≥

1
p2

ln
1
ϵ



Network Reliability
• A serial-parallel (串并联) network connects  to . 


• Suppose that each edge  connects  independently with probability .


• -  reliability 

s t

e = uv uv pe

s t Pst ≜ Pr[ s and t are connected ]

s t

p1

p2

p3

p4

p5A B C

= 1 − (1 − PAC)(1 − PDE)

PAC = PABPBC = PABp5

D E

= 1 − (1 − PAC)(1 − p4)

PAB = 1 − (1 − p1)(1 − p2)(1 − p3)



Network Reliability
• A serial-parallel (串并联) network connects  to . 


• Suppose that each edge  connects  independently with probability .


• -  reliability 


• (all-terminal) network reliability: 


• For general networks:


• -  reliability is #P-complete (Leslie Valiant, 1979)


• all-terminal network reliability is #P-complete (Mark Jerrum, 1981)

s t

e = uv uv pe

s t Pst ≜ Pr[ s and t are connected ]

≜ Pr[  the resulting network is connected ]

s t

s t

p1

p2

p3

p4

p5



Conditional independence

• Two events  and  are conditionally independent given  if  and





• If : 


• Example: any two events are independent but not conditionally independent given the third event


: coin-1 is ;  : coin-2 is ; : coin-1  coin-2;


• Example:  and  are are not independent, but they are conditionally independent given 


:  is tall;        :  knows a lot of math;        :  is 19 years old;

Suppose that  is a random person

A B C Pr(C) > 0

Pr(A ∩ B |C) = Pr(A |C) Pr(B |C)

Pr(B ∩ C) > 0 Pr(A ∩ B |C) = Pr(A |C) Pr(B |C) ⟺ Pr(A |B ∩ C) = Pr(A |C)

A 𝙷 B 𝙷 C ≠
A B C
A X B X C X

X


