Foundations of Data Science Probability Space

尹一通,刘明谋 Nanjing University, 2024 Fall

Probability Space

Sample Space (样本空间)

- Sample space Ω : set of all possible outcomes of an experiment (samples).
 - Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...
- Each $\omega \in \Omega$ is called a <u>sample</u> (样本) or <u>elementary event</u> (基本事件).
- An <u>event</u> (事件) is a subset $A \subseteq \Omega$ of the sample space.

Discrete Probability Space (Ω, Pr)

- Sample space Ω : set of all possible outcomes of an experiment (samples).
 - Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...
- Each $\omega \in \Omega$ is called a <u>sample</u> (样本) or <u>elementary event</u> (基本事件).
- For discrete probability space (where Ω is finite or countably infinite):
 - probability mass function (pmf) $p: \Omega \to [0,1]$ satisfies $\sum p(\omega) = 1$ $\omega \in \Omega$ the probability of event $A \subseteq \Omega$ is given by $Pr(A) = \sum p(\omega)$ $\omega \in A$

Sample Space and Events

- Sample space Ω : set of all possible outcomes of an experiment (samples).
 - Example: all sides of a dice; all outcomes of a sequence of coin tosses; ...
- A family $\Sigma \subseteq 2^{\Omega}$ of subsets of Ω , called <u>events</u> (事件), satisfies:
 - "必然事件" "不可能事件"
 - Ø and Ω are events (the *impossible event* and *certain event*); • if A is an event, then so is its complement $A^c = \Omega \setminus A$;
 - if (countably many) A_1, A_2, \ldots are events, then so is $\bigcup_i A_i$ (and $\bigcap_i A_i$)

 σ -Algebra (σ -代数)

- A family $\Sigma \subseteq 2^{\Omega}$ of subsets of Ω is called a <u> σ -algebra</u> or <u> σ -field</u>, if:
 - $\emptyset \in \Sigma$
 - $A \in \Sigma \Longrightarrow A^c \in \Sigma$ (where $A^c = \Omega \setminus A$ denotes A's compliment in Ω)
 - $A_1, A_2, \ldots \in \Sigma \Longrightarrow [J_i A_i \in \Sigma$ (for countably many $A_1, A_2, \ldots \in \Sigma$)
- Examples:
 - $\Sigma = 2^{\Omega}$
 - $\Sigma = \{\emptyset, \Omega\}$
 - $\Sigma = \{ \emptyset, A, A^c, \Omega \}$ for any $A \subseteq \Omega$

Sets as Events

Notation	Set interpretation	Event interpretation	
$\omega\in\Omega$	Member of Ω Elementary event		
$A \subseteq \Omega$	Subset of Ω Event A occurs		
A^c	Complement of A Event A does not occur		
$A \cap B$	Intersection Both A and B		
$A \cup B$	Union Either A or B or both		
$A \setminus B$	Difference	A, but not B	
$A \oplus B$	Symmetric difference Either A or B, but not both		
Ø	Empty set Impossible event		
Ω	Whole space	Whole space Certain event	
$A \subseteq B$	Inclusion	A implies B	
$A \cap B = \emptyset$	Set disjointness	A and B cannot both occur	

Probability Space (概率空间) (Ω, Σ, Pr)

- Let $\Sigma \subseteq 2^{\Omega}$ be a <u> σ -algebra</u>.
- A probability measure (概率测度), also called probability law (概率律), is a function $Pr: \Sigma \rightarrow [0,1]$ satisfying:
 - (unitary/normalized) $Pr(\Omega) = 1$;
- The triple (Ω, Σ, Pr) is called a probability space.

Andrey Kolmogorov Андре́й Колмого́ров (1903 - 1987)

• (*\sigma*-additive) for disjoint (不相容) $A_1, A_2, \ldots \in \Sigma$: $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$.

Classical Examples of Probability Space

- 古典概型 (<u>classic probability</u>): *discrete uniform probability law* Finite sample space Ω , each outcome $\omega \in \Omega$ has equal probability. For every event $A \subseteq \Omega$: $Pr(A) = \frac{|A|}{|\Omega|}$
- 几何概型 (geometric probability): continuous probability space such that

For every event $A \in \Sigma$: $Pr(A) = \frac{Vol(A)}{Vol(\Omega)}$

- Bertrand's paradox
- Buffon's needle problem

 $Pr \propto \angle$

Buffon's Needle Problem (蒲丰投针问题) (Georges-Louis Leclerc de Buffon in 1733, and in 1777)

- Suppose that you drop a short needle of length ℓ on ruled paper, with distance d between parallel lines.
- What is the probability that the needle comes to lie in a position where it crosses one of the lines?
- For $\ell < d$, this probability is calculated as:

$$\Pr(A) = \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(\Omega)} = \frac{2}{d\pi} \int_0^{\pi} \frac{\ell}{2} \sin(A) dA$$

• A *Monte Carlo method* for computing π

 $x \in [0,\pi]$: angle between the needle and the parallel line below it

 $y \in [0, d/2]$: distance from the center of the needle to the closest parallel line

Event
$$A = \left\{ (x, y) \in [0, \pi] \times \left[0, \frac{d}{2}\right] \mid y \leq \frac{\ell}{2} \sin(\theta) \right\}$$

Probability Space (概率空间) (Ω, Σ, Pr)

- Let $\Sigma \subseteq 2^{\Omega}$ be a <u> σ -algebra</u>.
- A probability measure (概率测度), also called probability law (概率律), is a function $Pr: \Sigma \rightarrow [0,1]$ satisfying:
 - (unitary/normalized) $Pr(\Omega) = 1$;
- The triple (Ω, Σ, Pr) is called a probability space.

Andrey Kolmogorov Андре́й Колмого́ров (1903 - 1987)

• (*\sigma*-additive) for disjoint (不相容) $A_1, A_2, \ldots \in \Sigma$: $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$.

Basic Properties of Probability

All followings can be deduced from the axioms of probability space:

- $Pr(A^{c}) = 1 Pr(A)$
- $Pr(\emptyset) = 0$ $Pr(A) > 0 \Longrightarrow A \neq \emptyset$ (the probabilistic method)
- $Pr(A \setminus B) = Pr(A) Pr(A \cap B)$
- $A \subseteq B \implies \Pr(A) \leq \Pr(B)$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- Not even wrong: "自然数是偶数的概率为1/2" (然而"[0,1]中均匀实数是有理数的概率为0"却是正确的)

Union Bound

• Union bound (Boole's inequality): for events $A_1, A_2, \dots A_n \in \Sigma$

 $\Pr\left(\bigcup_{i=1}^{n}A\right)$

- - Let A_i be the event that type-*i* error occurs.
 - $\Pr[\text{ no error occurs }] = \Pr[$

$$A_i$$
) $\leq \sum_{i=1}^n \Pr(A_i)$

Example: A system has *n* types of errors, each occurring with probability at most *p*

$$\left(\bigcap_{i=1}^{n} A_{i}^{c}\right) = 1 - \Pr\left(\bigcup_{i=1}^{n} A_{i}\right) \ge 1 - np$$

Holds unconditionally. (tight if all bad events are disjoint)

Balls into Bins

- Throwing *n* balls into *n* bins, every bin receives at most $O\left(\frac{\ln n}{\ln \ln n}\right)$ bins <u>w.h.p.</u> (with high probability, with probability 1 - O(1/n))
- **Proof:** Define event A : some bin receives $\geq k$ balls (k to be fixed) and events A_i : bin-*i* receives $\geq k$ balls

For each $S \in \binom{[n]}{k}$, define event $A_{i,S}$: bin-*i* receives the balls in *S*

By union bound: $\Pr(A_i) = \Pr\left(\bigcup_{\substack{n \ S \in \binom{[n]}{k}}}^n A_{i,S}\right) \le \sum_{\substack{S \in \binom{[n]}{k}}}^n A_{i,S}$

Then by union bound: $Pr(A) = Pr\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} Pr(A_i) \le \frac{1}{n} \implies Pr(A^c) \ge 1 - \frac{1}{n}$

$$\sum_{k \in \binom{[n]}{k}} \Pr\left(A_{i,S}\right) = \binom{n}{k} \frac{1}{n^k} \le \left(\frac{\mathrm{e}n}{k}\right)^k \frac{1}{n^k} \le \left(\frac{\mathrm{e}}{k}\right)^k \le \frac{1}{n^2}$$
Choose $k = 3 \ln n / \ln 1$

Principles of Inclusion-Exclusion

• Principle of inclusion-exclusion: for events $A_1, A_2, \dots A_n \in \Sigma$,

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \Pr(A_{i}) - \sum_{i < j} \Pr(A_{i} \cap A_{j}) + \sum_{i < j < k} \Pr(A_{i} \cap A_{j} \cap A_{k}) - \cdots$$
$$= \sum_{\substack{S \subseteq \{1, 2, \dots, n\}\\S \neq \emptyset}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_{i}\right)$$

$$= \sum_{i=1}^{n} \Pr(A_i) - \sum_{i < j} \Pr(A_i \cap A_j) + \sum_{i < j < k} \Pr(A_i \cap A_j \cap A_k) - \cdots$$
$$= \sum_{\substack{S \subseteq \{1,2,\dots,n\}\\S \neq \emptyset}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_i\right)$$

$$\sum_{\substack{S \subseteq \{1,2,\dots,n\}\\1 \le |S| \le 2k}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_i\right) \le \Pr\left(\bigcup_{i=1}^n A_i\right) \le \sum_{\substack{S \subseteq \{1,2,\dots,n\}\\1 \le |S| \le 2k+1}} (-1)^{|S|-1} \Pr\left(\bigcap_{i \in S} A_i\right)$$

Boole-Bonferroni Inequality: for events $A_1, A_2, \dots A_n \in \Sigma$, for any $k \ge 0$

Derangement (错排) (le problème des rencontres, 1708)

- (i.e. there is no $i \in [n]$ such that $\pi(i) = i$).
- Let A

i be the event that
$$\pi(i) = i$$
. $\Pr\left(\bigcap_{i \in S} A_i\right) = \frac{(n - |S|)!}{n!}$
 $\Pr\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n \sum_{S \in \binom{\{1,2,\dots,n\}}{k}} (-1)^{k-1} \Pr\left(\bigcap_{i \in S} A_i\right) = \sum_{k=1}^n \binom{n}{k} (-1)^{k-1} \frac{(n-k)!}{n!} = -\sum_{k=1}^n \frac{(-1)^k}{k!}$
no fixed point] = $\Pr\left(\bigcap_{i=1}^n A_i^c\right) = 1 - \Pr\left(\bigcup_{i=1}^n A_i\right) = 1 + \sum_{k=1}^n \frac{(-1)^k}{k!} = \sum_{k=0}^n \frac{(-1)^k}{k!} \to \frac{1}{e} \text{ as } n \to \infty$

 $\Pr[\pi$ has

• The probability that a random permutation $\pi : [n] \xrightarrow[]{1-1}{\rightarrow} [n]$ has no fixed point

Continuity of Probability Measures*

Then $Pr(A) = \lim Pr(A_i)$. $i \rightarrow \infty$

• **Proof**: Express A as a c

disjoint union
$$A = A_1 \uplus (A_2 \backslash A_1) \uplus (A_3 \backslash A_2) \uplus \cdots$$
. Then
 $\Pr(A) = \Pr(A_1) + \sum_{i=1}^{\infty} \Pr(A_{i+1} \backslash A_i)$
 $= \Pr(A_1) + \lim_{n \to \infty} \sum_{i=1}^{n-1} [\Pr(A_{i+1}) - \Pr(A_i)]$
 $= \lim_{n \to \infty} \Pr(A_n)$

In tunion
$$A = A_1 \uplus (A_2 \backslash A_1) \uplus (A_3 \backslash A_2) \uplus \cdots$$
. Then

$$= \Pr(A_1) + \sum_{i=1}^{\infty} \Pr(A_{i+1} \backslash A_i)$$

$$= \Pr(A_1) + \lim_{n \to \infty} \sum_{i=1}^{n-1} \left[\Pr(A_{i+1}) - \Pr(A_i)\right]$$

$$= \lim_{n \to \infty} \Pr(A_n)$$

• Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ be an increasing sequence of events, and write A for their limit

$$A = \bigcup_{i=1}^{n} A_i = \lim_{i \to \infty} A_i.$$

Continuity of Probability Measures*

Then $Pr(A) = \lim Pr(A_i)$. $i \rightarrow \infty$

Then $Pr(B) = \lim Pr(B_i)$. $i \rightarrow \infty$

• Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ be an increasing sequence of events, and write A for their limit

$$A = \bigcup_{i=1}^{n} A_i = \lim_{i \to \infty} A_i.$$

• Let $B_1 \supseteq B_2 \supseteq B_3 \supseteq \dots$ be an decreasing sequence of events, and write B for their limit

$$B = \bigcap_{i=1}^{\infty} B_i = \lim_{i \to \infty} B_i.$$

• **Proof**: Consider the complements $B_1^c \subseteq B_2^c \subseteq B_3^c \subseteq \ldots$ which is an increasing sequence.

Null and Almost Surely Events*

- An event $A \in \Sigma$ is called <u>null</u> if Pr(A) = 0.
 - A null event is not necessarily the impossible event \emptyset .
- An event $A \in \Sigma$ occurs <u>almost surely</u> (<u>a.s.</u>) if Pr(A) = 1.
 - An event that occurs a.s., is not necessarily the <u>certain</u> event Ω .
- A probability space is called <u>complete</u>, if all subsets of null events are events. • Without loss of generality: we only consider complete probability spaces (if we start with an incomplete one, we can complete it without changing the probabilities)

Conditional Probability

Conditional Probability

- Frequently, we need to make such statement: "The probability of A is p, given that B occurs."
- For discrete uniform law: $p = \frac{|A \cap A|}{|B|}$
- Let A be an event, and let B be an event that Pr(B) > 0.
 The conditional probability that A occurs given that B occurs is defined to be
 - $Pr(A \mid B) =$

$ A \cap B / \Omega $	$\underline{\Pr(A \cap B)}$
$ B / \Omega $	- Pr(B)

$$= \frac{\Pr(A \cap B)}{\prod}$$

$$\Pr(B)$$

Conditional Probability

- Let A be an event, and let B be an event that Pr(B) > 0.
- $Pr(\cdot \mid B)$ is a well-defined probability law:
 - sample space is B
 - $\Sigma^B = \{A \cap B \mid A \in \Sigma\}$ is a σ -algebra
 - the law $Pr(\cdot | B)$ satisfies the probability axioms

The <u>conditional probability</u> that A occurs given that B occurs is defined to be $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$

Fair Coins out of a Biased One (von Neumann's Bernoulli factory)

- John von Neumann (1951): "Suppose you are given a coin for which the generate unbiased (fair) coin-flips."
- **Protocol:** Repetitively flip the coin until a HT or TH is encountered,
- Consider any two consecutive coin flips:

probability of HEADS, say p, is unknown. How can you use this coin to

output H if HT is encountered, and output T if otherwise.

 $Pr(HT \mid \{HT, TH\}) = Pr(TH \mid \{HT, TH\}) = \frac{p(1-p)}{2p(1-p)} = \frac{1}{2}$

The Two Child Problem (boy or girl paradox)

- Martin Gardner (1959): "Knowing that I have two children and at least one of them is girl, what is the probability that both children are girls?"
- Consider a uniform law Pr over $\Omega = \{BB, BG, GB, GG\}$

 $Pr(\{GG\} \mid \{BG, GB, GG\}) = \frac{Pr(\{GG\})}{Pr(\{BG, GB, GG\})}$ $= \frac{-1}{3/4} = \frac{-1}{3}$

Laws for Conditional Probability

Chain rule:

$$\Pr\left(\bigcap_{i=1}^{n} A_i\right) =$$

- Law of total probability: For partiti $\Pr(A) = \sum^{n} \Pr(A \cap$ i=1
- **Bayes' law**: For partition B_1, B_2, \ldots, B_n of Ω , $\Pr(B_i \mid A) = \frac{\Pr(B_i) \Pr(A \mid B_i)}{\Pr(A)} = \frac{\Pr(B_i) \Pr(A \mid B_i)}{\Pr(A \mid B_i)}$ Pr(A)

$$\prod_{i=1}^{n} \Pr\left(A_i \mid \bigcap_{j < i} A_j\right)$$

ion
$$B_1, B_2, \dots, B_n$$
 of Ω ,
 $B_i) = \sum_{i=1}^n \Pr(A \mid B_i) \Pr(B_i)$

 $Pr(A \mid B_1) Pr(B_1) + \cdots + Pr(A \mid B_n) Pr(B_n)$

Chain Rule (General Product Rule / Law of Successive Conditioning)

- $\Pr\left(\bigcap_{i=1}^{n} A_{i}\right) =$
- **Proof:** Due to the telescopic product

$$\Pr\left(\bigcap_{i=1}^{n} A_{i}\right) = \frac{\Pr\left(\bigcap_{i=1}^{n} A_{i}\right)}{\Pr\left(\bigcap_{i=1}^{n-1} A_{i}\right)} \cdot \frac{\Pr\left(\bigcap_{i=1}^{n-1} A_{i}\right)}{\Pr\left(\bigcap_{i=1}^{n-2} A_{i}\right)} \cdots \frac{\Pr\left(A_{1} \cap A_{2}\right)}{\Pr\left(A_{1}\right)} \cdot \Pr(A_{1})$$

Assuming that all the involved conditions have positive probabilities, we have

$$\prod_{i=1}^{n} \Pr\left(A_i \mid \bigcap_{j < i} A_j\right)$$

Birthday "Paradox"

"一个班级若想要100%地保证有两个人同一天过生日,需要班上有超过366人; 但若仅想让这件事发生的可能性超过99%,则班上有超过57人就足够了。"

- Consider uniform random mapping $\Pr[f \text{ is } 1-1] = \frac{m!/(n)}{m!}$
- Pr[every ball is thrown to an empty bin] = ϵ for $n \approx \sqrt{2m \ln(1/\epsilon)}$ = $\Pr[\text{ball } i \text{ is in thrown into an empty bin } | every \text{ball } j < i \text{ is in an empty bin } =$ $\approx \exp\left(-\sum_{i=1}^{n} \frac{i-1}{m}\right) \approx \exp\left(-\frac{n^2}{2m}\right)$

$$gf:[n] \to [m]$$

$$(m-n)! = \prod_{i=1}^{n} \left(1 - \frac{i-1}{m}\right)$$

• **Balls-into-bins** model: throwing *n* balls into *m* bins one-by-one at random

$$=\prod_{i=1}^{n}\left(1-\frac{i-1}{m}\right)$$

Law of Total Probability

Then:

$$Pr(A) = \sum_{i=1}^{n} Pr(A \cap B_i) = \sum_{i=1}^{n} Pr(A \mid B_i) Pr(B_i)$$

$$A \cap B_2, \dots, A \cap B_n \text{ are disjoint and } A = \bigcup_{i=1}^{n} (A \cap B_i)$$

$$(A) = \sum_{i=1}^{n} Pr(A \cap B_i)$$

$$r: Pr(A \cap B_i) = Pr(A \mid B_i) Pr(B_i).$$

Proof:

$$Pr(A) = \sum_{i=1}^{n} Pr(A \cap B_i) = \sum_{i=1}^{n} Pr(A \mid B_i) Pr(B_i)$$
$$A \cap B_1, A \cap B_2, \dots, A \cap B_n \text{ are disjoint and } A = \bigcup_{i=1}^{n} (A \cap B_i)$$
$$\implies Pr(A) = \sum_{i=1}^{n} Pr(A \cap B_i)$$
$$Moreover: Pr(A \cap B_i) = Pr(A \mid B_i) Pr(B_i).$$

• Let events B_1, B_2, \ldots, B_n be a partition of Ω such that $Pr(B_i) > 0$ for all *i*.

Monty Hall Problem (three doors problem)

- Behind one door is a car; behind the others, goats.
- Define event A : you win at last

Pr(A

event B: you pick the car at first

$$Pr(B) = 1/3$$

 $\Pr(A \mid B) \Pr(B) + \Pr(A \mid B^{c}) \Pr(B^{c})$

 $= 0 + 1 \cdot 2/3 = 2/3$

• Suppose you're on a game show, and you're given the choice of three doors:

 You pick a door, say No.1, and the host, who knows what's behind the doors, opens another door, say No.3, which has a goat. He then says to you, "Do you want to pick door No.2?" Is it to your advantage to switch your choice?

if not switching

if switching

Gambler's Ruin (Symmetric Random Walk in One-Dimension)

- A gambler plays a fair gambling game: At each step, he flips a fair coin, earns 1 point if it's HEADs, and loses 1 point if otherwise. He starts with k points, and will keep playing until either his points reaches 0 (lose) or n > k (win).
- Define events A: the gambler loses; and B: the 1st coin flip returns HEADs
- Let Pr_k be the law that the gambler starts with k points.

$$\Pr_{k}(A) = \frac{1}{2} \Pr_{k}(A \mid B) + \frac{1}{2} \Pr_{k}(A \mid B^{c}) = \frac{1}{2} \Pr_{k+1}(A) + \frac{1}{2} \Pr_{k-1}(A)$$
$$\Pr_{k}(A) = \begin{cases} \frac{1}{2} (\Pr_{k+1}(A) + \Pr_{k-1}(A)) = 1 - \frac{k}{n} & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k = n \end{cases}$$

Bayes' Law (Bayes' Theorem)

- For events A, B that Pr(A), Pr(B) > 0, we have
- If event A has Pr(A) > 0, then $\Pr(B_i \mid A) = \frac{\Pr(B_i) \Pr(A \mid B_i)}{\Pr(A)} = \frac{\Pr(A \mid B_i)}{\Pr(A \mid B_i)}$ $\Gamma(A)$

$Pr(B \mid A) = \frac{Pr(B) Pr(A \mid B)}{Pr(A)}$ • Let events B_1, B_2, \ldots, B_n be a partition of Ω such that $Pr(B_i) > 0$ for all *i*.

 $Pr(B_i) Pr(A \mid B_i)$ $\Pr(A \mid B_1) \Pr(B_1) + \dots + \Pr(A \mid B_n) \Pr(B_n)$

Dominating False Positives

- A rare disease occurs with probability 0.001.
- 5% testing error:

• If a person is tested "+", what is the probability that he/she is ill? $Pr(ill | +) = \frac{Pr(ill) Pr(+ | ill)}{Pr(+)} = \frac{Pr(ill) Pr(+ | ill)}{Pr(+ | ill) Pr(ill) + Pr(+ | ill) Pr(\neg ill)}$

 $\frac{0.001 \times 95\%}{95\% \times 0.001 + 5\% \times 0.999} \approx 1.87\%$

Simpson's Paradox

- Results of clinical trials for 2 drugs:
- Which drug is more effective?
 - Drug-II is better: overall success rate 219/2020 (I) < 1010/2200 (II)
 - Drug-I is better: for women 1/10 (I) > 1/20 (II), for men 19/20 (I) > 1/2 (II)
- In *Probability*: It's possible that for events A, B and partition C_1, \ldots, C_n of Ω
 - in case for each C_i , the occurrence of B has positive influence on A: $Pr(A \mid B \cap C_i) > Pr(A \mid B^c \cap C_i) \text{ for all } i$
 - but overall, the occurrence of *B* has negative influence on *A*: $Pr(A \mid B) < Pr(A \mid B^{c})$

	Women		Men	
	Drug I	Drug II	Drug I	Drug l
Success	200	10	19	1000
Fail	1800	190	1	1000

Simpson's Paradox (Edward H. Simpson in 1951; Karl Pearson in 1899; Udny Yule in 1903)

- Example: Correlation between hours for studying and grades.
 - (The longer the students study, the worse their grades are!)
 - But truly the they are positively correlated in every course.

• Overall, it appears that lengths of studying have negative impact on grades.

Independence

Independence of Two Events

- The occurrence of some event *B* changes the probability of another event *A*, from Pr(A) to $Pr(A \mid B)$.
- If the occurrence of *B* has no influence on that of *A*, i.e. $Pr(A \mid B) = Pr(A)$, then *A* is said to be <u>independent</u> of *B*.
- The two events A and B are called independent if
 - $\Pr(A \cap B) = \Pr(A) \Pr(B)$
- **Propositions**: if Pr(B) > 0: $Pr(A | B) = Pr(A) \iff Pr(A \cap B) = Pr(A) Pr(B)$ $Pr(A \cap B) = Pr(A) Pr(B) \iff Pr(A \cap B^c) = Pr(A) Pr(B^c)$

Independence of Several Events

- A family $\{A_i \mid i \in I\}$ of events is called <u>(mutually) independent</u> if for all finite subsets $J \subseteq I$
 - $\Pr\left(\bigcap_{i\in J}A_i\right)$
- An event A is called (mutually) independent of a family $\{B_i \mid i \in I\}$ of events if for all disjoint finite subsets $J^+, J^- \subseteq I$

$$\Pr(A) = \Pr(A)$$

$$= \prod_{i \in J} \Pr(A_i)$$

$$A \mid \bigcap_{i \in J^+} B_i \cap \bigcap_{i \in J^-} B_i^c \right)$$

Product Probability Space

- Probability space constructed from a sequence of *independent experiments*.
- Consider discrete probability spaces $(\Omega_1, p_1), (\Omega_2, p_2), \dots, (\Omega_n, p_n)$.
- The product probability space (Ω, p) is constructed as:
 - sample space $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$
 - $\forall \omega = (\omega_1, \dots, \omega_n) \in \Omega$: pmf p(
- the law Pr is a natural extension onto such Σ from the product probabilities:

$$(\omega) = p_1(\omega_1) \cdots p_n(\omega_n)$$

• For general probability spaces $(\Omega_1, \Sigma_1, \Pr_1), \dots, (\Omega_n, \Sigma_n, \Pr_n)$, the product probability space (Ω, Σ, \Pr) can be constructed similarly, where Σ is the unique smallest σ -algebra that contains $\Sigma_1 \times \cdots \times \Sigma_n$, and

 $\forall A = (A_1, \dots, A_n) \in \Sigma_1 \times \dots \times \Sigma_n, \Pr(A) = \Pr(A_1) \cdots \Pr(A_n)$

Dependency Structure

- The followings are all possible:
 - A_1, A_2, \ldots, A_n are mutually independent and B_1, B_2, \ldots, B_n are mutually independent, but A_i and B_i are not independent for every $1 \le i \le n$.
 - For every $1 \le i \le n$, A_i and B_i are independent, but for every $1 \le i < j \le n$, neither A_i and A_j , nor B_i and B_j , are independent.

• For an arbitrary undirected graph G(V, E) on vertices $V = \{A_1, \dots, A_n\}$, each A_i is mutually independent of all A_i 's that are not adjacent to A_i in G.

Limited Independence

• A family $\{A_i \mid i \in I\}$ of events is called *pairwise* independent if for all distinct $i, j \in I$

- Mutually independent events must be pairwise independent.
- Pairwise independent events are not necessarily mutually independent.
- **Example:** parities (XOR's) of random bits
 - A: coin-1 is H; B: coin-2 is H; C: coin-3 is H;
 - D: coin-1 \neq coin-2; E: coin-2 \neq coin-3; F: coin-3 \neq coin-1;
 - G: # of H in coins-1,2,3 is odd;

 $Pr(A_i \cap A_i) = Pr(A_i) Pr(A_i)$

Triply Independent but not pairwise

- $Pr(A \cap B \cap C) = Pr(A) Pr(B) Pr(C)$ but no pairwise independence
- events," Mathematical Gazette 88, November 2004, 568

FIGURE 1

Example and figure is from George, Glyn, "Testing for the independence of three

Error Reduction (one-sided case)

- Decision problem $f: \{0,1\}^* \rightarrow \{0,1\}$.
- Monte Carlo randomized algorithm A with one-sided error:
 - $\forall x \in \{0,1\}^*$: $f(x) = 1 \Longrightarrow \mathscr{A}(x) = 1$
 - $\forall x \in \{0,1\}^*$: $f(x) = 0 \Longrightarrow \Pr[x]$
- \mathscr{A}^n : independently run \mathscr{A} for *n* times, return \wedge of the *n* outputs
 - $f(x) = 0 \Longrightarrow \Pr[\mathcal{S}]$

The one-sided error is reduced to ϵ by repeating $n \approx -\ln -$ times.

$$[\mathscr{A}(x) = 0] \ge p$$

$$\mathscr{A}^n(x) = 1] \le (1-p)^n$$

by repeating $n \approx \frac{1}{p} \ln \frac{1}{\epsilon}$ times.

Binomial Probability

- **HEADs** independently with probability p.
- We say that we have a sequence of <u>Bernoulli trials</u> (伯努利实验), in which each trial succeeds with probability p.
- **<u>Binomial probability</u>**: p(k) = Pr(k successes out of n trials)= $\sum \Pr(\forall i \in S : i \text{th trial succeeds}) \Pr(\forall i \in [n] \setminus S : i \text{th trial fails})$ $S \in \binom{[n]}{k}$ $= \sum p^{|S|} (1-p)^{n-|S|} =$ $S \in \binom{[n]}{k}$

Consider n independent tosses of a coin, in which each coin toss returns

$$\binom{n}{k} p^k (1-p)^{n-k}$$

$$p(k)$$
 is a well-defined pn
 $\Omega = \{0,1,\ldots,n\}$
 $\sum_{k=0}^{n} p(k) = 1$ (binomial 1)

Controlling a Fair Voting

- are there enough to manipulate the result of a majority vote with 95% certainty.
- Consider *n* independent coin tosses of a fair coin. $\Pr[|\#\text{HEADs} - \#\text{TAILs}| \ge t] = \Pr[\#\text{HEADs}]$

(entropy bound on the volume of a Hamming ball) $\leq 2^{1-n+nH\left(\frac{1}{2}\right)}$

 $=\sum_{k\leq (n-t)/2}\binom{n}{k}$ $=2^{1-n}$ \sum $k \leq (n-t)$ $\approx 2 \exp\left(-\frac{t^2}{n}\right)$ ≤ 0.05 when $t \geq 2\sqrt{n}$

In a society of n isolated (independent) and neutral (uniform) people, how many people

$$s \leq \frac{n}{2} - \frac{t}{2}] + \Pr[\#\text{HEADs} \geq \frac{n}{2} + \frac{t}{2}]$$

$$\binom{n}{k} 2^{-n} + \sum_{k \geq (n+t)/2} \binom{n}{k} 2^{-n}$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$\frac{-\frac{t}{2n}}{1-\frac{2}{2n}} \quad \text{where } H(x) = -x \log_2 x - (1-x) \log_2 (1-x)$$

$$H(x) \approx 1 - \frac{2}{\ln 2} \left(x - \frac{1}{2}\right)^2 + O\left(\left(x - \frac{1}{2}\right)^3\right)$$

Error Reduction (two-sided case)

- Decision problem $f: \{0,1\}^* \rightarrow \{0,1\}$.
- Monte Carlo randomized algorithm A with two-sided error:
 - $\forall x \in \{0,1\}^*$: $\Pr[\mathscr{A}(x) = f(x)]$
- \mathscr{A}^n : independently run \mathscr{A} for *n* times, return majority of the *n* outputs

$$\Pr[\mathscr{A}^{n}(x) \neq f(x)] \leq \sum_{k < \frac{n}{2}} \binom{n}{k} \left(\frac{1}{2} + p\right)^{k} \left(\frac{1}{2} - p\right)^{n-k} \leq \exp(-p^{2}n)$$
$$\leq \epsilon \text{ when } n \geq \frac{1}{2} \ln \frac{1}{2}$$

How to calculate this? (concentration inequalities)

$$\geq \frac{1}{2} + p$$

Network Reliability

- A serial-parallel (串并联) network connects s to t.
- Suppose that each edge e = uv connects uv independently with probability p_{e} . • <u>s-t</u> reliability $P_{st} \triangleq \Pr[s \text{ and } t \text{ are connected}]$
- $= 1 (1 P_{AC})(1 P_{AC})$

$$P_{AC} = P_{AB}P_{BC} = P_{AB}p_5$$

 $P_{AB} = 1 - (1 - p_1)(1 - p_2)(1 - p_3)$

$$P_{DE}$$
) = 1 - (1 - P_{AC})(1 - p_4)

Network Reliability

- A serial parallel (串 并 联) network connects s to t.
- Suppose that each edge e = uv connects uv independently with probability p_{e} . • <u>s-t</u> reliability $P_{st} \triangleq \Pr[s \text{ and } t \text{ are connected}]$
- <u>(all-terminal) network reliability</u>: $\triangleq \Pr[$ the resulting network is connected]
- For general networks:
 - *s*-*t* reliability is **#P-complete** (Leslie Valiant, 1979)
 - all-terminal network reliability is **#P-complete** (Mark Jerrum, 1981)

Conditional independence

- Two events A and B are <u>conditionally independent</u> given C if Pr(C) > 0 and $Pr(A \cap B \mid C) = Pr(A \mid C) Pr(B \mid C)$
- If $\Pr(B \cap C) > 0$: $\Pr(A \cap B \mid C) = \Pr(A \mid C) \Pr(B \mid C) \iff \Pr(A \mid B \cap C) = \Pr(A \mid C)$
- Example: any two events are independent but not conditionally independent given the third event A: coin-1 is H; B: coin-2 is H; C: coin-1 \neq coin-2;
- Example: A and B are are not independent, but they are conditionally independent given CA: X is tall; B: X knows a lot of math; C: X is 19 years old;
 - - Suppose that X is a random person