# Advanced Algorithms

南京大学

尹一通

# LP-based Algorithms

- LP rounding:
  - Relax the integer program to LP;
  - round the optimal LP solution to a nearby feasible integral solution.
- The primal-dual schema:
  - Find a pair of solutions to the primal and dual programs which are close to each other.

### Vertex Cover

**Instance**: An undirected graph G(V,E)

Find the smallest  $C \subseteq V$  that every edge has at least one endpoint in C.



**Instance**: An undirected graph G(V,E)

Find the smallest  $C \subseteq V$  that every edge has at least one endpoint in C.

Find a maximal matching M; return the set  $C = \{v: uv \in M\}$  of matched vertices;



matching  $|M| \leq OPT_{VC}$  (weak duality)

 $|C| \le 2|M| \le 2\text{OPT}$ 



# Duality



vertex cover:

$$\sum_{v \in e} x_v \ge 1 \qquad x_v \in \{0,1\}$$

matching:

variables

constraints

$$y_e \in \{0,1\}$$

 $\sum_{e\ni v} y_e \le 1$ 

# Duality

**Instance**: graph G(V,E)

primal: minimize 
$$\sum_{v \in V} x_v$$

subject to 
$$\sum_{v \in e} x_v \ge 1$$
,  $\forall e \in E$  vertex

$$x_v \in \{0, 1\}, \quad \forall v \in V$$
 covers

matchings

dual: maximize 
$$\sum_{e \in E} y_e$$

subject to 
$$\sum_{e \ni v} y_v \le 1, \quad \forall v \in V$$

$$y_e \in \{0, 1\}, \quad \forall e \in E$$

### Duality for LP-Relaxation

**Instance**: graph G(V,E)

primal: minimize 
$$\sum_{v \in V} x_v$$
 subject to  $\sum_{v \in e} x_v \geq 1, \quad \forall e \in E$   $x_v \geq 0, \quad \forall v \in V$ 

dual: maximize 
$$\sum_{e \in E} y_e$$
 subject to  $\sum_{e \in E} y_v \le 1, \quad \forall v \in V$ 

$$y_e \ge 0, \quad \forall e \in E$$

# Estimate the Optima

```
minimize 7x_1 + x_2 + 5x_3

v|
subject to x_1 - x_2 + 3x_3 \ge 10

+
5x_1 + 2x_2 - x_3 \ge 6

x_1, x_2, x_3 \ge 0
```

 $16 \leq OPT \leq any feasible solution$ 

# Estimate the Optima

 $x_1, x_2, x_3 \geq 0$ 

$$10y_1 + 6y_2 \le OPT$$

for any 
$$y_1 + 5y_2 \le 7$$
  
 $-y_1 + 2y_2 \le 1$   $y_1, y_2 \ge 0$   
 $3y_1 - y_2 \le 5$ 

### Primal-Dual

Primal

$$min 7x_1 + x_2 + 5x_3$$

s.t. 
$$x_1 - x_2 + 3x_3 \ge 10$$
  
 $5x_1 + 2x_2 - x_3 \ge 6$   
 $x_1, x_2, x_3 \ge 0$ 

Dual

$$max 10y_1 + 6y_2$$

s.t.

$$y_1 + 5y_2 \le 7$$
 $-y_1 + 2y_2 \le 1$ 
 $3y_1 - y_2 \le 5$ 
 $y_1, y_2 \ge 0$ 

∀dual feasible ≤primal OPT

 $LP \in NP \cap coNP$ 

# Surviving Problem









| price     |   |
|-----------|---|
| vitamin   | 1 |
|           |   |
| •         |   |
| •         |   |
| •         |   |
| vitamin i | m |

| <i>C</i> <sub>1</sub> | $c_2$    | • • • • • | $C_n$    |
|-----------------------|----------|-----------|----------|
| $a_{11}$              | $a_{12}$ | • • • • • | $a_{1n}$ |
|                       |          |           |          |
| $a_{m1}$              | $a_{m2}$ | • • • • • | $a_{mn}$ |

 $\geq b_m$ 

solution:

 $x_1$ 

 $\chi_2$ 

2 •••••

 $\chi_n$ 

minimize the total price while keeping healthy

# Surviving Problem

min 
$$c^{T}x$$

s.t. 
$$Ax \ge b$$

$$x \ge 0$$

| price            | ( |
|------------------|---|
| vitamin 1        | C |
| •                |   |
| vitamin <i>m</i> | a |

| <i>C</i> <sub>1</sub> | <i>C</i> 2 | • • • • • | $C_n$    |
|-----------------------|------------|-----------|----------|
| $a_{11}$              | $a_{12}$   | • • • •   | $a_{1n}$ |
|                       |            |           |          |
| $a_{m1}$              | $a_{m2}$   | • • • • • | $a_{mn}$ |

solution:

 $x_1$ 

 $\chi_2$ 

• • • • •

 $\chi_n$ 

minimize the total price while keeping healthy

Primal:

Dual:

min  $c^{\mathrm{T}}x$ 

$$\max b^{T}y$$

s.t. 
$$Ax \ge b$$

s.t. 
$$y^{T}A \leq c^{T}$$

$$x \ge 0$$

$$y \ge 0$$

dual

solution: price

vitamin 1

vitamin m

| <i>C</i> <sub>1</sub> | <i>C</i> 2 | • • • • • | $C_n$    |
|-----------------------|------------|-----------|----------|
| $a_{11}$              | $a_{12}$   | • • • • • | $a_{1n}$ |
|                       | •          |           |          |
| $a_{m1}$              | $a_{m2}$   | • • • • • | $a_{mn}$ |

healthy

m types of vitamin pills, design a pricing system competitive to n natural foods, max the total price

Primal: Dual:

$$\min c^{T}x \geq \max b^{T}y$$

s.t. 
$$Ax \ge b$$
 s.t.  $y^TA \le c^T$ 

$$x \ge 0$$
  $y \ge 0$ 

Monogamy: dual(dual(LP)) = LP

### Weak Duality:

 $\forall$  feasible primal solution x and dual solution y

$$y^{\mathrm{T}}b \leq y^{\mathrm{T}}Ax \leq c^{\mathrm{T}}x$$

### Primal:

min 
$$c^{\mathrm{T}}x$$

s.t. 
$$Ax \ge b$$

$$x \ge 0$$

### Dual:

$$\max b^{T}y$$

s.t. 
$$y^{T}A \leq c^{T}$$

$$y \ge 0$$

### Weak Duality Theorem:

 $\forall$  feasible primal solution x and dual solution y

$$y^{T}b \leq c^{T}x$$

### Primal:

min  $c^{T}x$ 

s.t. 
$$Ax \ge b$$

$$x \ge 0$$

### Dual:

 $\max b^{T}y$ 

s.t. 
$$y^{T}A \leq c^{T}$$

$$y \ge 0$$

### **Strong Duality Theorem:**

Primal LP has finite optimal solution  $x^*$  iff dual LP has finite optimal solution  $y^*$ .

$$y^{*T}b = c^{T}x^{*}$$

Primal: min 
$$c^{T}x$$

s.t. 
$$Ax \ge b$$
  
 $x \ge 0$ 

### Dual: max $b^{T}y$

s.t. 
$$y^{T}A \leq c^{T}$$

$$y \geq 0$$

 $\forall$  feasible primal solution x and dual solution y

$$y^{\mathrm{T}}b \leq y^{\mathrm{T}}A \ x \leq c^{\mathrm{T}}x$$

### **Strong Duality Theorem**



x and y are both optimal iff

$$y^{\mathrm{T}}b = y^{\mathrm{T}}A \ x = c^{\mathrm{T}}x$$

$$\forall i$$
: either  $A_i$ .  $x = b_i$  or  $y_i = 0$ 

$$\forall j$$
: either  $y^T A_{ij} = c_j$  or  $x_j = 0$ 

$$\forall i: \text{ either } A_i. \ x = b_i \text{ or } y_i = 0$$

$$\forall j: \text{ either } y^T A._j = c_j \text{ or } x_j = 0$$

$$\sum_{i=1}^m b_i y_i = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j\right) y_i$$

$$\sum_{i=1}^n c_j x_j = \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij} y_i\right) x_j$$

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left( \sum_{i=1}^{m} a_{ij} y_i \right) x_j$$

# Complementary Slackness

Primal: min  $c^{T}x$  Dual: max  $b^{T}y$  s.t.  $Ax \ge b$  s.t.  $y^{T}A \le c^{T}$   $x \ge 0$ 

### Complementary Slackness Conditions:

 $\forall$  feasible primal solution x and dual solution y and y are both optimal iff

 $\forall i$ : either  $A_i$ .  $x = b_i$  or  $y_i = 0$ 

 $\forall j$ : either  $y^T A_{\cdot j} = c_j$  or  $x_j = 0$ 

# Relaxed Complementary Slackness

Primal: min 
$$c^{T}x$$
 Dual: max  $b^{T}y$   
s.t.  $Ax \ge b$  s.t.  $y^{T}A \le c^{T}$   
 $x \ge 0$   $y \ge 0$ 

 $\forall$  feasible primal solution x and dual solution y

for 
$$\alpha$$
,  $\beta \ge 1$ :

for 
$$\alpha$$
,  $\beta \ge 1$ :  $\forall i$ : either  $A_i$ .  $x \le \alpha b_i$  or  $y_i = 0$ 

$$\forall j$$
: either  $y^T A_{j} \ge c_j / \beta$  or  $x_j = 0$ 



$$c^{T}x \leq \alpha\beta b^{T}y \leq \alpha\beta OPT_{LP}$$

$$\sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left( \beta \sum_{i=1}^{m} a_{ij} y_i \right) x_j = \beta \sum_{i=1}^{m} \left( \sum_{j=1}^{n} a_{ij} x_i \right) y_j \le \alpha \beta \sum_{i=1}^{m} b_i y_i$$

### Primal-Dual Schema

### Dual

Primal IP: min 
$$c^{\mathrm{T}}x$$

s.t. 
$$Ax \ge b$$

$$x \in \mathbb{Z}_{\geq 0}$$

Primal IP: min 
$$c^{T}x$$
 LP-relax: max  $b^{T}y$ 

s.t. 
$$y^{T}A \leq c^{T}$$

$$y \ge 0$$

Find a primal integral solution x and a dual solution y

for 
$$\alpha, \beta \ge 1$$
:

for 
$$\alpha$$
,  $\beta \ge 1$ :  $\forall i$ : either  $A_i$ .  $x \le \alpha b_i$  or  $y_i = 0$ 

$$\forall j$$
: either  $y^T A_{j} \ge c_j / \beta$  or  $x_j = 0$ 

$$c^{T}x \le \alpha\beta b^{T}y \le \alpha\beta OPT_{LP} \le \alpha\beta OPT_{IP}$$



### primal:

$$\min \sum_{v \in V} x_v$$

$$\mathbf{s.t.} \quad \sum_{v \in e} x_v \ge 1, \quad \forall e \in E$$

$$x_v \in \{0, 1\}, \quad \forall v \in V$$

dual-relax: 
$$\min \sum_{e \in E} y_e$$

$$\mathbf{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

#### vertex cover:

constraints

variables

$$\sum_{v \in e} x_v \ge 1 \qquad x_v \in \{0,1\}$$

### matching:

variables

constraints

$$y_e \in \{0,1\}$$

 $\sum_{e\ni v} y_e \le 1$ 

### feasible (x, y) such that:

$$\forall e: y_e > 0 \Longrightarrow \sum_{v \in e} x_v \le \alpha$$

$$\forall v: x_v = 1 \Longrightarrow \sum_{e \ni v} y_e = 1$$

### primal:

$$\min \sum_{v \in V} x_v$$

s.t. 
$$\sum_{v \in e} x_v \ge 1$$
,  $\forall e \in E$   $x_v \in \{0,1\}$ ,  $\forall v \in V$ 

### dual-relax:

$$\min \quad \sum_{e \in E} y_e$$

$$\mathbf{s.t.} \quad \sum_{e \ni v} y_e \le 1, \quad \forall v \in V$$

$$y_e \ge 0, \quad \forall e \in E$$

event: "v is tight (saturated)"  $\sum_{e\ni v} y_e = 1$ 



$$\sum_{e\ni v} y_e = 1$$

Initially x = 0, y = 0;

while  $E \neq \emptyset$ 

pick an  $e \in E$  and raise  $y_e$  until some v goes tight; set  $x_v = 1$  for those tight v and delete all  $e \ni v$  from E;

every deleted e is incident to a v that  $x_v = 1$   $\forall e \in E$ :  $\sum_{v \in e} x_v \ge 1$ all edges are eventually deleted



x is feasible

relaxed complementary slackness:

 $\forall e$ : either  $\sum_{v \in e} x_v \le 2$  or  $y_e = 0$ 

 $\forall v$ : either  $\sum_{e\ni v} y_e = 1$  or  $x_v = 0$ 



 $\sum x_v \le 2 \cdot OPT$ 

```
Initially x = 0, y = 0;
while E \neq \emptyset to 1
pick an e \in E and raise y_e until some v goes tight;
set x_v = 1 for those tight v and delete all e \ni v from E;
v \in e
```

Find a maximal matching; return the set of matched vertices;

the returned set is a vertex cover  $SOL \le 2 \ OPT$ 

### The Primal-Dual Schema

Write down an LP-relaxation and its dual.

min 
$$c^{T}x$$
  
s.t.  $Ax \ge b$   
 $x \in \mathbb{Z}_{\ge 0}$ 

- Start with a primal infeasible solution x and a dual feasible solution y (usually x=0, y=0).
- Raise x and y until x is feasible:
  - raise y until some dual constraints gets tight  $y^TA_{ij} = c_i$ ;
  - raise  $x_j$  (integrally) corresponding to the tight dual constraints.
- Show the complementary slackness conditions:

$$\forall i$$
: either  $A_i$ .  $x \le \alpha b_i$  or  $y_i = 0$   
 $\forall j$ : either  $y^T A_{\cdot j} \ge c_j / \beta$  or  $x_j = 0$   $\subset c^T x \le \alpha \beta b^T y$   
 $\le \alpha \beta$  OPT

# Integrality Gap

```
LP relaxation of vertex cover: given G(V,E),

minimize \sum_{v \in V} x_v

subject to \sum_{v \in e} x_v \ge 1, e \in E

x_v \in \{0,1\}, v \in V

x_v \in \{0,1\},
```

Integrality gap = 
$$\sup_{I} \frac{\text{OPT}(I)}{\text{OPT}_{\text{LP}}(I)}$$

For the LP relaxation of vertex cover: integrality gap = 2

# Facility Location



hospitals in Nanjing

# Facility Location



**Instance**: set F of facilities; set C of clients; facility opening costs  $f: F \rightarrow [0, \infty)$ ; connection costs  $c: F \times C \rightarrow [0, \infty)$ ;

Find a subset  $I \subseteq F$  of opening facilities and a way  $\phi \colon C \to I$  of connecting all clients to them such that the total cost  $\sum_{j \in C} c_{\phi(j),j} + \sum_{i \in I} f_i$  is minimized.

- uncapacitated facility location;
- **NP**-hard; AP(Approximation Preserving)-reduction from Set Cover;
- [Dinur, Steuer 2014] no poly-time  $(1-o(1))\ln n$ -approx. algorithm unless  $\mathbf{NP} = \mathbf{P}$ .

# Metric Facility Location



**Instance**: set F of facilities; set C of clients; facility opening costs  $f: F \rightarrow [0, \infty)$ ; connection metric  $d: F \times C \rightarrow [0, \infty)$ ; Find a subset  $I \subseteq F$  of opening facilities and a way  $\phi: C \rightarrow I$  of connecting all clients to them such that the total cost  $\sum_{i \in C} d_{\phi(j),j} + \sum_{i \in I} f_i$  is minimized.

triangle inequality:  $\forall i_1, i_2 \in F, \forall j_1, j_2 \in C$   $d_{i_1j_1} + d_{i_2j_1} + d_{i_2j_2} \geq d_{i_1j_2}$ 



**Instance**: set F of facilities; set C of clients; facility opening costs  $f: F \rightarrow [0, \infty)$ ; connection metric  $d: F \times C \rightarrow [0, \infty)$ ;

Find  $\phi: C \rightarrow I \subseteq F$  to minimize  $\sum_{j \in C} d_{\phi(j),j} + \sum_{i \in I} f_i$ 



LP-relaxation: min 
$$\sum_{i \in F, j \in C} d_{ij}x_{ij} + \sum_{i \in F} f_iy_i$$

s.t. 
$$y_i \geq x_{ij}, \quad \forall i \in F, j \in C$$
 
$$\sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C$$
 
$$x_{ij}, y_i \geq 0, \quad x_{ij}, y_i \in \{0,1\}, \quad \forall i \in F, j \in C$$



#### Primal:

$$\begin{array}{ll} \mathbf{min} & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ \mathbf{s.t.} & y_i - x_{ij} \geq 0, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C \\ & x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C \end{array}$$

### Dual-relax:

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \quad \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \quad \forall i \in F, j \in C \end{array}$$

 $\alpha_j$ : amount of value paid by client j to all facilities

 $\beta_{ij} \ge \alpha_j - d_{ij}$ : payment to facility *i* by client *j* (after deduction)

complimentary slackness conditions: (if ideally held) 
$$x_{ij} = 1 \Rightarrow \alpha_j - \beta_{ij} = d_{ij}; \qquad \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1;$$
$$y_i = 1 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i; \qquad \beta_{ij} > 0 \Rightarrow y_i = x_{ij};$$



$$\min \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i$$

**S.t.** 
$$y_i - x_{ij} \ge 0$$
,  $\forall i \in F, j \in C$  
$$\sum_{i \in F} x_{ij} \ge 1$$
,  $\forall j \in C$  
$$x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C$$

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \quad \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \quad \forall i \in F, j \in C \end{array}$$

Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_j$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;



Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_j$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;
- The events that occur at the same time are processed in arbitrary order.
- Fully paid facilities are tentatively open:  $\sum_{j \in C} \beta_{ij} = f_i$
- Fully paid edges to tentatively opening facilities are connected:  $\alpha_j$   $\beta_{ij}$  =  $d_{ij}$
- Eventually all clients connect to tentatively opening facilities.

A client may connect to more than one facilities!



#### **Phase I:**

Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_i$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;

#### **Phase II:**

construct graph G(V,E) where  $V=\{\text{tentatively open facilities}\}$ 

and  $(i_1, i_2) \in E$  if facilities  $i_1, i_2$  are connected to same client j in **Phase I**; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in **Phase I**; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

#### **Phase I:**

Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_j$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;

#### **Phase II:**

construct graph G(V,E) where  $V=\{\text{tentatively open facilities}\}$ 

and  $(i_1, i_2) \in E$  if facilities  $i_1, i_2$  are connected to same client j in **Phase I**; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in **Phase I**; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

*I* is independent set

Every client is connected to exact one open facilities.

(feasible)



#### Primal:

$$\begin{array}{ll} \mathbf{min} & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ \mathbf{s.t.} & y_i - x_{ij} \geq 0, \quad \forall i \in F, j \in C \\ & \sum_{i \in F} x_{ij} \geq 1, \quad \forall j \in C \\ & x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C \end{array}$$

### Dual-relax:

$$\begin{array}{ll} \mathbf{max} & \sum_{j \in C} \alpha_j \\ \mathbf{s.t.} & \alpha_j - \beta_{ij} \leq d_{ij}, \quad \forall i \in F, j \in C \\ & \sum_{j \in C} \beta_{ij} \leq f_i, \quad \forall i \in F \\ & \alpha_j, \beta_{ij} \geq 0, \quad \forall i \in F, j \in C \end{array}$$

 $\alpha_j$ : amount of value paid by client j to all facilities  $\beta_{ij} \ge \alpha_i - d_{ij}$ : payment to facility i by client j (after deduction)

complimentary 
$$x_{ij} = 1 \Rightarrow \alpha_j - \beta_{ij} = d_{ij}; \qquad \alpha_j > 0 \Rightarrow \sum_{i \in F} x_{ij} = 1;$$
 (if ideally held)  $y_i = 1 \Rightarrow \sum_{j \in C} \beta_{ij} = f_i; \qquad \beta_{ij} > 0 \Rightarrow y_i = x_{ij};$ 

#### **Phase I:**

Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_j$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;

#### **Phase II:**

construct graph G(V,E) where  $V=\{\text{tentatively open facilities}\}$ 

and  $(i_1, i_2) \in E$  if facilities  $i_1, i_2$  are connected to same client j in **Phase I**; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in **Phase I**; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

$$SOL = \sum_{i \in I} f_i + \sum_{\substack{j: \text{directly} \\ \text{connected}}} d_{\phi(j)j} + \sum_{\substack{j: \text{indirectly} \\ \text{connected}}} d_{\phi(j)j} \leq 3 \sum_{j \in C} \alpha_j \leq 3 \ OPT$$

$$\leq \sum_{\substack{j: \text{directly} \\ \text{connected}}} \alpha_j \qquad \text{triangle inequality } \leq 3 \sum_{\substack{j: \text{indirectly} \\ \text{connected}}} \alpha_j \\ + \text{maximality of } I \qquad \text{if } j \text{ is directly connected}}$$

$$\phi(j) = \begin{cases} i \text{ that } \beta_{ij} = \alpha_j - d_{ij} & \text{if } j \text{ is indirectly connected} \\ \text{nearest facility in } I & \text{if } j \text{ is indirectly connected} \end{cases}$$

#### **Phase I:**

Initially  $\alpha = 0$ ,  $\beta = 0$ , no facility is open, no client is served; raise  $\alpha_j$  for all client j simultaneously at a uniform continuous rate:

- upon  $\alpha_j = d_{ij}$  for a closed facility i: edge (i,j) is paid; fix  $\beta_{ij} = \alpha_j d_{ij}$  as  $\alpha_j$  being raised;
- upon  $\sum_{j \in C} \beta_{ij} = f_i$ : tentatively open facility i; connect all clients j with paid (i,j) to facility i and stop raising  $\alpha_j$ ;
- upon  $\alpha_j = d_{ij}$  for a tentatively open facility i: connect client j to facility i and stop raising  $\alpha_j$ ;

#### **Phase II:**

construct graph G(V,E) where  $V=\{\text{tentatively open facilities}\}$  and  $(i_1,i_2)\in E$  if facilities  $i_1,i_2$  are connected to same client j in **Phase I**; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in **Phase I**; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

 $SOL \leq 3 OPT$ 

can be implemented discretely: in  $O(m \log m)$  time, m=|F||C|

- sort all edges  $(i,j) \in F \times C$  by non-decreasing  $d_{ij}$
- dynamically maintain the time of next event by heap

**Instance**: set F of facilities; set C of clients; facility opening costs  $f: F \rightarrow [0, \infty)$ ; connection metric  $d: F \times C \rightarrow [0, \infty)$ ;

Find  $\phi: C \rightarrow I \subseteq F$  to minimize  $\sum_{j \in C} d_{\phi(j),j} + \sum_{i \in I} f_i$ 



$$\begin{aligned} & \min & \sum_{i \in F, j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ & \text{s.t.} & y_i - x_{ij} \geq 0, \qquad \forall i \in F, j \in C \\ & \sum x_{ij} \geq 1, \qquad \forall j \in C \end{aligned}$$

 $x_{ij}, y_i \in \{0, 1\}, \quad \forall i \in F, j \in C$ 

algorithm unless **NP=P** 

• no poly-time <1.463-approx.

• Integrality gap = 3