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LP-based Algorithms

• LP rounding:

• Relax the integer program to LP;

• round the optimal LP solution to a nearby 
feasible integral solution.

• The primal-dual schema:

• Find a pair of solutions to the primal and dual 
programs which are close to each other.



Vertex Cover
Instance:  An undirected graph G(V,E)
Find the smallest C ⊆ V that every edge has at least
one endpoint in C.
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Instance:  An undirected graph G(V,E)
Find the smallest C ⊆ V that every edge has at least
one endpoint in C.

Find a maximal matching M;
return the set C ={v: uv∈M} of matched vertices;
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maximality C is vertex cover

matching |M| ≤ OPTVC

|C| ≤ 2|M| ≤ 2OPT

(weak duality)



Duality
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xv∈{0,1}
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ye∈{0,1}
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∑v∈e xv ≥ 1
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∑e∋v ye ≤ 1



Duality
Instance:  graph G(V,E)
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Duality for LP-Relaxation
Instance:  graph G(V,E)
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Estimate the Optima

7x1 + x2 + 5x3minimize

subject to

OPT  ≤ any feasible solution ≤

x1 � x2 + 3x3 ⇥ 10
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Estimate the Optima

7x1 + x2 + 5x3minimize

subject to

OPT  ≤

x1 � x2 + 3x3 ⇥ 10
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Primal-Dual
7x1 + x2 + 5x3min

s.t.

x1, x2, x3 � 0

10y1 + 6y2

y1 + 5y2 ⇥ 7
�y1 + 2y2 ⇥ 1
3y1 � y2 ⇥ 5

y1, y2 � 0

x1 � x2 + 3x3 ⇥ 10
5x1 + 2x2 � x3 ⇥ 6

max

s.t.

Primal

Dual ∀dual feasible 
≤primal OPT

LP ∈ NP∩coNP
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c1 c2 cn

a11 a12 a1n

am1 am2 amn

price
vitamin 1

vitamin m

≥ b1

≥ bm

x1 x2 xnsolution:

healthy

minimize the total price while keeping healthy

min cTx

s.t. Ax ≥ b
x ≥ 0

Surviving Problem
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LP Duality

price
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dual 
solution: healthy

min cTx

s.t. Ax ≥ b
x ≥ 0

Primal: Dual:

max bTy

s.t.

y ≥ 0

m types of vitamin pills, design a pricing system
competitive to n natural foods, max the total price

yTA ≤ cT



LP Duality

min cTx

s.t. Ax ≥ b
x ≥ 0

Primal: Dual:

max bTy

s.t. yTA ≤ cT

y ≥ 0

≥

Weak Duality:   

yTA    ≤ cTx x yTb ≤

Monogamy:  dual(dual(LP)) = LP

∀ feasible primal solution x and dual solution y 



LP Duality

min cTx

s.t. Ax ≥ b
x ≥ 0

Primal: Dual:

max bTy

s.t.

≥

Weak Duality Theorem:   

x yTb ≤
∀ feasible primal solution x and dual solution y 

cT

yTA ≤ cT

y ≥ 0



LP Duality

min cTx

s.t. Ax ≥ b
x ≥ 0

Primal: Dual:

max bTy

s.t.

Strong Duality Theorem:   

 y*Tb = cTx*

Primal LP has finite optimal solution x* 
iff dual LP has finite optimal solution y*.

yTA ≤ cT

y ≥ 0



min cTx
s.t. Ax ≥ b

x ≥ 0

Primal: Dual: max bTy
s.t. yTA ≤ cT

y ≥ 0

∀ feasible primal solution x and dual solution y 

 yTb ≤ yTA x ≤ cTx

Strong Duality
Theorem

x and y are both optimal iff 

 yTb = yTA x = cTx
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∀i:  either Ai· x = bi  or yi = 0
∀j:  either yTA·j = cj or xj = 0



min cTx
s.t. Ax ≥ b

x ≥ 0

Primal: Dual: max bTy
s.t. yTA ≤ cT

y ≥ 0

∀ feasible primal solution x and dual solution y 
x and y are both optimal iff 

∀i:  either Ai· x = bi  or yi = 0
∀j:  either yTA·j = cj or xj = 0

Complementary Slackness Conditions:

Complementary Slackness



min cTx
s.t.

Primal: Dual: max bTy

∀ feasible primal solution x and dual solution y 

∀i:  either Ai· x ≤ α bi  or yi = 0
∀j:  either yTA·j ≥ cj/β or xj = 0

Complementary SlacknessRelaxe
d

for α, β ≥ 1: 

cTx ≤ αβ bTy ≤ αβ OPTLP
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min cTx
s.t.

x ∈ ℤ≥0

Primal IP:
Dual 

LP-relax: max bTy

Find a primal integral solution x and a dual solution y 

∀i:  either Ai· x ≤ α bi  or yi = 0
∀j:  either yTA·j ≥ cj/β or xj = 0

for α, β ≥ 1: 

cTx ≤ αβ bTy ≤ αβ OPTLP

Primal-Dual Schema

≤ αβ OPTIP

Ax ≥ b s.t. yTA ≤ cT

y ≥ 0
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vertex cover:

matching:

variables
xv∈{0,1}

variables
ye∈{0,1}

constraints
∑v∈e xv ≥ 1

constraints
∑e∋v ye ≤ 1

primal:

dual-relax:
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feasible (x, y) such that:

∀e:  ye > 0 ⟹ ∑v∈e xv ≤ α
∀v:  xv = 1 ⟹ ∑e∋v ye = 1



primal: dual-relax:
X

v2V

xvmin
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xv � 1, 8e 2 E

xv 2 {0, 1}, 8v 2 V

X

e2E

yemin

s.t.
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Initially x = 0,  y = 0;
while E ≠ ∅

pick an e ∈ E and raise ye until some v goes tight;
set xv = 1 for those tight v and delete all e∋v from E;

event:   “v is tight (saturated)” ∑e∋v ye = 1

every deleted e is incident to a v that xv = 1 
all edges are eventually deleted

o

∀e ∈ E:  ∑v∈e xv ≥ 1
x is feasible

∀e:  either ∑v∈e xv ≤ 2 or ye = 0
∀v:  either ∑e∋v ye = 1 or xv = 0

relaxed
complementary

slackness:

X
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xv  2 ·OPT

to 1

v∈e



Initially x = 0,  y = 0;
while E ≠ ∅

pick an e ∈ E and raise ye until some v goes tight;
set xv = 1 for those tight v and delete all e∋v from E;

to 1

v∈e

Find a maximal matching;
return the set of matched vertices;

SOL ≤ 2 OPT
the returned set is a vertex cover



The Primal-Dual Schema
• Write down an LP-relaxation and its dual.

• Start with a primal infeasible solution x and a 
dual feasible solution y  (usually x=0, y=0).

• Raise x and y until x is feasible:
• raise y until some dual constraints gets tight yTA·j = cj ;

• raise xj (integrally) corresponding to the tight dual 
constraints.

• Show the complementary slackness conditions:

∀i:  either Ai· x ≤ α bi  or yi = 0
∀j:  either yTA·j ≥ cj/β or xj = 0

cTx ≤ αβ bTy
≤ αβ OPT

min  cTx
s.t.   Ax ≥ b
        x ∈ ℤ≥0

max  bTy
s.t.   yTA ≤ cT

            y ≥ 0



minimize ∑v∈V xv

subject to ∑v∈e xv ≥1, e ∈ E

v ∈ Vxv ∈ {0, 1},

vertex cover :   given G(V,E),

xv ∈ [0, 1],

LP relaxation of

Integrality Gap

Integrality gap = sup
I

OPT(I)

OPTLP(I)

For the LP relaxation of vertex cover:  integrality gap = 2



Facility Location

hospitals
in Nanjing



Facility Location

Find a subset I⊆F of opening facilities and a way 
φ: C→I of connecting all clients to them such that
the total cost                              is minimized.
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• uncapacitated facility location;
• NP-hard;  AP(Approximation Preserving)-reduction from Set Cover;
• [Dinur, Steuer 2014] no poly-time (1-o(1))ln n-approx. algorithm unless NP = P.

Instance:  set F of facilities; set C of clients;
                 facility opening costs f: F→ [0, ∞);
                 connection costs c: F×C→ [0, ∞);
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Metric Facility Location

dij
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d�(j),j +
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fi

triangle inequality:
di1j1 + di2j1 + di2j2 � di1j2

8i1, i2 2 F, 8j1, j2 2 C i1 i2

j1 j2

Instance:  set F of facilities; set C of clients;
                 facility opening costs f: F→ [0, ∞);
                 connection metric d: F×C→ [0, ∞);
Find a subset I⊆F of opening facilities and a way 
φ: C→I of connecting all clients to them such that
the total cost                              is minimized.

fi



X

j2C

d�(j),j +
X

i2I

fi

Instance:  set F of facilities; set C of clients;
                 facility opening costs f: F→ [0, ∞);
                 connection metric d: F×C→ [0, ∞);
Find φ: C→I ⊆ F to minimize

X

i2F,j2C

dijxij +
X

i2F

fiyimin

s.t.
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LP-relaxation:

xij , yi � 0,

dij
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indicates i = φ(j)
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Primal:

yi � xij � 0,

dij

fi

Dual-relax:

max
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8i 2 F, j 2 C↵j � �ij  dij ,

↵j ,�ij � 0, 8i 2 F, j 2 C

↵j

�ij

              αj :   amount of value paid by client j to all facilities
βij ≥ αj - dij :   payment to facility i by client j (after deduction)

xij , yi 2 {0, 1},

complimentary
slackness conditions:

(if ideally held)

xij =1 ⇒ αj - βij = dij ;
 yi =1 ⇒ ∑j∈C βij = fi ;

αj > 0 ⇒ ∑i∈F xij = 1 ;
βij > 0 ⇒ yi = xij ;



X
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Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;
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Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;

• The events that occur at the same time are processed in arbitrary order.

• Fully paid facilities are tentatively open:   ∑j∈C βij = fi 

• Fully paid edges to tentatively opening facilities are connected:  αj - βij = dij 

• Eventually all clients connect to tentatively opening facilities.

A client may connect to more than one facilities!
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Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;

Phase I:

Phase II:
construct graph G(V,E) where V={tentatively open facilities} 

and (i1, i2)∈E if facilities i1, i2 are connected to same client j in Phase I;
find a maximal independent set I of G and permanently open facilities in I;
connect facilities in I to the directly connected clients in Phase I;
for every unconnected client (the indirectly connected clients):  connect it 
to the nearest open facility;
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Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;

Phase I:

Phase II:
construct graph G(V,E) where V={tentatively open facilities} 

and (i1, i2)∈E if facilities i1, i2 are connected to same client j in Phase I;
find a maximal independent set I of G and permanently open facilities in I;
connect facilities in I to the directly connected clients in Phase I;
for every unconnected client (the indirectly connected clients):  connect it 
to the nearest open facility;

i1 i2

j1 j2

Every client is connected to 

exact one open facilities.
 I is 

independent 
set (feasible)



X
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dijxij +
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i2F

fiyimin

s.t.

8i 2 F, j 2 C

X
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xij � 1, 8j 2 C

8i 2 F, j 2 C

Primal:

yi � xij � 0,

dij

fi

Dual-relax:

max
X

j2C

↵j

s.t.
X

j2C

�ij  fi, 8i 2 F

8i 2 F, j 2 C↵j � �ij  dij ,

↵j ,�ij � 0, 8i 2 F, j 2 C

↵j

�ij

              αj :   amount of value paid by client j to all facilities
βij ≥ αj - dij :   payment to facility i by client j (after deduction)

xij , yi 2 {0, 1},

complimentary
slackness conditions:

(if ideally held)

xij =1 ⇒ αj - βij = dij ;
 yi =1 ⇒ ∑j∈C βij = fi ;

αj > 0 ⇒ ∑i∈F xij = 1 ;
βij > 0 ⇒ yi = xij ;
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Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;

Phase I:

Phase II:
construct graph G(V,E) where V={tentatively open facilities} 

and (i1, i2)∈E if facilities i1, i2 are connected to same client j in Phase I;
find a maximal independent set I of G and permanently open facilities in I;
connect facilities in I to the directly connected clients in Phase I;
for every unconnected client (the indirectly connected clients):  connect it 
to the nearest open facility;

i1 i2

j1 j2

SOL

�(j) =

(
i that βij = αj - dij if j is directly connected

if j is indirectly connectednearest facility in I

X

i2I

fi +
X
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connected

d�(j)j +
X

j:indirectly
connected

d�(j)j


X

j:directly
connected

↵j

n

 3
X

j:indirectly
connected

↵jtriangle inequality
+ maximality of I

 3
X

j2C

↵j ≤ 3 OPT=



Initially α = 0,  β = 0, no facility is open, no client is served;
raise αj for all client j simultaneously at a uniform continuous rate:

• upon αj = dij for a closed facility i:  edge (i,j) is paid;  fix βij = αj - dij as αj being raised;
• upon ∑j∈C βij = fi :  tentatively open facility i;  connect all clients j with paid (i,j) to 

facility i and stop raising αj;
• upon αj  = dij for a tentatively open facility i:  connect client j to facility i and stop 

raising αj;

Phase I:

Phase II:
construct graph G(V,E) where V={tentatively open facilities} 

and (i1, i2)∈E if facilities i1, i2 are connected to same client j in Phase I;
find a maximal independent set I of G and permanently open facilities in I;
connect facilities in I to the directly connected clients in Phase I;
for every unconnected client (the indirectly connected clients):  connect it 
to the nearest open facility;

i1 i2

j1 j2

SOL ≤ 3 OPT
can be implemented discretely:
• sort all edges (i,j) ∈ F×C by non-decreasing dij 
• dynamically maintain the time of next event by heap

in O(m log m) time, m=|F||C|



X

j2C

d�(j),j +
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fi

Instance:  set F of facilities; set C of clients;
                 facility opening costs f: F→ [0, ∞);
                 connection metric d: F×C→ [0, ∞);
Find φ: C→I ⊆ F to minimize

X

i2F,j2C

dijxij +
X

i2F

fiyimin

s.t.

xij , yi 2 {0, 1}, 8i 2 F, j 2 C

X

i2F

xij � 1, 8j 2 C

8i 2 F, j 2 C
yi � xij � 0,

dij

fi ……
… …
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i

j
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… …

……

• Integrality gap = 3
• no poly-time <1.463-approx. 

algorithm unless NP=P
• [Li 2011] 1.488-approx. 

algorithm


