Advanced Algorithms

南京大学
尹一通

LP-based Algorithms

- LP rounding:
- Relax the integer program to LP;
- round the optimal LP solution to a nearby feasible integral solution.
- The primal-dual schema:
- Find a pair of solutions to the primal and dual programs which are close to each other.

Vertex Cover

Instance: An undirected graph $G(V, E)$
Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

Instance: An undirected graph $G(V, E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

Find a maximal matching M; return the set $C=\{v: u v \in M\}$ of matched vertices;
maximality $\neg C$ is vertex cover matching $\Rightarrow|M| \leq$ OPT $_{\mathrm{VC}}$ (weak duality)

$$
|C| \leq 2|M| \leq 2 \mathrm{OPT}
$$

Duality

vertex cover:

$$
\begin{array}{ll}
\text { constraints } & \text { variables } \\
\sum_{v \in e} x_{v} \geq 1 & x_{v} \in\{0,1\}
\end{array}
$$

matching: variables constraints

$$
y_{e} \in\{0,1\} \quad \sum_{\text {еэv }} y_{e} \leq 1
$$

Duality

Instance: graph $G(V, E)$
primal: minimize $\sum_{v \in V} x_{v}$
subject to $\quad \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

vertex
covers
dual: maximize $\sum_{e \in E} y_{e}$
subject to $\sum_{e \ni v} y_{v} \leq 1, \quad \forall v \in V$
$y_{e} \in\{0,1\}, \quad \forall e \in E$

Duality for LP-Relaxation

Instance: graph $G(V, E)$
primal: minimize $\sum_{v \in V} x_{v}$
subject to $\sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \geq 0, \quad \forall v \in V
$$

dual: maximize $\sum_{e \in E} y_{e}$
subject to $\sum_{e \ni v} y_{v} \leq 1, \quad \forall v \in V$

$$
y_{e} \geq 0, \quad \forall e \in E
$$

Estimate the Optima

$16 \leq \mathrm{OPT} \leq$ any feasible solution

Estimate the Optima

 minimize
for any $y_{1}+5 y_{2} \leq 7$

$$
\begin{aligned}
-y_{1}+2 y_{2} & \leq 1 \\
3 y_{1}-y_{2} & \leq 5
\end{aligned} \quad y_{1}, y_{2} \geq 0
$$

Primal-Dual

Primal

min
$7 x_{1}+x_{2}+5 x_{3}$
s.t. $\quad x_{1}-x_{2}+3 x_{3} \geq 10$

$$
\begin{gathered}
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Dual
$\max \quad 10 y_{1}+6 y_{2}$
s.t

$$
\begin{array}{rll}
y_{1} & +5 y_{2} & \leq 7 \\
-y_{1}+2 y_{2} & \leq 1 \\
3 y_{1}- & y_{2} & \leq \\
y_{1}, y_{2} \geq 0 &
\end{array}
$$

<primal OPT
$\mathbf{L P} \in \mathbf{N P} \cap \operatorname{coNP}$

Surviving Problem

price	c_{1}	c_{2} \cdot	c_{n}	healthy
vitamin 1	a_{11}	a_{12} ${ }^{\text {a }}$	$a_{1 n}$	$\geq b_{1}$
:	\vdots	:		\vdots	\vdots
vitamin m	$a_{m 1}$	$a_{m 2}$	$a_{m n}$	$\geq b_{m}$
solution:	x_{1}	x_{2}	-••••	x_{n}	

minimize the total price while keeping healthy

Surviving Problem

$$
\min c^{\mathrm{T}} \boldsymbol{x}
$$

$$
\begin{aligned}
\text { s.t. } \quad A \boldsymbol{x} & \geq \boldsymbol{b} \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

minimize the total price while keeping healthy

LP Duality

Primal:
$\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
$\boldsymbol{x} \geq \mathbf{0}$

Dual: $\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } \quad y^{\mathrm{T}} A & \leq \boldsymbol{c}^{\mathrm{T}} \\
\boldsymbol{y} & \geq \mathbf{0}
\end{aligned}
$$

dual
solution: price

c_{1}	c_{2}	$\cdots \cdots$	c_{n}		
a_{11}	a_{12}	$\cdots \cdots$	$a_{1 n}$		
\vdots	\vdots		\vdots		
$a_{m 1}$	$a_{m 2}$	$\cdots \cdots$	$a_{m n}$		b_{1}
:---:					
\vdots					
b_{m}					

m types of vitamin pills, design a pricing system competitive to n natural foods, max the total price

LP Duality

Primal:

\[

\]

Monogamy: dual(dual(LP)) = LP
Weak Duality:
\forall feasible primal solution x and dual solution y

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \leq \boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

LP Duality

Primal:

\[

\]

Weak Duality Theorem:
\forall feasible primal solution x and dual solution y

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

LP Duality

Primal:

$\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$

$$
x \geq \mathbf{0}
$$

Dual:
$\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
s.t. $\boldsymbol{y}^{\mathrm{T}} A \leq \boldsymbol{c}^{\mathrm{T}}$
$y \geq 0$

Strong Duality Theorem:

Primal LP has finite optimal solution \boldsymbol{x}^{*} iff dual LP has finite optimal solution y^{*}.

$$
\boldsymbol{y}^{* \mathrm{~T}} \boldsymbol{b}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{*}
$$

Primal: min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \quad$ Dual: $\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{array}{rlrl}
\text { s.t. } A x & \geq \boldsymbol{b} & \text { s.t. } \boldsymbol{y}^{\mathrm{T}} A & \leq \boldsymbol{c}^{\mathrm{T}} \\
\boldsymbol{x} & \geq \mathbf{0} & \boldsymbol{y} & \geq \mathbf{0}
\end{array}
$$

\forall feasible primal solution x and dual solution y

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \leq \boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x} \leq c^{\mathrm{T}} \boldsymbol{x}
$$

Strong Duality Theorem
x and y are both optimal iff

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

$$
\begin{gathered}
\text { 乌! } \\
\sum_{i=1}^{m} b_{i} y_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
\sum_{j=1}^{n} c_{j} x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}
\end{gathered}
$$

Complementary Slackness

Primal: $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } A x & \geq b \\
x & \geq 0
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } \quad y^{\mathrm{T}} A & \leq c^{\mathrm{T}} \\
y & \geq 0
\end{aligned}
$$

Complementary Slackness Conditions:
\forall feasible primal solution x and dual solution y \boldsymbol{x} and \boldsymbol{y} are both optimal iff
$\forall i$: either $A_{i} . x=b_{i}$ or $y_{i}=0$
$\forall j$: either $y^{\mathrm{T}} A \cdot{ }_{\cdot j}=c_{j}$ or $x_{j}=0$

Rellaxed ${ }^{\text {Complementary Slackness }}$

Primal: $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
& \text { s.t. } \quad \begin{aligned}
& x
\end{aligned} \\
& \geq \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } \quad y^{\mathrm{T}} A & \leq \boldsymbol{c}^{\mathrm{T}} \\
y & \geq \mathbf{y}
\end{aligned}
$$

\forall feasible primal solution \boldsymbol{x} and dual solution \boldsymbol{y}
for $\alpha, \beta \geq 1$:
$\forall i$: either $A_{i} \cdot x \leq \alpha b_{i}$ or $y_{i}=0$ $\forall j$: either $y^{\mathrm{T}} A \cdot{ }_{j} \geq c_{j} / \beta$ or $x_{j}=0$
$\forall \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \beta \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \alpha \beta \mathrm{OPT}_{\mathrm{LP}}$

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n}\left(\beta \sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\beta \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{i}\right) y_{j} \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i}
$$

Primal-Dual Schema

Dual

Primal IP: $\min \boldsymbol{c}^{\mathrm{T} \boldsymbol{x}}$

$$
\begin{array}{ll}
\text { s.t. } & A \boldsymbol{x} \geq \boldsymbol{b} \\
& x \in \mathbb{Z} \geq 0
\end{array}
$$

LP-relax: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } \quad y^{\mathrm{T}} A & \leq c^{\mathrm{T}} \\
\boldsymbol{y} & \geq \mathbf{0}
\end{aligned}
$$

Find a primal integral solution \boldsymbol{x} and a dual solution \boldsymbol{y}
for $\alpha, \beta \geq 1$: $\quad \forall i$: either $A_{i} . x \leq \alpha b_{i}$ or $y_{i}=0$ $\forall j$: either $y^{\mathrm{T}} A \cdot{ }_{j} \geq c_{j} / \beta$ or $x_{j}=0$

vertex cover:

$$
\begin{array}{ll}
\text { constraints } & \text { variables } \\
\sum_{v \in e} x_{v} \geq 1 & x_{v} \in\{0,1\}
\end{array}
$$

matching:

$$
\begin{array}{ll}
\text { variables } & \text { constraints } \\
y_{e} \in\{0,1\} & \sum_{\text {еэv }} y_{e} \leq 1
\end{array}
$$

primal: $\begin{array}{ll}\min & \sum_{v \in V} x_{v} \\ \text { s.t. } & \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E\end{array}$ $x_{v} \in\{0,1\}, \quad \forall v \in V$

$$
y_{e} \geq 0, \quad \forall e \in E
$$

feasible (x, y) such that:

$$
\begin{aligned}
& \forall e: y_{e}>0 \Longrightarrow \sum_{v \in e} x_{v} \leq \alpha \\
& \forall v: x_{v}=1 \Longrightarrow \sum_{e \ni v} y_{e}=1
\end{aligned}
$$

primal:
min $\sum_{n}^{\text {min }}$
s.t. $\quad \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

dual-relax:
$\min \sum_{e \in E} y_{e}$
s.t. $\quad \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V$

$$
y_{e} \geq 0, \quad \forall e \in E
$$

event: " v is tight (saturated)" $\left\langle\underset{\nabla}{\rangle} \sum_{e \ni v} y_{e}=1\right.$

$$
\text { Initially } x=0, y=0
$$

while $E \neq \varnothing$
to 1
pick an $e \in E$ and raise y_{e} until somovngoecminght
set $x_{v}=1$ for those terge and dele all $e \ni v$ from E; $v \in e$
every deleted e is incident to a v that $\left.x_{v}=1\right\} \forall e \in E: \sum_{v \in e} x_{v} \geq 1$ all edges are eventually deleted x is feasible
relaxed
complementary
slackness:
$\forall e$: either $\sum_{v \in e} x_{v} \leq 2$ or $y_{e}=0$
$\forall v$: either $\sum_{e \ni v} y_{e}=1$ or $x_{v}=0$
$\leadsto \sum_{v \in V} x_{v} \leq 2 \cdot O P T$

Initially $x=0, y=0$;
while $E \neq \varnothing$
to 1
pick an $e \in E$ and raise y_{e} untilsomonsooctifht;
set $x_{v}=1$ for those delete all $e \ni v$ from E; v \in

Find a maximal matching; return the set of matched vertices;
the returned set is a vertex cover

$$
S O L \leq 2 O P T
$$

The Primal-Dual Schema

- Write down an LP-relaxation and its dual.

\min	$\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$			
s.t.	$A \boldsymbol{x} \geq \boldsymbol{b}$			
	$\boldsymbol{x} \in \mathbb{Z}_{\geq 0}$	\quad	\max	$\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
:---	:---			
s.t.	$\boldsymbol{y}^{\mathrm{T}} A \leq \boldsymbol{c}^{\mathrm{T}}$			
	$\boldsymbol{y} \geq \mathbf{0}$			

- Start with a primal infeasible solution \boldsymbol{x} and a dual feasible solution \boldsymbol{y} (usually $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}$).
- Raise \boldsymbol{x} and \boldsymbol{y} until \boldsymbol{x} is feasible:
- raise \boldsymbol{y} until some dual constraints gets tight $\boldsymbol{y}^{\mathrm{T}} A \cdot{ }_{j}=c_{j}$;
- raise x_{j} (integrally) corresponding to the tight dual constraints.
- Show the complementary slackness conditions: $\forall i$: either $A_{i} \cdot x \leq \alpha b_{i}$ or $y_{i}=0$
$\forall j$: either $y^{\mathrm{T}} A \cdot{ }_{j} \geq c_{j} / \beta$ or $x_{j}=0$$\square \begin{array}{r}\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \beta \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\ \leq \alpha \beta \text { OPT }\end{array}$

Integrality Gap

LP relaxation of vertex cover : given $G(V, E)$,

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{v \in V} x_{v} & \\
\text { subject to } & \sum_{v \in e} x_{v} \geq 1, & e \in E \\
& x_{v}\{0,1\}, \quad v \in V \\
& x_{v} \in[0,1], & \\
\end{array}
$$

$$
\text { Integrality gap }=\sup _{I} \frac{\mathrm{OPT}(I)}{\mathrm{OPT}_{\mathrm{LP}}(I)}
$$

For the LP relaxation of vertex cover: integrality gap $=2$

Facility Location

> hospitals in Nanjing

Facility Location

facilities:
clients:

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$; connection costs $c: F \times C \rightarrow[0, \infty)$;
Find a subset $I \subseteq F$ of opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum_{j \in C} c_{\phi(j), j}+\sum_{i \in I} f_{i}$ is minimized.

- uncapacitated facility location;
- NP-hard; AP(Approximation Preserving)-reduction from Set Cover;
- [Dinur, Steuer 2014] no poly-time (1-o(1))ln n-approx. algorithm unless NP = \mathbf{P}.

Metric Facility Location

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$;
connection metric $d: F \times C \rightarrow[0, \infty)$;
Find a subset $I \subseteq F$ of opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$ is minimized.
triangle inequality: $\forall i_{1}, i_{2} \in F, \forall j_{1}, j_{2} \in C$

$$
d_{i_{1} j_{1}}+d_{i_{2} j_{1}}+d_{i_{2} j_{2}} \geq d_{i_{1} j_{2}}
$$

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$;
connection metric $d: F \times C \rightarrow[0, \infty)$;
Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$

LP-relaxation: $\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$

$$
\begin{array}{rrl}
\text { s.t. } & y_{i} \geq x_{i j}, & \forall i \in F, j \in C \\
& \sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \geq 0, & \forall i \in F, j \in C
\end{array}
$$

Primal:

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
\sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \in\{0,1\}, & \forall i \in F, j \in C
\end{aligned}
$$

Dual-relax:

$\max \sum_{j \in C} \alpha_{j}$

s.t. $\quad \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
& \sum_{j \in C} \beta_{i j} \leq f_{i}, \quad \forall i \in F \\
& \alpha_{j}, \beta_{i j} \geq 0, \quad \forall i \in F, j \in C
\end{aligned}
$$

α_{j} : amount of value paid by client j to all facilities $\beta_{i j} \geq \alpha_{j}-d_{i j}$: payment to facility i by client j (after deduction)
complimentary
slackness conditions: (if ideally held)

$$
x_{i j}=1 \Rightarrow \alpha_{j}-\beta_{i j}=d_{i j}
$$

$$
\alpha_{j}>0 \Rightarrow \sum_{i \in F} x_{i j}=1
$$

$$
y_{i}=1 \Rightarrow \sum_{j \in C} \beta_{i j}=f_{i}
$$

$$
\beta_{i j}>0 \Rightarrow y_{i}=x_{i j}
$$

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{array}{ll}
\sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \in\{0,1\}, & \forall i \in F, j \in C
\end{array}
$$

max
 $$
\sum_{j \in C} \alpha_{j}
$$

s.t. $\quad \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C$

$$
\begin{array}{ll}
\sum_{j \in C} \beta_{i j} \leq f_{i}, & \forall i \in F \\
\alpha_{j}, \beta_{i j} \geq 0, & \forall i \in F, j \in C
\end{array}
$$

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in c} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};
- The events that occur at the same time are processed in arbitrary order.
- Fully paid facilities are tentatively open: $\sum_{j \in C} \beta_{i j}=f_{i}$
- Fully paid edges to tentatively opening facilities are connected: $\alpha_{j}-\beta_{i j}=d_{i j}$
- Eventually all clients connect to tentatively opening facilities.
facilities:

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$
 and $\left(i_{1}, i_{2}\right) \in E$ if facilities i_{1}, i_{2} are connected to same client j in Phase \mathbf{I}; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in Phase I; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$

and $\left(i_{1}, i_{2}\right) \in E$ if facilities i_{1}, i_{2} are connected to same client j in Phase \mathbf{I};
find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in Phase I; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;
I is independent set

Every client is connected to exact one open facilities.
(feasible)

Primal:

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
\sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \in\{0,1\}, & \forall i \in F, j \in C
\end{aligned}
$$

Dual-relax:

$\max \sum_{j \in C} \alpha_{j}$

s.t. $\quad \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
& \sum_{j \in C} \beta_{i j} \leq f_{i}, \quad \forall i \in F \\
& \alpha_{j}, \beta_{i j} \geq 0, \quad \forall i \in F, j \in C
\end{aligned}
$$

α_{j} : amount of value paid by client j to all facilities $\beta_{i j} \geq \alpha_{j}-d_{i j}$: payment to facility i by client j (after deduction)
complimentary
slackness conditions: (if ideally held)

$$
x_{i j}=1 \Rightarrow \alpha_{j}-\beta_{i j}=d_{i j}
$$

$$
\alpha_{j}>0 \Rightarrow \sum_{i \in F} x_{i j}=1
$$

$$
y_{i}=1 \Rightarrow \sum_{j \in C} \beta_{i j}=f_{i}
$$

$$
\beta_{i j}>0 \Rightarrow y_{i}=x_{i j}
$$

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$

and $\left(i_{1}, i_{2}\right) \in E$ if facilities i_{1}, i_{2} are connected to same client j in Phase I; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in Phase I; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

Phase I:

Initially $\boldsymbol{\alpha}=\boldsymbol{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is served; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; connect all clients j with paid (i, j) to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for a tentatively open facility i : connect client j to facility i and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$
 and $\left(i_{1}, i_{2}\right) \in E$ if facilities i_{1}, i_{2} are connected to same client j in Phase \mathbf{I}; find a maximal independent set I of G and permanently open facilities in I; connect facilities in I to the directly connected clients in Phase I; for every unconnected client (the indirectly connected clients): connect it to the nearest open facility;

$$
S O L \leq 3 O P T
$$

can be implemented discretely: in $\mathrm{O}(m \log m)$ time, $m=|F| C \mid$

- sort all edges $(i, j) \in F \times C$ by non-decreasing $d_{i j}$
- dynamically maintain the time of next event by heap

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$;
connection metric $d: F \times C \rightarrow[0, \infty)$;
Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$
facilities:

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
& \sum_{i \in F} x_{i j} \geq 1, \quad \forall j \in C \\
& x_{i j}, y_{i} \in\{0,1\}, \quad \forall i \in F, j \in C
\end{aligned}
$$

- Integrality gap $=3$
- no poly-time <1.463-approx. algorithm unless $\mathbf{N P}=\mathbf{P}$
- [Li 2011] 1.488-approx. algorithm

