Advanced Algorithms

南京大学
尹一通

Count Distinct Elements

Input: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
 Output: an estimation of $z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|$

- data stream: input comes one at a time
- naive algorithm: store everything with $\mathrm{O}(n)$ space

- (ε, δ)-estimator: $\operatorname{Pr}[(1-\epsilon) z \leq \widehat{Z} \leq(1+\epsilon) z] \geq 1-\delta$

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical accuracy of 5% and in a single pass the total vocabulary of Shakespeare. -----Flajolet

Input: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$

Output: an estimation of $z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|$

- (ε, δ)-estimator: $\operatorname{Pr}[(1-\epsilon) z \leq \widehat{Z} \leq(1+\epsilon) z] \geq 1-\delta$ uniform hash function $h: \Omega \rightarrow[0,1]$
$h\left(x_{1}\right), \ldots, h\left(x_{n}\right): z$ uniform independent values in [0,1] (partition $[0,1]$ into $z+1$ subintervals)
$\mathbb{E}\left[\min _{1 \leq i \leq n} h\left(x_{i}\right)\right]=\mathbb{E}[$ length of a subinterval $]=\frac{1}{z+1}$
estimator: $\quad \widehat{Z}=\frac{1}{\min _{i} h\left(x_{i}\right)}-1$?
(by symmetry)

But $\operatorname{Var}\left[\min _{i} h\left(x_{i}\right)\right]$ is too large!

$$
\text { (think of } z=1 \text {) }
$$

Input: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Output: an estimation of $z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|$

- (ε, δ)-estimator: $\operatorname{Pr}[(1-\epsilon) z \leq \widehat{Z} \leq(1+\epsilon) z] \geq 1-\delta$
uniform independent hash functions:
$h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[0,1] \quad Y_{j}=\min _{1 \leq i \leq n} h_{j}\left(x_{i}\right)$
average-min: $\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}$
Flajolet-Martin estimator: $\quad \widehat{Z}=\frac{1}{\bar{Y}}-1$
UHA: Uniform Hash Assumption
unbiased estimator: $\mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}$
- Deviation: $\operatorname{Pr}[\widehat{Z}<(1-\epsilon) z$ or $\widehat{Z}>(1+\epsilon) z]<$?

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

F-M estimator: \quad let $\widehat{Z}=\frac{1}{\bar{Y}}-1$
goal: $\operatorname{Pr}[(\widehat{\widehat{Z}>(1+\epsilon) z \text { or } \hat{Z}<(1-\epsilon) z}]<\delta$
for $\varepsilon \leq 1 / 2$

$$
\left|\bar{Y}-\frac{1}{z+1}\right|>\frac{\epsilon / 2}{z+1}
$$

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

F-M estimator: \quad let $\widehat{Z}=\frac{1}{\bar{Y}}-1$
goal: $\operatorname{Pr}[(\widehat{Z}>(1+\epsilon) z$ or $\hat{Z}<(1-\epsilon) z]]<\delta$
for $\varepsilon \leq 1 / 2$

$$
|\bar{Y}-\mathbb{E}[\bar{Y}]|>\frac{\epsilon / 2}{z+1}
$$

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

F-M estimator: \quad let $\widehat{Z}=\frac{1}{\bar{Y}}-1$

$$
\operatorname{Pr}[\widehat{Z}>(1+\epsilon) z \text { or } \widehat{Z}<(1-\epsilon) z]
$$

(for $\varepsilon \leq 1 / 2$) $\leq \operatorname{Pr}\left[|\bar{Y}-\mathbb{E}[\bar{Y}]|>\frac{\epsilon / 2}{z+1}\right]$
Chebyshev: $\leq \frac{4}{\epsilon^{2}}(z+1)^{2} \operatorname{Var}[\bar{Y}]$

Markov’s Inequality

Markov's Inequality:

For nonnegative X, for any $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbf{E}[X]}{t}
$$

Proof:

Let $Y=\left\{\begin{array}{ll}1 & \text { if } X \geq t, \\ 0 & \text { otherwise. }\end{array} \quad \Rightarrow Y \leq\left\lfloor\frac{X}{t}\right\rfloor \leq \frac{X}{t}\right.$,
$\operatorname{Pr}[X \geq t]=\mathbf{E}[Y] \leq \mathbf{E}\left[\frac{X}{t}\right]=\frac{\mathbf{E}[X]}{t}$.
tight if we only know the expectation of X

A Generalization of Markov's

Inequality

Theorem:

For any X, for $h: X \mapsto \mathbb{R}^{+}$, for any $t>0$,

$$
\operatorname{Pr}[h(X) \geq t] \leq \frac{\mathbf{E}[h(X)]}{t}
$$

Chebyshev’s Inequality

Chebyshev's Inequality:

For any $t>0$,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Variance:

$$
\begin{gathered}
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]
\end{gathered}
$$

$\operatorname{Var}\left[\sum_{i} X_{i}\right]=\sum_{i} \operatorname{Var}\left[X_{i}\right]$ for pairwise independent X_{i}

Chebyshev's Inequality

Chebyshev's Inequality:

For any $t>0$,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Proof:

Apply Markov's inequality to $(X-\mathbf{E}[X])^{2}$

$$
\operatorname{Pr}\left[(X-\mathbf{E}[X])^{2} \geq t^{2}\right] \leq \frac{\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]}{t^{2}}
$$

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

F-M estimator: let $\widehat{Z}=\frac{1}{\bar{Y}}-1$

$$
\operatorname{Pr}[\widehat{Z}>(1+\epsilon) z \text { or } \widehat{Z}<(1-\epsilon) z]
$$

(for $\varepsilon \leq 1 / 2$) $\leq \operatorname{Pr}\left[|\bar{Y}-\mathbb{E}[\bar{Y}]|>\frac{\epsilon / 2}{z+1}\right]$
Chebyshev: $\leq \frac{4}{\epsilon^{2}}(z+1)^{2} \operatorname{Var}[\bar{Y}]$

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

geometry
probability

$$
\begin{aligned}
\mathbb{E}\left[Y_{j}^{2}\right] & =\int_{0}^{1} y^{2} z(1-y)^{z-1} \mathrm{~d} y=\frac{2}{(z+1)(z+2)} \\
\operatorname{Var}\left[Y_{j}\right] & =\mathbb{E}\left[Y_{j}^{2}\right]-\mathbb{E}\left[Y_{j}\right]^{2} \leq \frac{1}{(z+1)^{2}}
\end{aligned}
$$

$\operatorname{Var}[\bar{Y}]_{\text {2-wise independence }}^{=} \frac{1}{k^{2}} \sum_{j=1}^{k} \operatorname{Var}\left[Y_{j}\right]=\frac{1}{k} \operatorname{Var}\left[Y_{j}\right] \leq \frac{1}{k(z+1)^{2}}$

$$
z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|
$$

For $j=1,2, \ldots, k$, hash values of h_{j} : uniform independent $X_{j 1}, X_{j 2}, \ldots, X_{j z} \in[0,1]$
$Y_{j}=\min _{1 \leq i \leq n} X_{j i} \quad$ symmetry

$$
\left.\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}\right\} \mathbb{E}[\bar{Y}]=\mathbb{E}\left[Y_{j}\right]=\frac{1}{z+1}
$$

F-M estimator: let $\widehat{Z}=\frac{1}{\bar{Y}}-1$

$$
\begin{aligned}
& \operatorname{Pr}[\widehat{Z}>(1+\epsilon) z \text { or } \widehat{Z}<(1-\epsilon) z] \leq \frac{4}{\epsilon^{2} k} \\
\text { (for } \varepsilon \leq 1 / 2) & \leq \operatorname{Pr}\left[|\bar{Y}-\mathbb{E}[\bar{Y}]|>\frac{\epsilon / 2}{z+1}\right] \\
\text { Chebyshev: } \leq & \frac{4}{\epsilon^{2}}(z+1)^{2} \operatorname{Var}[\bar{Y}] \quad \operatorname{Var}[\bar{Y}] \leq \frac{1}{k(z+1)^{2}}
\end{aligned}
$$

Input: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$

Output: an estimation of $z=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|$
uniform independent hash functions:
$h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[0,1] \quad Y_{j}=\min _{1 \leq i \leq n} h_{j}\left(x_{i}\right)$
average-min: $\bar{Y}=\frac{1}{k} \sum_{j=1}^{k} Y_{j}$
Flajolet-Martin estimator: $\widehat{Z}=\frac{1}{\bar{Y}}-1$
UHA: Uniform Hash Assumption

$$
\begin{array}{r}
\operatorname{Pr}[\widehat{Z}>(1+\epsilon) z \text { or } \hat{Z}<(1-\epsilon) z] \leq \frac{4}{\epsilon^{2} k} \leq \delta \\
\text { choose } k=\frac{4}{\epsilon^{2} \delta}
\end{array}
$$

Frequency Estimation

Data: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Query: an item $x \in \Omega$
Estimate the frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x within additive error εn.

- data stream: input comes one at a time

Frequency Estimation

Data: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Query: an item $x \in \Omega$
Estimate the frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x within additive error εn.

- data stream: input comes one at a time

- heavy hitters: items that appears $>\varepsilon n$ times

Data Structure for Set

Data: a set S of n items $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Query: an item $x \in \Omega$
Determine whether $x \in S$.

- space cost: size of data structure (in bits)
- entropy of a set: $\mathrm{O}(n \log |\Omega|)$ bits
- time cost: time to answer a query
- balanced tree: $\mathrm{O}(n \log |\Omega|)$ space, $\mathrm{O}(\log n)$ time
- perfect hashing: $\mathrm{O}(n \log \mid \Omega)$ space, $\mathrm{O}(1)$ time
- using < entropy space? a sketch of the set (approximate representation)

Approximate a Set

Data: a set S of n items $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$ Query: an item $x \in \Omega$
Determine whether $x \in S$.
uniform hash function $h: \Omega \rightarrow[m]$
data structure: an m-bit vector $v \in\{0,1\}^{m}$
initially v is all- 0 ;
set $v\left[h\left(x_{i}\right)\right]=1$ for each $x_{i} \in S$;
query x : answer "yes" if $v[h(x)]=1$;
$x \in S$: always correct
$x \notin S:$ false positive $\operatorname{Pr}[v[h(x)]=1]=1-(1-1 / m)^{n}=1-\mathrm{e}^{-n / m}$

Bloom Filters
 (Bloom 1970)

Data: a set S of n items $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$ Query: an item $x \in \Omega$
Determine whether $x \in S$.
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

data structure: an m-bit vector $v \in\{0,1\}^{m}$ initially v is all- 0 ;
for each $x_{i} \in S$: set $v\left[h_{j}\left(x_{i}\right)\right]=1$ for all $j=1, \ldots, k$;
query x : "yes" if $v\left[h_{j}(x)\right]=1$ for all $j=1, \ldots, k$;

Bloom Filters

uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

data structure: an m-bit vector $v \in\{0,1\}^{m}$ initially v is all- 0 ;
for each $x_{i} \in S:$ set $v\left[h_{j}\left(x_{i}\right)\right]=1$ for all $j=1, \ldots, k$;
query x : "yes" if $v\left[h_{j}(x)\right]=1$ for all $j=1, \ldots, k$;

$\mathbf{r y}: x \in \Omega$

$$
0,1\}^{m}
$$

$\mid j=1, \ldots, k$;
,...,k;
$x \notin S$: false positive
choose $k=\frac{m \ln 2}{n}$
$\operatorname{Pr}\left[\forall 1 \leq j \leq k: v\left[h_{j}(x)\right]=1\right]$
$m=c n$
$=\left(\operatorname{Pr}\left[v\left[h_{j}(x)\right]=1\right]\right)^{k}=\left(1-\operatorname{Pr}\left[v\left[h_{j}(x)\right]=0\right]\right)^{k}$
$\leq\left(1-(1-1 / m)^{k n}\right)^{k}=\left(1-\mathrm{e}^{-k n / m}\right)^{k} \approx(0.6185)^{c}$

Bloom Filters

data: set $S \subseteq \Omega$ of size $|S|=n \quad$ query: $x \in \Omega$

uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

data structure: an m-bit vector $v \in\{0,1\}^{m}$ initially v is all- 0 ;
for each $x_{i} \in S:$ set $v\left[h_{j}\left(x_{i}\right)\right]=1$ for all $j=1, \ldots, k$;
query x : "yes" if $v\left[h_{j}(x)\right]=1$ for all $j=1, \ldots, k$;
choose $m=c n \quad k=\frac{m \ln 2}{n}=c \ln 2$

- space cost: cn bits; time cost: $c \ln 2$
- false positive: < (0.6185) ${ }^{c}$

Heavy Hitters

Data: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Query: an item $x \in \Omega$
Estimate the frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x within additive error εn.

- data stream: input comes one at a time

- heavy hitters: items that appears $>\varepsilon n$ times

Count-Min Sketch

Data: a sequence $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
Query: an item $x \in \Omega$
Estimate the frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x within additive error εn.
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

count-min sketch: CMS $[k][m]$ initially CMS[][] is all-0;
for each x_{i} and each $h_{j}: \operatorname{CMS}[j]\left[h_{j}\left(x_{i}\right)\right]++$;
query x : return $\hat{f}_{x}=\min _{1 \leq j \leq k} \operatorname{CMS}[j]\left[h_{j}(x)\right]$
obviously $\operatorname{CMS}[j]\left[h_{j}(x)\right] \geq f_{x}$ for all $j=1,2, \ldots, k$
data: $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
query: $x \in \Omega$
frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

count-min sketch: $\mathrm{CMS}[k][m]$ initially CMS[][] is all-0;
for each x_{i} and each $h_{j}: \operatorname{CMS}[j]\left[h_{j}\left(x_{i}\right)\right]++;$
query x : return $\hat{f}_{x}=\min _{1 \leq j \leq k} \operatorname{CMS}[j]\left[h_{j}(x)\right]$
for any $x \in \Omega$, for any j :

$$
\operatorname{CMS}[j]\left[h_{j}(x)\right]=f_{x}+\sum_{\substack{y \in\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{x\} \\ h_{j}(y)=h_{j}(x)}} f_{y}
$$

$\mathbb{E}\left[\mathrm{CMS}[j]\left[h_{j}(x)\right]\right]=f_{x}+\sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{x\}} f_{y} \operatorname{Pr}\left[h_{j}(y)=h_{j}(x)\right]$
data: $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
query: $x \in \Omega$
frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

count-min sketch: $\mathrm{CMS}[k][m]$ initially CMS[][] is all-0;
for each x_{i} and each $h_{j}: \operatorname{CMS}[j]\left[h_{j}\left(x_{i}\right)\right]++;$
query x : return $\hat{f}_{x}=\min _{1 \leq j \leq k} \operatorname{CMS}[j]\left[h_{j}(x)\right]$
for any $x \in \Omega$, for any j :
$\mathbb{E}\left[\mathrm{CMS}[j]\left[h_{j}(x)\right]\right]=f_{x}+\sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{x\}} f_{y} \operatorname{Pr}\left[h_{j}(y)=h_{j}(x)\right]$
$=f_{x}+\frac{1}{m} \sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{x\}} f_{y} \leq f_{x}+\frac{1}{m} \sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} f_{y}=f_{x}+\frac{n}{m}$
biased estimator
data: $x_{1}, x_{2}, \ldots, x_{n} \in \Omega \quad$ query: $x \in \Omega$
frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

count-min sketch: $\mathrm{CMS}[k][m]$ initially CMS[][] is all-0;
for each x_{i} and each $h_{j}: \operatorname{CMS}[j]\left[h_{j}\left(x_{i}\right)\right]++;$
query x : return $\hat{f}_{x}=\min _{1 \leq j \leq k} \operatorname{CMS}[j]\left[h_{j}(x)\right]$

$$
\begin{aligned}
\forall x, \forall j: & \mathrm{CMS}[j]\left[h_{j}(x)\right] \geq f_{x} \\
& \mathbb{E}\left[\operatorname{CMS}[j]\left[h_{j}(x)\right]\right] \leq f_{x}+\frac{n}{m}
\end{aligned}
$$

Markov's inequality: $\operatorname{Pr}\left[\operatorname{CMS}[j]\left[h_{j}(x)\right]-f_{x} \geq \varepsilon n\right] \leq 1 /(\varepsilon m)$
$\operatorname{Pr}\left[\left|\hat{f}_{x}-f_{x}\right| \geq \epsilon n\right]=\operatorname{Pr}\left[\forall j: \operatorname{CMS}[j]\left[h_{j}(x)\right]-f_{x} \geq \varepsilon n\right] \leq 1 /(\varepsilon m)^{k}$
data: $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
query: $x \in \Omega$
frequency $f_{x}=\left|\left\{i: x_{i}=x\right\}\right|$ of item x
uniform independent hash functions

$$
h_{1}, h_{2}, \ldots, h_{k}: \Omega \rightarrow[m]
$$

count-min sketch: $\mathrm{CMS}[k][m]$ initially CMS[][] is all-0;
for each x_{i} and each $h_{j}: \operatorname{CMS}[j]\left[h_{j}\left(x_{i}\right)\right]++;$
query x : return $\hat{f}_{x}=\min _{1 \leq j \leq k} \operatorname{CMS}[j]\left[h_{j}(x)\right]$

$$
\operatorname{Pr}\left[\left|\hat{f}_{x}-f_{x}\right| \geq \epsilon n\right] \leq 1 /(\varepsilon m)^{k} \leq \delta
$$

choose $m=\left\lceil\frac{\mathrm{e}}{\epsilon}\right\rceil \quad k=\left\lceil\ln \frac{1}{\delta}\right\rceil$

- space cost: $k m=O\left(\frac{1}{\epsilon} \ln \frac{1}{\delta}\right)$
- time cost for each query: $k=O\left(\ln \frac{1}{\delta}\right)$

Set Membership

Data: a set S of n items $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$ Query: an item $x \in \Omega$
Determine whether $x \in S$.

- space cost: size of data structure (in bits)
- entropy of a set: $\mathrm{O}(n \log |\Omega|)$ bits
- time cost: time to answer a query
- balanced tree: $\mathrm{O}(n \log |\Omega|)$ space, $\mathrm{O}(\log n)$ time
- perfect hashing: $\mathrm{O}(n \log |\Omega|)$ space, $\mathrm{O}(1)$ time

Perfect Hashing

$$
\mathrm{S}=\{a, b, c, d, e, f\} \subseteq[N]
$$

 $m=\mathrm{O}\left(n^{2}\right)$
Birthday Paradox!

UHA: Uniform Hash Assumption

$\operatorname{search}(x)$: retrieve h;
check whether $T[h(x)]=x$;

FKS Perfect Hashing

(Fredman, Komlós, Szemerédi, I984)

$$
m=30, \quad p=31, \quad n=6, \quad S=\{2,4,5,15,18,30\}
$$

- space cost: $\mathrm{O}(n)$ words ($\mathrm{O}(n \log |\Omega|)$ bits);
- time cost: $\mathrm{O}(1)$ for every query in the worst case.

FKS Perfect Hashing

FKS Perfect Hashing

