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Linear Programming (LP)

LP: Optimize (minimize/maximize) a linear objective function,
subject to linear equality and linear inequality constraints.

« A factory produces two types of Objective function:
chocolates A and B. max x; + 6x;
 Revenue for A is 1 per kg and the
revenue for B is 6 per kg. Constraints:
* The demand for A is 200kg per x1 < 200
day and the demand for B is x, < 300
300kg per day. X1+ x, <400
* The factory can produce at most x1=0,x, =0

400kg each day.
* How to arrange production to
maximize revenue?
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General Form of LP

Objective function:
max x; + 6x,

Constraints:
x1 < 200

x, < 300
X1+ x5 <400
x1=0,x=20
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General Form of LP

Objective function:
max x; + 6x,

Constraints:

X1 < 200
X < 300

x1+x2 < 400
X1 > O,Xz >0

X = [x1»x2]T

-
c =

n=2m=3
N ={1,2},M = {1,2,3}
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General form of LP:
matrix A = {aij}
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Canonical Form of LP

General form of LP:

matrix A = {aij}mxn
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minimize  ¢TX

subjectto  a; X = b;
a; X = b
Xj >0
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Canonical form of LP:

matrix A = {aij}mxn

vectors b and ¢

minimize  ¢'x
subjectto Ax =>b
x>0
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Canonical Form of LP

General form of LP:

matrix A = {aij}

mXxn
sets M <€ [m]and N C [n]
minimize  ¢'X
subjectto a;Xx=b; (€M
E{f — bi I € M
X =20  jEN
x; free JEN
N a; X = b;
a; X = b; 4w § l
—a; X = _bi

matrix A = {aij}mxn

vectors b and ¢

Canonical form of LP:

minimize  ¢TX
subjectto Ax =>b
x>0
( x =0
x; unconstrained duem—p { X; =0
ot
X =X X



Convex Polytope

Canonical form of LP:
minimize  ¢Tx
subjectto AX =b
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Hyperplane:
Subspace of dimensionn — 1
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Halfspace:

n
j=1 al’ij = bi

(Convex) Polytope:
Bounded and nonempty intersection of
finite number of halfspaces
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Convex Polytope

Canonical form of LP:
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Integer Linear Programming (ILP)
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Integer Linear Programming (ILP)

Canonical form of LP: Canonical form of ILP:
matrix A = {aij}mxn integer matrix A = {aif}mxn
vectors b andc integer vectors b and ¢
minimize  ¢'X minimize  ¢Tx
subjectto AX = b subjectto A% > b
x>0 x>0
X €Z"

LP is polynomial time solvable,
ILP is NP-hard.




Vertex Cover

Instance: An undirected simple graph G = (V, E).
Vertex Cover: Find smallest C SV st.Ve € E:en C # Q.
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Instance of set cover
with frequency = 2
for all elements.




Vertex Cover

Instance: An undirected simple graph G = (V, E).
Vertex Cover: Find smallest C €V st.Ve € E:en C + Q.

This problem is NP-hard.

In n-approx. alg. by greedy set cover.

e 2-approx. alg. by finding maximal matching.

* Assuming the unique game conjecture, there is no poly-time
(2 — €)-approx. alg.
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Instance: An undirected simple graph G = (V, E).
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Instance: An undirected simple graph G = (V, E).
Vertex Cover: Find smallest C € Vst.Ve e E:en C # Q.

Define a 0-1 variable x,, for each vertex v denoting whether v € C
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Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover: Find smallest C C Vst.Ve € E:en C # Q.

efioremmeGmimvanimishemmt | vt .

Objective function: min ), ey Xy

Constraints: DpeeXy =1, € EE

v ESY

x, €10,1], wvevV



LP Relaxation for Vertex Cover

Instance: An undirected simple graph G = (V, E).
Vertex Cover: Find smallest C € Vst.Ve e E:en C # Q.

efioremmeGmimvanimishemmt | vt .

Objective function: min ), ey Xy

Constraints: DpeeXy =1, € EE

LP is poly-time solvable,
so we can solve LP relaxation
of vertex cover in poly-time.

v ESY

x, €10,1], wvevV



Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.

VC as ILP:

min ), ey Xy
St DpeeXpy =1, e €EE
x, €{0,1}, wvevV
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x* € [0,1]"!
(found in poly-time)
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Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.
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Vst Y eex, =1, e€E

LP relaxation of VC:
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Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.
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Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.

VC as ILP: LP relaxation of VC:
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St. DpeeXy =1, e€E |V | st YeeXy, =1, e€EE
x, €{0,1}, wvevV x, €101], wvevV

integral and feasible solution

fractional and optimal solution
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(not too bad, found in poly-time) (found in poly-time)

Foreache € E,

, 1 ifx;, = 0.5 .
{ "o Y oee Xy = 1implies Y ee xp, = 1

Xy =
0 otherwise
Thus x" is an integral feasible solution!
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x € [0,1]! rounding x* e [0,1]!
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v 0 otherwise




Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.

VC as ILP:

min ), ey Xy

st. DveeXp =1, e€E 4

x, € {0,1},

vEeYV

integral and feasible solution

x € [0,1]!

(not too bad, found in poly-time)

LP relaxation of VC:

min ), ey Xy
St DpeeXy =1, e€E
x, €101], wvevV

fractional and optimal solution
x* € [0,1]V!
(found in poly-time)

Xv

, 1 ifx, =05
0 otherwise

OPT > OPTyp = Y ey X5




Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.

VC as ILP: LP relaxation of VC:

min Zvev Xy - min ZUEV Xy

St DpeeXpy =1, e €EE Vst Ypeexy, =1, e€E
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integral and feasible solution

fractional and optimal solution
v e o] e o]

(not too bad, found in poly-time) (found in poly-time)

X, = 1 ifx; =0.5 OPT 2 OPTLP,: Qivev Xy *
v 0 otherwise SOL =Y ,cv Xp < Dpey 2 - Xy < 2 - OPT



Relaxation & Rounding

Instance: An undirected simple graph ¢ = (V, E).
Vertex Cover (VC): Find smallest C SV st.Ve € E:en C # Q.

VC as ILP: LP relaxation of VC:

min Y, ,ey Xy | min Ypep x,

St. DpeeXy =1, e€E |V | st YeeXy, =1, e€EE
x, €{0,1}, wvevV x, €101], wvevV

integral and feasible solution

fractional and optimal solution
" € [0,1]V x* €[0,1]"

(not too bad, found in poly-time) (found in poly-time)

(1 ifxg =05 OPT 2 OPTip = Yvev Xp *
v 0 otherwise SOL = Y pev Xy < Dpey 2 - Xy < 2+ OPT
This is a poly-time 2-approx. alg. for VC.



LP Relaxation & Rounding

* Model the problem as an ILP.
(Finding OPT of this ILP will be NP-hard.)

 Relaxation: relax the ILP to an LP.

* Find optimal fraction solution of the LP, call it OPTp.
(Can be done in poly-time via ellipsoid, interior-point, etc.)

* Rounding: round OPT; p to a feasible integral solution SOL.
(This is a tricky step: how to do rounding?)

e Show SOL is not far from OPT.

(Notice OPTyp provides a natural lower bound for OPT.)
(Thus usually compare SOL with OPTyp.) I R
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Consider a problem that can be modeled as a (minimization) ILP
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optimal value (of ILP) on instance |
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For the LP relaxation of vertex cover: integrality gap = 2.
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Consider a problem that can be modeled as a (minimization) ILP

optimal value (of ILP) on instance |
OPTyp(I): optimal value of LP relaxation on instance |
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Integrality Gap = Sup
I

For the LP relaxation of vertex cover: integrality gap = 2.
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SOL

Consider a problem that can be modeled as a (minimization) ILP

optimal value (of ILP) on instance |

OPTyp(I): optimal value of LP relaxation on instance |

Integrality Gap = Sup

OPT(I)
OPTyp(I)

I

For the LP relaxation of vertex cover: integrality gap = 2.
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SOL

Consider a problem that can be modeled as a (minimization) ILP

optimal value (of ILP) on instance |

OPTyp(I): optimal value of LP relaxation on instance |

Integrality Gap = Sup
I

OPT(I)

OPTrp(I)

For the LP relaxation of vertex cover: integrality gap = 2.



Integrality Gap

value of

obj. func.4

approx. ratio

€

»

integrality gap
OPTyp

how we calc.
approx. ratio

SOL

Consider a problem that can be modeled as a (minimization) ILP

optimal value (of ILP) on instance |

OPTyp(I): optimal value of LP relaxation on instance |

Integrality Gap = Sup
I

OPT(I)

OPTrp(I)

For the LP relaxation of vertex cover: integrality gap = 2.

Using LP relaxation & rounding, can approx. ratio beat integrality gap?



MAX-SAT

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

. C1 = (X1 VX3 VX3)
* Boolean variables: x{, x5, >+, X,

e literal: x; or x; Cz = (X1V Xa)

» clause: V of literals C3 = (X2 Vx3Vixy)
Cy = (x3)




MAX-SAT

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

. C1 = (X1 VX3 VX3)
* Boolean variables: x{, x5, >+, X,
e literal: x; or x; Cz = (X1V Xa)
* clause: V of literals C3 = (X2 VX3V Xy)

Cy = (x3)

MAX-SAT is NP-hard, even MAX-E2SAT is NP-hard!
(Recall 2SAT is in P, and 3SAT is NP-hard.)
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MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.
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MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.
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Random Solution for MAX-SAT

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.

Aclause C = (I3 VI, V -+ V [ ) where each [; € {x;, x;}

1

Pr[clause C is satisfied] =1 —27% > 5
m 1

E[# of satisfied clauses] > > > 5 OPT



Random Solution for MAX-SAT

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.

Aclause C = (I3 VI, V -+ V [ ) where each [; € {x;, x;}

1 .
Pr[clause C is satisfied] = 1 —27% > = Does this imply a
2 (1/2)-approx. alg.
m 1 for MAX-SAT?
E[# of satisfied clauses| > > = > OPT of



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2.
Fori =1ton:
If E[W|x; =aq,,x;j_1 = a;_1,x; = true] =
E[W|x; = aq,:,x;_1 = a;_q,x; = false]
a; = true.
Else
a; = false.
Return a.



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori =1ton:
If E[W|x; =aq,,x;j_1 = a;_1,x; = true] =
E[W|x; = aq,:,x;_1 = a;_q,x; = false]
a; = true.

Else
a; = false.
Return d.



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.

MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2.
Fori =1ton:
If E[W|x; =aq,,x;j_1 = a;_1,x; = true] =
E[W|x; = aq,:,x;_1 = a;_q,x; = false]
a; = true.
Else
a; = false.
Return a.

E[W](0)]
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Else
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Return d.



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2.

E[W]
Fori =1 ton: /\

if E[W|x, = ay, -, X1 = a_, % = true] = | [EW]©)]] [EWIQ]
]E[Wlxl = Aq,", Xj—1 = Qj—1, X; = false]
a; = frue.

Else EW]|(00)]] [E[W](01)]

a; = false.
Return a.
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MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.
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Else E[W](0,0)]| = [E[W](0,1)]

a; = false.
Return a.
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Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori = 1ton: /\
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Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori = 1ton: /\
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a; = true.

Else
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a; = false. °
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Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori = 1ton: /\
If  E[W|x, =aq, -, xi_1 = a;j_1,x; = true| = E[W]|(0)] E[W](D)]
E[W|x; = aq,:,x;_1 = a;_q,x; = false]
a; = true.
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a; = false. *
Return d. E[W]|(ay, -, an)]

E[Wlxy = ay, -, %1 = aj1] = E[W|xy = ay,-, %1 = a;_1,x; = true] - (1/2) +
E[W|xy = ay,-+, %1 = a;—1,x; = false] - (1/2)



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori = 1 ton: V\
If  E[W|x, =aq, -, xi_1 = a;j_1,x; = true| = E[W]|(0)] E[W](D)]
E[W|x; = aq,:,x;_1 = a;_q,x; = false] Al
a; = true.
e IE[WI'(‘E),O)] E[W](0,1)]
a; = false. N
Return d. E[W]|(ay, -, an)]

E[Wlxy = ay, -, %1 = aj1] = E[W|xy = ay,-, %1 = a;_1,x; = true] - (1/2) +
E[W|xy = ay,-+, %1 = a;—1,x; = false] - (1/2)

max{E[W|(aq,-,a;_q,true)], E[W|(aq, -, a;_1,false)]} = E[W|(ay, -, a;_1)]



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2. E[W]
Fori = 1 ton: V\
If  E[W|x, =aq, -, xi_1 = a;j_1,x; = true| = E[W]|(0)] E[W](D)]
E[W|x; = aq,:,x;_1 = a;_q,x; = false] Al
a; = true.
e IE[WI'(‘E),O)] E[W](0,1)]
a; = false. N
Return d. E[W]|(ay, -, an)]

E[Wlxy = ay, -, %1 = aj1] = E[W|xy = ay,-, %1 = a;_1,x; = true] - (1/2) +
E[W|xy = ay,-+, %1 = a;—1,x; = false] - (1/2)

max{E[W|(aq,-,a;_q,true)], E[W|(aq, -, a;_1,false)]} = E[W|(ay, -, a;_1)]

For any partial assignment, E[W|(a4, -+, a;)] can be computed in poly-time.



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Let W denote # of satisfied clauses. E[/W] = OPT/2.

Fori =1 ton:

If E[W|x; =aq,,x;j_1 = a;_1,x; = true] =

[E[Wlxl = aq, ", Xj—1 = Aj—1, X; = false]

a; = true.
Else
a; = false.
Return d.

E[W]

N

E[W|(0)] E[W|(1)]
Al
E[W] '(‘0,0)] E[W[(0,1)]
Poly-time deterministic .,
(1/2)-approx. algorithm! E[W|(as, -, a,)]

E[Wlxy = ay, -, %1 = aj1] = E[W|xy = ay,-, %1 = a;_1,x; = true] - (1/2) +
E[W|xy = ay,-+, %1 = a;—1,x; = false] - (1/2)

max{E[W|(aq,-,a;_q,true)], E[W|(aq, -, a;_1,false)]} = E[W|(ay, -, a;_1)]

For any partial assignment, E[W|(a4, -

,a;)] can be computed in poly-time.



MAX-SAT as ILP

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.
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MAX-SAT as ILP

Instance: A set of clauses Cy,C5, -, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Boolean variables: xq,x,,,x, € {0,1}
x; = 0 means x; = false
x; = 1 means x; = true

clause: G = (Iy VI V-V ) wherel, € {x;,x; | 1 <i <n}

S set of i such that x; is in C;

S; :set of i such that x; is in C;

C; is satisfied ) z x; + 2 (1—x;)=>1

| €S
i€S; LES;



MAX-SAT as ILP

Instance: A set of clauses Cy, Cy, -+, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Boolean variables: xq,x,,+,x, € {0,1}

clause: C1,Cy,**+, Cpy S set of i such that x; is in C;

S; :set of i such that x; is in C;

MAX-SAT as ILP:

maximize =1
subject to Diject Xi T Ziesj—(l —x) =2y, 1<j<m
j

x; € {0,1}, 1<i<n
y; €10,1}, 1<j<m




LP Relaxation

Instance: A set of clauses Cy, Cy, -+, Cpy.
MAX-SAT: Find assighment x € {true, false}" that maximize
number of satisfied clauses.

Boolean variables: xq,x,,+,x, € {0,1}

clause: C1,Cy,**+, Cpy S set of i such that x; is in C;

S; :set of i such that x; is in C;

LP relaxation of MAX-SAT-ILP:

maximize =1
subject to Diject Xi T Ziesj—(l —x) =2y, 1<j<m
j

*¥—€16:1x; € |0,1], 1<i<n
y-€410:33:y; € [0,1], l<sj=m




Randomized Rou

nding

MAX-SAT-ILP:

maxZ] 1Y
le Z(l X)2y; 1<j<m
lES+ €Sy
xlE{Ol} 1<i<n

y; €1{0,1} 1<j<m

LP relaxation of MAX-SAT-ILP:

max Z] 1Y

le 2(1

lES+ les;
€ [0,1]
)’j € [0,1]

Xi) = Y;

1<j<m




Randomized Rounding
MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
st Y x+ ) A=x)2y 1<j<m ||st Y u+ ) A-x)2y 1<j<m
lES+ €Sy lES+ L€S}
xle{Ol} 1<i<n € [0,1] 1<i<n
y; €1{0,1} 1<j<m ij[O,l] 1<j<m

Optimal integral solution
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MAX-SAT-ILP:

maxZ] 1Y
le Z(l X)=y; 1<j<m
lES+ €Sy
xlE{Ol} 1<i<n
y;j € {0,1} 1<j<m

LP relaxation of MAX-SAT-ILP:
max Z] 1Y
le Z(l X))y 1<j<m
lES+ les;
€ [0,1] 1<i<n
ij[O,l] 1<j<m

Optimal integral solution

Clearly < OPTLP

Optimal fractional solution OP T p:
e [0,1]", v* € [0,1]™
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MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
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1 with probability x;
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Optimal integral solution Optimal fractional solution OP T p:
Clearly < OPTLP x* € [Oil]ni y* € [O’l]m
Randomly generate integral solution SOL from OPT, p: Is SOL feasible?

1 with probability x;

—; n H ’ =
x" € {0,1}", specifically, x; {() with probability 1 — x;



Randomized Rounding
MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
s.t. in+Z(1_xi)2yj 1<j<m || st in‘l'Z(l—xi)ZYj 1<j<m
iest LES} ies;’ €S
x; € {0,1} 1<i<n x; € [0,1] 1<i<n
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Optimal integral solution Optimal fractional solution OP T p:
Clearly < OPTLP X" € [Oil]ni y* € [O’l]m
Randomly generate integral solution SOL from OPT, p:

1 with probability x; How good is SOL?

—; n H ’ =
x" € {0,1}", specifically, x; {() with probability 1 — x;



Randomized Rou

nding

MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
st )+ Y (I-x)2y 1<j<m ||st Y u+y A-x)2y 1<j<m
lES+ €Sy lES+ L€S}
xlE{Ol} 1<i<n € [0,1] 1<i<n
yj €{0,1} 1<j<m yje[0,1] 1<j<m
Optimal integral solution Optimal fractional solution OP T p:
Clearly < OPTLP € [Oil]ni y* € [O’l]m

Randomly generate integral solution SOL from OPT, p:

x" € {0,1}", specifically, x! = {

1 with probability x;
0 with probability 1 — x;

How good is SOL?

Pr[Cj satisfied in SOL] =1- 1_[ (1—x;) 1_[ X;
ies; i€s;



Randomized Rou

nding

MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
st )+ Y (I-x)2y 1<j<m ||st Y u+y A-x)2y 1<j<m
lES+ €Sy lES+ L€S}
xlE{Ol} 1<i<n € [0,1] 1<i<n
yj €{0,1} 1<j<m yje[0,1] 1<j<m
Optimal integral solution Optimal fractional solution OP T p:
Clearly < OPTLP € [Oil]ni y* € [O’l]m

Randomly generate integral solution SOL from OPT, p:

x" € {0,1}", specifically, x! = {

1 with probability x;
0 with probability 1 — x;

How good is SOL?

Pr[Cj satisfied in SOL| = 1 — 1_[ (1—x;) 1_[ xi)=1-(1- y;/k)k
ies; i€s;



Randomized Rou

nding

MAX-SAT-ILP:

LP relaxation of MAX-SAT-ILP:

max Y= ¥j max XL Y;

s.t. in+Z(1_xi)2yj 1<j<m || st in‘l'Z(l—xi)Z}’j 1<j<m
iest LES} ies; €S
x; € {0,1} 1<i<n x; € [0,1] 1<i<n
y; €1{0,1} 1<j<m y; € [0,1] / 1<j<m

Optimal integral solution

< OP1 arithmetic-geometric mean inequality: [

[0,1]™
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x" € {0,1}", specifically, x! = i
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How good is SOL?

Pr[Cj satisfied in SOL| = 1 — 1_[ (1—x;) 1_[ xi)=1-(1- y;/k)k
ies; i€s;
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> [1- (1 -1/ ;
€ [0,1]
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Randomly generate integral solution SOL from OPT, p:
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1 with probability x;
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How good is SOL?
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1 with probability x; How good is SOL?
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MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
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Randomized Rounding
MAX-SAT-ILP: LP relaxation of MAX-SAT-ILP:
max Y= ¥j max XL Y;
s.t. in+Z(1_xi)2yj 1<j<m || st in‘l'Z(l—xi)ZYj 1<j<m
iesjf €Sy iesjfr les;
x; € {0,1} 1<i<n x; € [0,1] 1<i<n
yj € {0,1} 1<j<m yj € [0,1] 1<j<m
Optimal integral solution Optimal fractional solution OP T p:
Clearly < OPTLP x* € [Oil]ni y* € [O’l]m

Randomly generate integral solution SOL from OPT, p:

1 with probability x; How good is SOL?

—; n H ’ =
x" € {0,1}", specifically, x; {() with probability 1 — x;

Derandomize to
Pr[Cj satisfied in SOL] >(1—1/e) -yf get deterministic

1-1/e)-approx. alg.
E[# clauses satisfied in SOL] > %7, (1 _ _) y; (1-1/e)-app g

=(1-3) 0PTp 2 (1-7)-



Putting two algorithms together

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Model problem as an ILP.

Assign each variable with true or false Obtain LP relaxation of the ILP.
uniformly and independently at random. Get optimal solution x* of the LP.
Randomized rounding x* to x’ as SOL.
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Putting two algorithms together

Instance: A set of clauses Cy, Cy, -+, Cpy,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.

Model problem as an ILP.
Obtain LP relaxation of the ILP.

Get optimal solution x* of the LP.
Randomized rounding x* to x’ as SOL.

Suppose C; = (I3 VI, V-V i)

e Random assignment:
e 1/2-approximation

. Pr[Cj Satisfied] — 1 —2"k Good when k is large.

e LP relaxation and randomized rounding:

e (1-1/e)-approximation

. Pr[Cj satisfied] =[1-(1-1/k)¥] - Vi Good when k is small.



Putting two algorithms together

Instance: A set of clauses Cy, Cy, -+, Cpy,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Random assignment: LP relaxation and randomized rounding:
e 1/2-approximation * (1-1/e)-approximation
. Pr[Cj satisfied] =1-27% . Pr[Cj satisfied] =[1-(1-1/k)¥] $yi
relax & rounding . | | | R
rnd assign — — — - .| . 2_k/ _- -
average ------------------- /
RO
08 VAl
0.7 r /
/ 1—(1—1/k)¥
06 [ /
/

0.5



Putting two algorithms together

Instance: A set of clauses Cy, Cy, -+, Cpy,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Random assignment: LP relaxation and randomized rounding:
e 1/2-approximation * (1-1/e)-approximation
. Pr[Cj satisfied] =1-27% . Pr[Cj satisfied] =[1-(1-1/k)¥] $yi
relax & rounding . -
. — —
rnd assign — — — - .| 1_2—k///
AVErAgE serseeseesseaeean P
s
] e 3
g = === - 3
0.7 r /
/ 1—(1—1/k)k
06 [ /
/

0.5



Putting two algorithms together

Instance: A set of clauses Cy, Cy, -+, Cpy,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Model problem as an ILP.

Assign each variable with true or false Obtain LP relaxation of the ILP.
uniformly and independently at random. Get optimal solution x* of the LP.
Randomized rounding x* to x' as SOL.

Run each of the two algorithms once, return better solution.
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Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.
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Putting two algorithms together

Instance: A set of clauses Cy, Cy, -+, Cpy,.

MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.
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Putting two algorithms together

Instance: A set of clauses Cy,C5, -+, C,p,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m clauses.
Assume the solution of the LP relaxation & rounding alg. satisfies m, clauses.

Assume clause C; has kj literals, and (F, F) is the opt. sol. of relaxed-ILP

. my +m;
[E[# of satisfied clauses] = E[max{m,,m,}] = E [ ]
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MAX-SA

Instance: A set of clauses Cy, Cy, -+, Cpy,.
MAX-SAT: Find X € {true, false}™ that maximize # of satisfied clauses.

Model problem as an ILP.

Assign each variable with true or false Obtain LP relaxation of the ILP.
uniformly and independently at random. Get optimal solution x* of the LP.

Randomized rounding x* to x’ as SOL.

Run each of the two algorithms once, return better solution.

* Arnd. alg. that satisfies at least (3/4) - OPT clauses in expectation.
* Can derandomize above alg. via the method of conditional expectation.
* The integrality gap of the LP relaxation for MAX-SAT is 3 /4.

* MAX-3SAT has a (7/8)-approx. alg. by semidefinite programming,
and cannot have better approx. alg. in poly-time unless P=NP.

e How about MAX-E3SAT?



