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Convex Polytope

Hyperplane:
Subspace of dimension 𝑛 − 1
σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖
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Halfspace:
σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖

(Convex) Polytope:
Bounded and nonempty intersection of
finite number of halfspaces
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(Convex) Polytope:
Bounded and nonempty intersection of
finite number of halfspaces



Integer Linear Programming (ILP)

Canonical form of LP:

matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛



Integer Linear Programming (ILP)

Canonical form of LP:

matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛



Integer Linear Programming (ILP)

Canonical form of LP:

matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛



Integer Linear Programming (ILP)

Canonical form of LP:

matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛

LP is polynomial time solvable,
ILP is NP-hard.



Vertex Cover

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

𝑣1 𝑣2

𝑣3

𝑣4

𝑒1

𝑒2 𝑒3

𝑒4

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣4

incidence graph

Instance of set cover
with frequency = 2
for all elements.



Vertex Cover

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

• This problem is NP-hard.

• ln 𝑛-approx. alg. by greedy set cover.

• 2-approx. alg. by finding maximal matching.

• Assuming the unique game conjecture, there is no poly-time
(2 − 𝜖)-approx. alg.



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints:



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛



Vertex Cover as ILP

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

Canonical form of ILP:

integer matrix 𝐴 = 𝑎𝑖𝑗 𝑚×𝑛

integer vectors 𝑏 and Ԧ𝑐

minimize Ԧ𝑐𝑇 Ԧ𝑥

subject to 𝐴 Ԧ𝑥 ≥ 𝑏

Ԧ𝑥 ≥ 0

Ԧ𝑥 ∈ ℤ𝑛

ILP is NP-hard!



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉



LP Relaxation for Vertex Cover 

Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover: Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

Objective function:

Define a 0-1 variable 𝑥𝑣 for each vertex 𝑣 denoting whether 𝑣 ∈ 𝐶

minσ𝑣∈𝑉 𝑥𝑣

Constraints: σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

LP is poly-time solvable,
so we can solve LP relaxation
of vertex cover in poly-time.



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

OPT



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

OPT



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

𝑥∗ = OPTLPOPT



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

𝑥∗ = OPTLPOPT
𝑥′ = SOL



Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

𝑥∗ = OPTLPOPT
𝑥′ = SOL



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

𝑥∗ = OPTLPOPT
𝑥′ = SOL

relaxation



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

relaxation



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

relaxation

𝑥𝑣
′ = ቊ

1 if 𝑥𝑣
∗ ≥ 0.5

0 otherwise



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

relaxation

𝑥𝑣
′ = ቊ

1 if 𝑥𝑣
∗ ≥ 0.5

0 otherwise

For each 𝑒 ∈ 𝐸,
σ𝑣∈𝑒 𝑥𝑣

∗ ≥ 1 implies σ𝑣∈𝑒 𝑥𝑣
′ ≥ 1



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.

VC as ILP:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ {0,1}, 𝑣 ∈ 𝑉

LP relaxation of VC:

minσ𝑣∈𝑉 𝑥𝑣
s.t. σ𝑣∈𝑒 𝑥𝑣 ≥ 1, 𝑒 ∈ 𝐸

𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉

fractional and optimal solution

𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding

relaxation

𝑥𝑣
′ = ቊ

1 if 𝑥𝑣
∗ ≥ 0.5

0 otherwise

For each 𝑒 ∈ 𝐸,
σ𝑣∈𝑒 𝑥𝑣

∗ ≥ 1 implies σ𝑣∈𝑒 𝑥𝑣
′ ≥ 1

Thus 𝑥′ is an integral feasible solution!



Relaxation & Rounding
Instance: An undirected simple graph 𝐺 = (𝑉, 𝐸).
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relaxation
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1 if 𝑥𝑣
∗ ≥ 0.5

0 otherwise
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Vertex Cover (VC): Find smallest 𝐶 ⊆ 𝑉 s.t. ∀𝑒 ∈ 𝐸: 𝑒 ∩ 𝐶 ≠ ∅.
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𝑥𝑣 ∈ [0,1], 𝑣 ∈ 𝑉
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𝑥∗ ∈ 0,1 |𝑉|

(found in poly-time)

integral and feasible solution

𝑥′ ∈ 0,1 |𝑉|

(not too bad, found in poly-time)

rounding
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𝑥𝑣
′ = ቊ

1 if 𝑥𝑣
∗ ≥ 0.5

0 otherwise

OPT ≥ OPTLP = σ𝑣∈𝑉 𝑥𝑣
∗
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This is a poly-time 2-approx. alg. for VC.



LP Relaxation & Rounding

• Model the problem as an ILP. 
(Finding 𝐎𝐏𝐓 of this ILP will be NP-hard.)

• Relaxation: relax the ILP to an LP.

• Find optimal fraction solution of the LP, call it 𝐎𝐏𝐓𝐋𝐏.
(Can be done in poly-time via ellipsoid, interior-point, etc.)

• Rounding: round 𝐎𝐏𝐓𝐋𝐏 to a feasible integral solution 𝐒𝐎𝐋.
(This is a tricky step: how to do rounding?)

• Show 𝐒𝐎𝐋 is not far from 𝐎𝐏𝐓.
(Notice 𝐎𝐏𝐓𝐋𝐏 provides a natural lower bound for 𝐎𝐏𝐓.)
(Thus usually compare 𝐒𝐎𝐋 with 𝐎𝐏𝐓𝐋𝐏.)

OPTLP

SOL
OPT
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Integrality Gap

Consider a problem that can be modeled as a (minimization) ILP 

𝐎𝐏𝐓(𝑰): optimal value (of ILP) on instance 𝐼

𝐎𝐏𝐓𝐋𝐏(𝑰): optimal value of LP relaxation on instance 𝐼

Integrality Gap = sup
𝐼
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For the LP relaxation of vertex cover: integrality gap = 2.

integrality gap

approx. ratio
how we calc. 
approx. ratio

Using LP relaxation & rounding, can approx. ratio beat integrality gap?

value of
obj. func.



MAX-SAT

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

• Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛
• literal: 𝑥𝑖 or 𝑥𝑖
• clause: ∨ of literals

𝐶1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

𝐶2 = (𝑥1 ∨ 𝑥4)

𝐶3 = (𝑥2 ∨ 𝑥3 ∨ 𝑥4)

𝐶4 = (𝑥3)



MAX-SAT

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

• Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛
• literal: 𝑥𝑖 or 𝑥𝑖
• clause: ∨ of literals

𝐶1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

𝐶2 = (𝑥1 ∨ 𝑥4)

𝐶3 = (𝑥2 ∨ 𝑥3 ∨ 𝑥4)

𝐶4 = (𝑥3)

MAX-SAT is NP-hard, even MAX-E2SAT is NP-hard!
(Recall 2SAT is in P, and 3SAT is NP-hard.)



Random Solution for MAX-SAT

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.
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number of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.
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Pr clause 𝐶 is satisfied = 1 − 2−𝑘 ≥
1

2
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Random Solution for MAX-SAT

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.

A clause 𝐶 = (𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑘) where each 𝑙𝑗 ∈ {𝑥𝑖 , 𝑥𝑖}

Pr clause 𝐶 is satisfied = 1 − 2−𝑘 ≥
1

2

𝔼 # of satisfied clauses ≥
𝑚

2
≥
1

2
⋅ OPT

Does this imply a
(1/2)-approx. alg.
for MAX-SAT?



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Let 𝑊 denote # of satisfied clauses. 𝔼 𝑊 ≥ OPT/2.
For 𝑖 = 1 to 𝑛:

If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.
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If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.

𝔼[𝑊]

𝔼[𝑊|(0)] 𝔼[𝑊|(1)]

𝔼[𝑊|(0,0)] 𝔼[𝑊|(0,1)]

𝔼[𝑊|(𝑎1,⋯ , 𝑎𝑛)]



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Let 𝑊 denote # of satisfied clauses. 𝔼 𝑊 ≥ OPT/2.
For 𝑖 = 1 to 𝑛:

If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1 = 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ⋅ ( Τ1 2) +

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false ⋅ ( Τ1 2)

𝔼[𝑊]

𝔼[𝑊|(0)] 𝔼[𝑊|(1)]

𝔼[𝑊|(0,0)] 𝔼[𝑊|(0,1)]

𝔼[𝑊|(𝑎1,⋯ , 𝑎𝑛)]



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Let 𝑊 denote # of satisfied clauses. 𝔼 𝑊 ≥ OPT/2.
For 𝑖 = 1 to 𝑛:

If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1 = 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ⋅ ( Τ1 2) +

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false ⋅ ( Τ1 2)

𝔼[𝑊]

𝔼[𝑊|(0)] 𝔼[𝑊|(1)]

𝔼[𝑊|(0,0)] 𝔼[𝑊|(0,1)]

𝔼[𝑊|(𝑎1,⋯ , 𝑎𝑛)]

max{𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, true) , 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, false) } ≥ 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1)



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Let 𝑊 denote # of satisfied clauses. 𝔼 𝑊 ≥ OPT/2.
For 𝑖 = 1 to 𝑛:

If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1 = 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ⋅ ( Τ1 2) +

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false ⋅ ( Τ1 2)

𝔼[𝑊]

𝔼[𝑊|(0)] 𝔼[𝑊|(1)]

𝔼[𝑊|(0,0)] 𝔼[𝑊|(0,1)]

𝔼[𝑊|(𝑎1,⋯ , 𝑎𝑛)]

max{𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, true) , 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, false) } ≥ 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1)

For any partial assignment, 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖) can be computed in poly-time. 



Derandomization via

The Method of Conditional Expectation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Let 𝑊 denote # of satisfied clauses. 𝔼 𝑊 ≥ OPT/2.
For 𝑖 = 1 to 𝑛:

If 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ≥
𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false

𝑎𝑖 = true.
Else

𝑎𝑖 = false.
Return Ԧ𝑎.

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1 = 𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = true ⋅ ( Τ1 2) +

𝔼 𝑊|𝑥1 = 𝑎1, ⋯ , 𝑥𝑖−1 = 𝑎𝑖−1, 𝑥𝑖 = false ⋅ ( Τ1 2)

𝔼[𝑊]

𝔼[𝑊|(0)] 𝔼[𝑊|(1)]

𝔼[𝑊|(0,0)] 𝔼[𝑊|(0,1)]

𝔼[𝑊|(𝑎1,⋯ , 𝑎𝑛)]

max{𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, true) , 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1, false) } ≥ 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖−1)

For any partial assignment, 𝔼 𝑊|(𝑎1, ⋯ , 𝑎𝑖) can be computed in poly-time. 

Poly-time deterministic
(1/2)-approx. algorithm!



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

𝑥𝑖 = 0 means 𝑥𝑖 = false

𝑥𝑖 = 1 means 𝑥𝑖 = true



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

𝑥𝑖 = 0 means 𝑥𝑖 = false

𝑥𝑖 = 1 means 𝑥𝑖 = true

clause:𝐶𝑗 = (𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑘) where 𝑙𝑟 ∈ 𝑥𝑖 , 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑛}



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

𝑥𝑖 = 0 means 𝑥𝑖 = false

𝑥𝑖 = 1 means 𝑥𝑖 = true

clause:𝐶𝑗 = (𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑘) where 𝑙𝑟 ∈ 𝑥𝑖 , 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑛}

𝐶𝑗 is satisfied



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

𝑥𝑖 = 0 means 𝑥𝑖 = false

𝑥𝑖 = 1 means 𝑥𝑖 = true

clause:𝐶𝑗 = (𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑘) where 𝑙𝑟 ∈ 𝑥𝑖 , 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑛}

𝑆𝑗
+: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝑆𝑗
−: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝐶𝑗 is satisfied



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

𝑥𝑖 = 0 means 𝑥𝑖 = false

𝑥𝑖 = 1 means 𝑥𝑖 = true

clause:𝐶𝑗 = (𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑘) where 𝑙𝑟 ∈ 𝑥𝑖 , 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑛}

𝑆𝑗
+: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝑆𝑗
−: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝐶𝑗 is satisfied ෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 1



MAX-SAT as ILP

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

clause: 𝐶1, 𝐶2, ⋯ , 𝐶𝑚 𝑆𝑗
+: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝑆𝑗
−: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

MAX-SAT as ILP:

maximize σ𝑗=1
𝑚 𝑦𝑗

subject to σ
𝑖∈𝑆𝑗

+ 𝑥𝑖 + σ𝑖∈𝑆𝑗
−(1 − 𝑥𝑖) ≥ 𝑦𝑗, 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1}, 1 ≤ 𝑗 ≤ 𝑚



LP Relaxation

Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find assignment Ԧ𝑥 ∈ true, false 𝑛 that maximize

number of satisfied clauses.

Boolean variables: 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ {0,1}

clause: 𝐶1, 𝐶2, ⋯ , 𝐶𝑚 𝑆𝑗
+: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

𝑆𝑗
−: set of 𝑖 such that 𝑥𝑖 is in 𝐶𝑗

LP relaxation of MAX-SAT-ILP:

maximize σ𝑗=1
𝑚 𝑦𝑗

subject to σ
𝑖∈𝑆𝑗

+ 𝑥𝑖 + σ𝑖∈𝑆𝑗
−(1 − 𝑥𝑖) ≥ 𝑦𝑗, 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1},𝑥𝑖 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1},𝑦𝑗 ∈ [0,1], 1 ≤ 𝑗 ≤ 𝑚



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚
Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

Is 𝐒𝐎𝐋 feasible?



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗ ≥ 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗ ≥ 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘

arithmetic-geometric mean inequality:
for 𝑎1, 𝑎2, ⋯ , 𝑎𝑘 ∈ ℝ≥0,

Τ(𝑎1 +⋯+ 𝑎𝑘) 𝑘 ≥ 𝑎1 ×⋯× 𝑎𝑘
1/𝑘



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗ ≥ 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘

≥ 1 − 1 − Τ1 𝑘 𝑘 ⋅ 𝑦𝑗
∗



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗ ≥ 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘

≥ 1 − 1 − Τ1 𝑘 𝑘 ⋅ 𝑦𝑗
∗

𝑓 𝑦𝑗
∗ = 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘

is concave when 𝑦𝑗
∗ ∈ [0,1]



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 = 1 − ෑ
𝑖∈𝑆𝑗

+
1 − 𝑥𝑖

∗ ෑ
𝑖∈𝑆𝑗

−
𝑥𝑖
∗ ≥ 1 − 1 − Τ𝑦𝑗

∗ 𝑘
𝑘

≥ 1 − 1 − Τ1 𝑘 𝑘 ⋅ 𝑦𝑗
∗

≥ (1 − Τ1 𝑒) ⋅ 𝑦𝑗
∗



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 ≥ (1 − Τ1 𝑒) ⋅ 𝑦𝑗
∗



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 ≥ (1 − Τ1 𝑒) ⋅ 𝑦𝑗
∗

𝔼 # clauses satisfied in 𝐒𝐎𝐋 ≥ σ𝑗=1
𝑚 1 −

1

𝑒
⋅ 𝑦𝑗

∗

= 1 −
1

𝑒
⋅ 𝐎𝐏𝐓𝐋𝐏 ≥ 1 −

1

𝑒
⋅ 𝐎𝐏𝐓



Randomized Rounding
MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ {0,1} 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ {0,1} 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

LP relaxation of MAX-SAT-ILP:

max σ𝑗=1
𝑚 𝑦𝑗

s.t. 1 ≤ 𝑗 ≤ 𝑚

𝑥𝑖 ∈ [0,1] 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑗 ∈ [0,1] 1 ≤ 𝑗 ≤ 𝑚

෍

𝑖∈𝑆𝑗
+

𝑥𝑖 + ෍

𝑖∈𝑆𝑗
−

(1 − 𝑥𝑖) ≥ 𝑦𝑗

Optimal integral solution 𝐎𝐏𝐓 Optimal fractional solution 𝐎𝐏𝐓𝐋𝐏:

𝑥∗ ∈ 0,1 𝑛, 𝑦∗ ∈ 0,1 𝑚

Randomly generate integral solution 𝐒𝐎𝐋 from 𝐎𝐏𝐓𝐋𝐏:

𝑥′ ∈ {0,1}𝑛, specifically, 𝑥𝑖
′ = ൝

1 with probability 𝑥𝑖
∗

0 with probability 1 − 𝑥𝑖
∗

Clearly 𝐎𝐏𝐓 ≤ 𝐎𝐏𝐓𝐋𝐏

How good is 𝐒𝐎𝐋?

Pr 𝐶𝑗 satisfied in 𝐒𝐎𝐋 ≥ (1 − Τ1 𝑒) ⋅ 𝑦𝑗
∗

𝔼 # clauses satisfied in 𝐒𝐎𝐋 ≥ σ𝑗=1
𝑚 1 −

1

𝑒
⋅ 𝑦𝑗

∗

= 1 −
1

𝑒
⋅ 𝐎𝐏𝐓𝐋𝐏 ≥ 1 −

1

𝑒
⋅ 𝐎𝐏𝐓

Derandomize to
get deterministic
(1-1/e)-approx. alg.



Putting two algorithms together
Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Assign each variable with true or false
uniformly and independently at random.

Model problem as an ILP.
Obtain LP relaxation of the ILP.

Get optimal solution 𝑥∗ of the LP.

Randomized rounding 𝑥∗ to 𝑥′ as SOL.
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Good when 𝑘 is large.

Good when 𝑘 is small.



Putting two algorithms together
Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Random assignment:
• 1/2-approximation

• Pr 𝐶𝑗 satisfied = 1 − 2−𝑘

LP relaxation and randomized rounding:
• (1-1/e)-approximation

• Pr 𝐶𝑗 satisfied = 1 − 1 − Τ1 𝑘 𝑘 ⋅ 𝑦𝑗
∗

relax & rounding

rnd assign

average

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

1 − 2−𝑘

1 − 1 − Τ1 𝑘 𝑘



Putting two algorithms together
Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Random assignment:
• 1/2-approximation

• Pr 𝐶𝑗 satisfied = 1 − 2−𝑘

LP relaxation and randomized rounding:
• (1-1/e)-approximation

• Pr 𝐶𝑗 satisfied = 1 − 1 − Τ1 𝑘 𝑘 ⋅ 𝑦𝑗
∗

relax & rounding

rnd assign

average

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

1 − 2−𝑘

1 − 1 − Τ1 𝑘 𝑘

3

4



Putting two algorithms together
Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.
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uniformly and independently at random.
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Obtain LP relaxation of the ILP.

Get optimal solution 𝑥∗ of the LP.

Randomized rounding 𝑥∗ to 𝑥′ as SOL.
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MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies 𝑚1 clauses.
Assume the solution of the LP relaxation & rounding alg. satisfies 𝑚2 clauses.

𝔼 # of satisfied clauses = 𝔼 max{𝑚1, 𝑚2} ≥ 𝔼
𝑚1 +𝑚2

2

Assume clause 𝐶𝑗 has 𝑘𝑗 literals, and 𝑥∗, 𝑦∗ is the opt. sol. of relaxed-ILP

≥ σ𝑗=1
𝑚 1 − 2−𝑘𝑗 + 1 − 1 − Τ1 𝑘𝑗

𝑘𝑗
⋅
𝑦𝑗
∗

2

≥ σ𝑗=1
𝑚 3

4
⋅ 𝑦𝑗

∗ =
3

4
⋅ OPTLP ≥

3

4
⋅ OPT



MAX-SAT
Instance: A set of clauses 𝐶1, 𝐶2, ⋯ , 𝐶𝑚.
MAX-SAT: Find Ԧ𝑥 ∈ true, false 𝑛 that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assign each variable with true or false
uniformly and independently at random.

Model problem as an ILP.
Obtain LP relaxation of the ILP.

Get optimal solution 𝑥∗ of the LP.

Randomized rounding 𝑥∗ to 𝑥′ as SOL.

• A rnd. alg. that satisfies at least Τ3 4 ⋅ OPT clauses in expectation.

• Can derandomize above alg. via the method of conditional expectation.

• The integrality gap of the LP relaxation for MAX-SAT is Τ3 4.

• MAX-3SAT has a Τ7 8 -approx. alg. by semidefinite programming,
and cannot have better approx. alg. in poly-time unless P=NP.

• How about MAX-E3SAT?


