Approximation Algorithms LP Relaxation and Rounding

Advanced Algorithms Nanjing University, Fall 2018

LP: Optimize (minimize/maximize) a *linear* objective function, subject to *linear* equality and *linear* inequality constraints.

LP: Optimize (minimize/maximize) a *linear* objective function, subject to *linear* equality and *linear* inequality constraints.

- A factory produces two types of chocolates *A* and *B*.
- Revenue for *A* is 1 per kg and the revenue for *B* is 6 per kg.
- The demand for A is 200kg per day and the demand for B is 300kg per day.
- The factory can produce at most 400kg each day.
- How to arrange production to maximize revenue?

LP: Optimize (minimize/maximize) a *linear* objective function, subject to *linear* equality and *linear* inequality constraints.

- A factory produces two types of chocolates *A* and *B*.
- Revenue for *A* is 1 per kg and the revenue for *B* is 6 per kg.
- The demand for A is 200kg per day and the demand for B is 300kg per day.
- The factory can produce at most 400kg each day.
- How to arrange production to maximize revenue?

Objective function: max $x_1 + 6x_2$

LP: Optimize (minimize/maximize) a *linear* objective function, subject to *linear* equality and *linear* inequality constraints.

- A factory produces two types of chocolates *A* and *B*.
- Revenue for *A* is 1 per kg and the revenue for *B* is 6 per kg.
- The demand for A is 200kg per day and the demand for B is 300kg per day.
- The factory can produce at most 400kg each day.
- How to arrange production to maximize revenue?

Objective function: max $x_1 + 6x_2$

Objective function: max $x_1 + 6x_2$

Objective function: max $x_1 + 6x_2$

Constraints:

 $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1 \ge 0, x_2 \ge 0$

General form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ minimize $\vec{c}^T \vec{x}$ subject to $\overrightarrow{a_i} \cdot \overrightarrow{x} \ge b_i$ $i \in M$ $\overrightarrow{a_i} \vec{x} = b_i \qquad i \in \overline{M}$ $x_j \ge 0 \qquad j \in N$ $j \in \overline{N}$ x_i free

Objective function: max $x_1 + 6x_2$

Constraints:

 $\begin{array}{l} x_{1} \leq 200 \\ x_{2} \leq 300 \\ x_{1} + x_{2} \leq 400 \\ x_{1} \geq 0, x_{2} \geq 0 \end{array}$

 $\vec{x} = [x_1, x_2]^T$

General form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ $\vec{c}^T \vec{\chi}$ minimize subject to $\overrightarrow{a_i} \cdot \overrightarrow{x} \ge b_i$ $i \in M$ $\overrightarrow{a_i} \vec{x} = b_i \qquad i \in \overline{M}$ $x_j \ge 0 \qquad j \in N$ $j \in \overline{N}$ x_i free

Objective function: max $x_1 + 6x_2$

Constraints:

 $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1 \ge 0, x_2 \ge 0$

 $\vec{x} = [x_1, x_2]^T$ $\vec{c} = [-1, -6]^T$

General form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ minimize $\vec{c}^T \vec{x}$ subject to $\overrightarrow{a_i} \cdot \overrightarrow{x} \ge b_i$ $i \in M$ $\overrightarrow{a_i} \vec{x} = b_i \qquad i \in \overline{M}$ $x_i \ge 0$ $j \in N$ $j \in \overline{N}$ x_i free

Objective function: max $x_1 + 6x_2$

Constraints:

 $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1 \ge 0, x_2 \ge 0$

 $\vec{x} = [x_1, x_2]^T$ $\vec{c} = [-1, -6]^T$ n = 2, m = 3 General form of LP:matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ minimize $\vec{c}^T \vec{x}$ subject to $\vec{a}_i \ \vec{x} \ge b_i$ $i \in M$ $\vec{a}_i \ \vec{x} = b_i$ $i \in M$ $\vec{a}_i \ \vec{x} = b_i$ $i \in M$ $x_j \ge 0$ $j \in N$ x_j free $j \in \overline{N}$

Objective function: max $x_1 + 6x_2$

Constraints:

 $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1 \ge 0, x_2 \ge 0$

 $\vec{x} = [x_1, x_2]^T$ $\vec{c} = [-1, -6]^T$ n = 2, m = 3 $N = \{1, 2\}, M = \{1, 2, 3\}$

General form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ minimize $\vec{c}^T \vec{x}$ subject to $\overrightarrow{a_i} \cdot \overrightarrow{x} \ge b_i$ $i \in M$ $\overrightarrow{a_i} \vec{x} = b_i \qquad i \in \overline{M}$ $x_j \ge 0 \qquad j \in N$ $j \in \overline{N}$ x_i free

Objective function: $\max x_1 + 6x_2$

Constraints: $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$

 $x_1 \ge 0, x_2 \ge 0$

 $\vec{x} = [x_1, x_2]^T \qquad \vec{c} = [-1, -6]^T$ n = 2, m = 3 $N = \{1, 2\}, M = \{1, 2, 3\}$ $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & -1 \end{bmatrix}, \vec{b} = \begin{bmatrix} -200 \\ -300 \\ -400 \end{bmatrix}$

General form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ sets $M \subseteq [m]$ and $N \subseteq [n]$ minimize $\vec{c}^T \vec{x}$ subject to $\overrightarrow{a_i} \cdot \overrightarrow{x} \ge b_i$ $i \in M$ $\overrightarrow{a_i} \vec{x} = b_i \qquad i \in \overline{M}$ $x_j \ge 0 \qquad j \in N$ $j \in \overline{N}$ x_i free

General form of LP:			
matrix	<i>A</i> =	$= \left\{a_{ij}\right\}_{m \times n}$	
sets	M ⊆	$\equiv [m]$ and I	$V \subseteq [n]$
minimiz subject	e to	$\vec{c}^T \vec{x}$ $\vec{a_i} \vec{x} \ge b_i$ $\vec{a_i} \vec{x} = b_i$ $x_j \ge 0$ $x_j \text{ free}$	$i \in M$ $i \in \overline{M}$ $j \in N$ $j \in \overline{N}$

General form of LP:

matrix	<i>A</i> =	$=\left\{a_{ij}\right\}_{m \times n}$	
sets	ΜS	$\equiv [m]$ and N	$V \subseteq [n]$
minimiz subject	e to	$\vec{c}^T \vec{x}$ $\vec{a_i} \vec{x} \ge b_i$ $\vec{a_i} \vec{x} = b_i$ $x_j \ge 0$	$i \in M$ $i \in \overline{M}$ $j \in N$
		x_j free	$j \in \overline{N}$

Canonical form of LP:

	$\vec{x} > 0$	
subject to	$A\vec{x} \ge \vec{b}$	
minimize	$\vec{c}^T \vec{x}$	

General form of LP:

matrix A	$= \left\{a_{ij}\right\}_{m \times n}$	
sets M	$T \subseteq [m]$ and M	$V \subseteq [n]$
minimize subject to	$\vec{c}^T \vec{x}$ $\vec{a_i} \ \vec{x} \ge b_i$ $\vec{a_i} \ \vec{x} = b_i$ $x_j \ge 0$	$i \in M$ $i \in \overline{M}$ $j \in N$
	x_j free	$j \in \overline{N}$

Canonical form of LP:

minimize	$\vec{c}^T \vec{x}$	
subject to	$A\vec{x} \ge \vec{b}$	
	$\vec{x} \ge 0$	

General form of LP:

matrix	$A = \left\{a_{ij}\right\}_{m \times n}$
sets	$M \subseteq [m]$ and $N \subseteq [n]$

minimize	$\vec{c}^T \vec{x}$	
subject to	$\overrightarrow{a_i} \vec{x} \ge b_i$	$i \in M$
	$\overrightarrow{a_i} \vec{x} = b_i$	$i \in \overline{M}$
	$x_j \ge 0$	$j \in N$
	x_j free	$j \in \overline{N}$

Canonical form of LP:

	$\vec{x} \ge 0$	
subject to	$A\vec{x} \ge \vec{b}$	
minimize	$\vec{c}^T \vec{x}$	

$$\overrightarrow{a_i} \ \overrightarrow{x} = b_i \quad \longleftarrow \quad \begin{cases} \overrightarrow{a_i} \ \overrightarrow{x} \ge b_i \\ -\overrightarrow{a_i} \ \overrightarrow{x} \ge -b_i \end{cases}$$

General form of LP:

matrix	$A = \left\{a_{ij}\right\}_{m \times n}$
sets	$M \subseteq [m]$ and $N \subseteq [n]$

minimize	$\vec{c}^T \vec{x}$	
subject to	$\overrightarrow{a_i} \overrightarrow{x} \ge b_i$	$i \in M$
	$\overrightarrow{a_i} \vec{x} = b_i$	$i \in \overline{M}$
	$x_j \ge 0$	$j \in N$
	x_j free	$j \in \overline{N}$

Canonical form of LP:

	$\vec{x} \ge 0$	
subject to	$A\vec{x} \ge \vec{b}$	
minimize	$\vec{c}^T \vec{x}$	

$$\overrightarrow{a_i} \ \overrightarrow{x} = b_i \quad \longleftarrow \quad \begin{cases} \overrightarrow{a_i} \ \overrightarrow{x} \ge b_i \\ -\overrightarrow{a_i} \ \overrightarrow{x} \ge -b_i \end{cases}$$

General form of LP:

matrix	$A = \left\{a_{ij}\right\}_{m \times n}$
sets	$M \subseteq [m]$ and $N \subseteq [n]$

minimize	$\vec{c}^T \vec{x}$	
subject to	$\overrightarrow{a_i} \vec{x} \ge b_i$	$i \in M$
	$\overrightarrow{a_i} \vec{x} = b_i$	$i \in \overline{M}$
	$x_j \ge 0$	$j \in N$
	x _j free	$j \in \overline{N}$

Canonical form of LP:

matrix $A = \{a_{ij}\}_{m \times n}$ vectors \vec{b} and \vec{c}

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

 $\overrightarrow{a_i} \ \overrightarrow{x} = b_i \quad \bigoplus \begin{cases} \overrightarrow{a_i} \ \overrightarrow{x} \ge b_i \\ -\overrightarrow{a_i} \ \overrightarrow{x} \ge -b_i \end{cases} \quad x_j \text{ unconstrained} \quad \bigoplus \begin{cases} x_j^+ \ge 0 \\ x_j^- \ge 0 \\ x_j = x_j^+ - x_j^- \end{cases}$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

minimize $\vec{c}^T \vec{x}$ subject to $A\vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

minimize $\vec{c}^T \vec{x}$ subject to $A\vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: max $x_1 + 6x_2$

Canonical form of LP:

 $\vec{c}^T \vec{x}$ minimize subject to $A\vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Hyperplane:

Subspace of dimension n-1 $\sum_{i=1}^{n} a_{ii} x_i = b_i$

Halfspace: $\sum_{i=1}^{n} a_{ii} x_i \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: $\max x_1 + 6x_2$

Canonical form of LP:

 $\begin{array}{ll} \text{minimize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \\ & \vec{x} \geq 0 \end{array}$

Hyperplane:

Subspace of dimension n - 1 $\sum_{j=1}^{n} a_{ij} x_j = b_i$

Halfspace: $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$

(Convex) Polytope:

Bounded and nonempty intersection of finite number of halfspaces

Objective function: $\max x_1 + 6x_2$

Canonical form of LP:matrix $A = \{a_{ij}\}_{m \times n}$ vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

Canonical form of LP:matrix $A = \{a_{ij}\}_{m \times n}$ vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

Canonical form of LP: matrix $A = \{a_{ij}\}_{m \times n}$ vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A\vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

Canonical form of LP:matrix $A = \{a_{ij}\}_{m \times n}$ vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$

Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

LP is polynomial time solvable, ILP is NP-hard.

Vertex Cover

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Instance of set cover with frequency = 2 for all elements.

Vertex Cover

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

- This problem is NP-hard.
- ln *n*-approx. alg. by greedy set cover.
- 2-approx. alg. by finding *maximal* matching.
- Assuming the *unique game conjecture*, there is no poly-time (2ϵ) -approx. alg.

Vertex Cover as ILP

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.
Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function:

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$

Constraints:

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$

Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$

Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$ Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$ Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A \vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$ Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$

ILP is NP-hard!

Canonical form of ILP:integer matrix $A = \{a_{ij}\}_{m \times n}$ integer vectors \vec{b} and \vec{c} minimize $\vec{c}^T \vec{x}$ subject to $A\vec{x} \ge \vec{b}$ $\vec{x} \ge 0$ $\vec{x} \in \mathbb{Z}^n$

Define a 0-1 variable x_v for each vertex v denoting whether $v \in C$

Objective function: $\min \sum_{v \in V} x_v$

Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$

Define a 0-1 variable x_v for each vertex v denoting whether $v \in G$

Objective function: $\min \sum_{v \in V} x_v$

Constraints: $\sum_{v \in e} x_v \ge 1$, $e \in E$

$$x_v \in \{0,1\}, \quad v \in V$$

 $x_v \in [0,1], \quad v \in V$

LP Relaxation for Vertex Cover

Instance: An undirected simple graph G = (V, E). **Vertex Cover:** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

Define a 0-1 variable
$$x_p$$
 for each vertex v denoting whether $v \in G$

Objective function: $\min \sum_{v \in V} x_v$

Constraints:
$$\sum_{v \in e} x_v \ge 1$$
, $e \in E$
 $x_v \in \{0,1\}, v \in V$
 $x_v \in [0,1], v \in V$

LP is poly-time solvable, so we can solve LP relaxation of vertex cover in poly-time.

VC as ILP:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$

VC as ILP:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1$, $e \in E$ $x_v \in \{0,1\}$, $v \in V$

VC as ILP:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1, e \in E$ $x_v \in \{0,1\}, v \in V$

LP relaxation of VC:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1, e \in E$ $x_v \in [0,1], v \in V$

VC as ILP:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1, e \in E$ $x_v \in \{0,1\}, v \in V$

LP relaxation of VC:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1, e \in E$ $x_v \in [0,1], v \in V$

fractional and optimal solution $\overrightarrow{x^*} \in [0,1]^{|V|}$ (found in poly-time)

VC as ILP:

 $\min \sum_{v \in V} x_v$ s.t. $\sum_{v \in e} x_v \ge 1, e \in E$ $x_v \in \{0,1\}, v \in V$

integral and feasible solution $\overrightarrow{x'} \in [0,1]^{|V|}$ (not too bad, found in poly-time)

LP relaxation of VC:

 $\min \sum_{v \in V} x_{v}$ s.t. $\sum_{v \in e} x_{v} \ge 1, e \in E$ $x_{v} \in [0,1], v \in V$

fractional and optimal solution $\overrightarrow{x^*} \in [0,1]^{|V|}$ (found in poly-time)

$$x'_{\nu} = \begin{cases} 1 & \text{if } x^*_{\nu} \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Instance: An undirected simple graph G = (V, E). **Vertex Cover (VC):** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

$$x'_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

For each $e \in E$, $\sum_{v \in e} x_v^* \ge 1$ implies $\sum_{v \in e} x_v' \ge 1$

Instance: An undirected simple graph G = (V, E). **Vertex Cover (VC):** Find smallest $C \subseteq V$ s.t. $\forall e \in E : e \cap C \neq \emptyset$.

$$x'_{v} = \begin{cases} 1 & \text{if } x^*_{v} \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

For each $e \in E$, $\sum_{v \in e} x_v^* \ge 1$ implies $\sum_{v \in e} x_v' \ge 1$ Thus $\overrightarrow{x'}$ is an integral feasible solution!

$$x'_{\nu} = \begin{cases} 1 & \text{if } x^*_{\nu} \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

$$x'_{\nu} = \begin{cases} 1 & \text{if } x^*_{\nu} \ge 0.5 \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{l} \text{OPT} \ge \text{OPT}_{\text{LP}} = \sum_{\nu \in V} x^*_{\nu} \\ \text{SOL} = \sum_{\nu \in V} x'_{\nu} \le \sum_{\nu \in V} 2 \cdot x^*_{\nu} \le 2 \cdot \text{OPT} \end{cases}$$

$$x'_{v} = \begin{cases} 1 & \text{if } x_{v}^{*} \geq 0.5 \\ 0 & \text{otherwise} \end{cases} \qquad \begin{array}{l} \text{OPT} \geq \text{OPT}_{\text{LP}} = \sum_{v \in V} x_{v}^{*} \\ \text{SOL} = \sum_{v \in V} x_{v}' \leq \sum_{v \in V} 2 \cdot x_{v}^{*} \leq 2 \cdot \text{OPT} \\ \text{This is a poly-time 2-approx. alg. for VC.} \end{cases}$$

- Model the problem as an ILP.
 (Finding OPT of this ILP will be NP-hard.)
- Relaxation: relax the ILP to an LP.
- Find *optimal fraction* solution of the LP, call it **OPT**_{LP}. (Can be done in poly-time via ellipsoid, interior-point, etc.)
- Rounding: round **OPT_{LP}** to a *feasible integral* solution **SOL**. (This is a tricky step: *how* to do rounding?)
- Show SOL is not far from OPT. (Notice OPT_{LP} provides a natural lower bound for OPT.) (Thus usually compare SOL with OPT_{LP}.)

Integrality Gap

Consider a problem that can be modeled as a (minimization) ILP

OPT(I): optimal value (of ILP) on instance I

OPT_{LP}(I): optimal value of LP relaxation on instance I

OPT(I): optimal value (of ILP) on instance *I*

OPT_{LP}(I): optimal value of LP relaxation on instance I

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

OPT(*I*): optimal value (of ILP) on instance *I* **OPT**_{LP}(*I*): optimal value of LP relaxation on instance *I*

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

OPT(*I*): optimal value (of ILP) on instance *I* **OPT**_{LP}(*I*): optimal value of LP relaxation on instance *I*

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

OPT(*I*): optimal value (of ILP) on instance *I* **OPT**_{LP}(*I*): optimal value of LP relaxation on instance *I*

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

OPT(*I*): optimal value (of ILP) on instance *I* **OPT**_{LP}(*I*): optimal value of LP relaxation on instance *I*

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

OPT(*I*): optimal value (of ILP) on instance *I* **OPT**_{LP}(*I*): optimal value of LP relaxation on instance *I*

Integrality Gap =
$$\sup_{I} \frac{OPT(I)}{OPT_{LP}(I)}$$

For the LP relaxation of vertex cover: integrality gap = 2.

Using LP relaxation & rounding, can approx. ratio beat integrality gap?

MAX-SAT

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of *satisfied* clauses.

- Boolean variables: x_1, x_2, \cdots, x_n
- literal: x_i or $\overline{x_i}$
- clause: V of literals

 $C_1 = (x_1 \lor \overline{x_2} \lor \overline{x_3})$ $C_2 = (x_1 \lor x_4)$ $C_3 = (x_2 \lor \overline{x_3} \lor x_4)$ $C_4 = (x_3)$
MAX-SAT

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of *satisfied* clauses.

- Boolean variables: x_1, x_2, \cdots, x_n
- literal: x_i or $\overline{x_i}$
- clause: V of literals

 $C_1 = (x_1 \lor \overline{x_2} \lor \overline{x_3})$ $C_2 = (x_1 \lor x_4)$ $C_3 = (x_2 \lor \overline{x_3} \lor x_4)$ $C_4 = (x_3)$

MAX-SAT is NP-hard, even MAX-E2SAT is NP-hard! (Recall 2SAT is in P, and 3SAT is NP-hard.)

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

A clause $C = (l_1 \lor l_2 \lor \cdots \lor l_k)$ where each $l_i \in \{x_i, \overline{x_i}\}$

 $\Pr[\text{clause } C \text{ is satisfied}] = 1 - 2^{-k} \ge \frac{1}{2}$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

A clause $C = (l_1 \lor l_2 \lor \cdots \lor l_k)$ where each $l_i \in \{x_i, \overline{x_i}\}$

 $\Pr[\text{clause } C \text{ is satisfied}] = 1 - 2^{-k} \ge \frac{1}{2}$

 $\mathbb{E}[\# \text{ of satisfied clauses}] \ge \frac{m}{2} \ge \frac{1}{2} \cdot \text{OPT}$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

A clause $C = (l_1 \lor l_2 \lor \cdots \lor l_k)$ where each $l_i \in \{x_i, \overline{x_i}\}$

 $\Pr[\text{clause } C \text{ is satisfied}] = 1 - 2^{-k} \ge \frac{1}{2}$

 $\mathbb{E}[\# \text{ of satisfied clauses}] \ge \frac{m}{2} \ge \frac{1}{2} \cdot \text{OPT}$

Does this imply a (1/2)-approx. alg. for MAX-SAT?

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to *n*: If $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}.$ Else $a_i = \text{false}.$ Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses.
$$\mathbb{E}[W] \ge OPT/2$$
.
For $i = 1$ to *n*:
If $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$
 $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{false}]$
 $a_i = \text{true}.$
Else
 $a_i = \text{false}.$
Return \vec{a} .

$$\mathbb{E}[W]$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to n: If $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}.$ Else $a_i = \text{false}.$ Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to n: If $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}$. Else $a_i = \text{false}$. Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to n: If $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}$. Else $a_i = \text{false}$. Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to n: If $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}$. Else $a_i = \text{false}$. Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Let *W* denote # of satisfied clauses. $\mathbb{E}[W] \ge OPT/2$. For i = 1 to n: If $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{true}] \ge$ $\mathbb{E}[W|x_1 = a_1, \dots, x_{i-1} = a_{i-1}, x_i = \text{false}]$ $a_i = \text{true}$. Else $a_i = \text{false}$. Return \vec{a} .

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

 $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}] = \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \cdot (1/2) + \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}] \cdot (1/2)$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

 $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}] = \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \cdot (1/2) + \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}] \cdot (1/2)$

 $\max\{\mathbb{E}[W|(a_1, \cdots, a_{i-1}, \operatorname{true})], \mathbb{E}[W|(a_1, \cdots, a_{i-1}, \operatorname{false})]\} \ge \mathbb{E}[W|(a_1, \cdots, a_{i-1})]$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

 $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}] = \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \cdot (1/2) + \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}] \cdot (1/2)$

 $\max\{\mathbb{E}[W|(a_1, \cdots, a_{i-1}, \operatorname{true})], \mathbb{E}[W|(a_1, \cdots, a_{i-1}, \operatorname{false})]\} \ge \mathbb{E}[W|(a_1, \cdots, a_{i-1})]$

For any partial assignment, $\mathbb{E}[W|(a_1, \dots, a_i)]$ can be computed in poly-time.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

 $\mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}] = \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{true}] \cdot (1/2) + \mathbb{E}[W|x_1 = a_1, \cdots, x_{i-1} = a_{i-1}, x_i = \text{false}] \cdot (1/2)$

 $\max\{\mathbb{E}[W|(a_1,\cdots,a_{i-1},\text{true})], \mathbb{E}[W|(a_1,\cdots,a_{i-1},\text{false})]\} \ge \mathbb{E}[W|(a_1,\cdots,a_{i-1})]$

For any partial assignment, $\mathbb{E}[W|(a_1, \dots, a_i)]$ can be computed in poly-time.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables: $x_1, x_2, \dots, x_n \in \{0, 1\}$ $x_i = 0$ means $x_i =$ false $x_i = 1$ means $x_i =$ true

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables: $x_1, x_2, \dots, x_n \in \{0, 1\}$ $x_i = 0$ means $x_i =$ false $x_i = 1$ means $x_i =$ true clause: $C_i = (l_1 \lor l_2 \lor \dots \lor l_k)$ where $l_r \in \{x_i, \overline{x_i} \mid 1 \le i \le n\}$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables: $x_1, x_2, \dots, x_n \in \{0, 1\}$ $x_i = 0$ means $x_i =$ false $x_i = 1$ means $x_i =$ true clause: $C_i = (l_1 \lor l_2 \lor \dots \lor l_k)$ where $l_r \in \{x_i, \overline{x_i} \mid 1 \le i \le n\}$

C_j is satisfied

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables:
$$x_1, x_2, \dots, x_n \in \{0,1\}$$

 $x_i = 0$ means $x_i =$ false
 $x_i = 1$ means $x_i =$ true
clause: $C_j = (l_1 \lor l_2 \lor \dots \lor l_k)$ where $l_r \in \{x_i, \overline{x_i} \mid 1 \le i \le n\}$
 S_j^+ : set of i such that x_i is in C_j
 S_j^- : set of i such that $\overline{x_i}$ is in C_j

 C_j is satisfied

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables:
$$x_1, x_2, \dots, x_n \in \{0,1\}$$

 $x_i = 0$ means $x_i = \text{false}$
 $x_i = 1$ means $x_i = \text{true}$
clause: $C_j = (l_1 \lor l_2 \lor \dots \lor l_k)$ where $l_r \in \{x_i, \overline{x_i} \mid 1 \le i \le n\}$
 S_j^+ : set of i such that x_i is in C_j
 S_j^- : set of i such that $\overline{x_i}$ is in C_j
 C_j is satisfied
$$\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge 1$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables: $x_1, x_2, \cdots, x_n \in \{0, 1\}$

clause: C_1, C_2, \dots, C_m S_j^+ : set of *i* such that x_i is in C_j S_j^- : set of *i* such that $\overline{x_i}$ is in C_j

MAX-SAT as ILP:

maximize $\sum_{j=1}^{m} y_j$

subject to
$$\begin{split} \sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j, & 1 \le j \le m \\ x_i \in \{0, 1\}, & 1 \le i \le n \\ y_i \in \{0, 1\}, & 1 \le j \le m \end{split}$$

LP Relaxation

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find assignment $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize number of satisfied clauses.

Boolean variables: $x_1, x_2, \dots, x_n \in \{0, 1\}$

 S_i^+ : set of *i* such that x_i is in C_i clause: C_1, C_2, \cdots, C_m S_i^- : set of *i* such that $\overline{x_i}$ is in C_i

LP relaxation of MAX-SAT-ILP:

 $\frac{\chi_i}{k}$

Y;

maximize

$$\sum_{j=1}^m y_j$$

subject to

$$\begin{split} \sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j, & 1 \le j \le m \\ x_i \in \{0, 1\}, x_i \in [0, 1], & 1 \le i \le n \\ y_j \in \{0, 1\}, y_j \in [0, 1], & 1 \le j \le m \end{split}$$

MAX-SAT-ILP:	LP relaxation of MAX-SAT-ILP:		
$\max \sum_{j=1}^{m} y_j$	$\max \sum_{j=1}^{m} y_j$		
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ $1 \le j \le m$	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ $1 \le j \le m$		
$x_i \in \{0,1\}$ $1 \le i \le n$ $y_j \in \{0,1\}$ $1 \le j \le m$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal *integral* solution **OPT**

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^{m} y_j$	
s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal *integral* solution **OPT**

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

MAX-SAT-ILP:
max
$$\sum_{j=1}^{m} y_j$$
LP relaxation of MAX-SAT-ILP:
max $\sum_{j=1}^{m} y_j$ s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ $1 \le j \le m$ $x_i \in \{0,1\}$
 $y_j \in \{0,1\}$ $1 \le i \le n$
 $1 \le j \le m$ s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ $1 \le i \le m$ $x_i \in \{0,1\}$
 $y_j \in \{0,1\}$ $1 \le i \le n$
 $1 \le j \le m$ $x_i \in [0,1]$
 $y_j \in [0,1]$ $1 \le i \le n$
 $1 \le j \le m$

Optimal *integral* solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^{m} y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \leq j \leq m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate integral solution **SOL** from **OPT**_{LP}: $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

Is SOL feasible?

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j 1$	$1 \leq j \leq m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\} $ 1	$\leq i \leq n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\} $	$\leq j \leq m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal *integral* solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

$$\vec{x'} \in \{0,1\}^n$$
, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$ How good is SOL?

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^{m} y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j 1 \le j$	$\leq m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$ \begin{array}{c} x_i \in \{0,1\} & 1 \leq i \\ y_j \in \{0,1\} & 1 \leq j \end{array} $	$ \leq n \\ \leq m $	$x_i \in [0,1]$ $y_j \in [0,1]$	$1 \le i \le n$ $1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

 $\Pr[C_j \text{ satisfied in } \mathbf{SOL}] = 1 - \left(\prod_{i \in S_j^+} (1 - x_i^*)\right) \left(\prod_{i \in S_j^-} x_i^*\right)$

How good is **SOL**?

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j 1 \le j \le$	m	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$ \begin{array}{ll} x_i \in \{0,1\} & 1 \leq i \leq \\ y_j \in \{0,1\} & 1 \leq j \leq \\ \end{array} $	n m	$x_i \in [0,1]$ $y_j \in [0,1]$	$1 \le i \le n$ $1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

How good is **SOL**?

$$\Pr[C_j \text{ satisfied in } \mathbf{SOL}] = 1 - \left(\prod_{i \in S_j^+} (1 - x_i^*)\right) \left(\prod_{i \in S_j^-} x_i^*\right) \ge 1 - \left(1 - \frac{y_j^*}{k}\right)^k$$
$$\begin{array}{c} \underbrace{\mathsf{MAX-SAT-ILP:}}{\max \sum_{j=1}^{m} y_{j}} \\ \text{s.t.} & \sum_{i \in S_{j}^{+}} x_{i} + \sum_{i \in S_{j}^{-}} (1 - x_{i}) \geq y_{j} \quad 1 \leq j \leq m \\ & x_{i} \in \{0,1\} \\ & y_{j} \in \{0,1\} \\ & y_{j} \in \{0,1\} \\ & y_{j} \in \{0,1\} \\ & 1 \leq j \leq m \end{array} \\ \begin{array}{c} \text{s.t.} & \sum_{i \in S_{j}^{+}} x_{i} + \sum_{i \in S_{j}^{-}} (1 - x_{i}) \geq y_{j} \quad 1 \leq j \leq m \\ & x_{i} \in [0,1] \\ & y_{j} \in [0,1] \\ & 1 \leq j \leq m \end{array} \\ \begin{array}{c} \text{Optimal integral solution OPT} \\ \text{Optimal integral solution OPT} \\ \text{Clearly OPT } \leq \mathbf{OPT} \\ \text{Randomly generate} \end{array} \\ \begin{array}{c} \text{arithmetic-geometric mean inequality:} \\ \text{for } a_{1}, a_{2}, \cdots, a_{k} \in \mathbb{R}^{\geq 0}, \\ (a_{1} + \cdots + a_{k})/k \geq (a_{1} \times \cdots \times a_{k})^{1/k} \\ \text{With probability } x_{i}^{*} \\ \text{O with probability } 1 - x_{i}^{*} \end{array} \\ \begin{array}{c} \text{How good is SOL?} \\ \text{How good is SOL?} \end{array} \\ \begin{array}{c} \text{How good is SOL?} \end{array} \\ \end{array}$$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ $1 \le j \le n$	ı	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$ $1 \le i \le n$ $y_j \in \{0,1\}$ $1 \le j \le n$	ı	$x_i \in [0,1]$ $y_j \in [0,1]$	$1 \le i \le n$ $1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$ How good is SOL?

$$\Pr[C_{j} \text{ satisfied in } \mathbf{SOL}] = 1 - \left(\prod_{i \in S_{j}^{+}} (1 - x_{i}^{*}) \right) \left(\prod_{i \in S_{j}^{-}} x_{i}^{*} \right) \ge 1 - \left(1 - \frac{y_{j}^{*}}{k} \right)^{k} \ge [1 - (1 - \frac{1}{k})^{k}] \cdot y_{j}^{*}$$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

$$\vec{x'} \in \{0,1\}^n$$
, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$ How good is SOL?
 $\Pr[C_i \text{ satisfied in SOL}] = 1 - \left(\prod (1 - x^*_i) \right) \left(\prod x^*_i \right) > 1 - (1 - y^*_i/k)^k$

$$\Pr[C_{j} \text{ satisfied in } \mathbf{SOL}] = 1 - \left(\prod_{i \in S_{j}^{+}} (1 - x_{i}^{*}) \right) \left(\prod_{i \in S_{j}^{-}} x_{i}^{*} \right) \ge 1 - \left(1 - y_{j}^{*}/k\right)^{k}$$
$$\geq [1 - (1 - 1/k)^{k}] \cdot y_{j}^{*}$$
$$\geq [1 - (1 - 1/k)^{k}] \cdot y_{j}^{*}$$

MAX-SAT-ILP:	LP relaxation of MAX	(-SAT-ILP:
$\max \sum_{j=1}^m y_j$	$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j 1 \le y_j$	$j \le m$ s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1$	$(-x_i) \ge y_j 1 \le j \le m$
$ \begin{array}{ll} x_i \in \{0,1\} & 1 \leq \\ y_j \in \{0,1\} & 1 \leq \\ \end{array} $	$ \begin{array}{c c} i \leq n \\ j \leq m \end{array} \qquad \begin{array}{c c} x_i \in [0,1] \\ y_j \in [0,1] \end{array} $	$1 \le i \le n$ $1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

How good is **SOL**?

$$\Pr[C_{j} \text{ satisfied in } \mathbf{SOL}] = 1 - \left(\prod_{i \in S_{j}^{+}} (1 - x_{i}^{*})\right) \left(\prod_{i \in S_{j}^{-}} x_{i}^{*}\right) \ge 1 - \left(1 - \frac{y_{j}^{*}}{k}\right)^{k}$$
$$\ge [1 - (1 - \frac{1}{k})^{k}] \cdot y_{j}^{*}$$
$$\ge (1 - \frac{1}{e}) \cdot y_{j}^{*}$$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$ 1	$1 \le j \le m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

How good is **SOL**?

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

 $\Pr[C_i \text{ satisfied in } \text{SOL}] \ge (1 - 1/e) \cdot y_i^*$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$	s.t. $\sum_{i \in S_j^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$x_i \in \{0,1\}$	$1 \le i \le n$	$x_i \in [0,1]$	$1 \le i \le n$
$y_j \in \{0,1\}$	$1 \le j \le m$	$y_j \in [0,1]$	$1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \le OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

How good is **SOL**?

 $\Pr[C_j \text{ satisfied in } \mathbf{SOL}] \ge (1 - 1/e) \cdot y_j^*$

 $\mathbb{E}[\text{# clauses satisfied in SOL}] \ge \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) \cdot y_{j}^{*}$ $= \left(1 - \frac{1}{e}\right) \cdot \mathbf{OPT}_{\mathbf{LP}} \ge \left(1 - \frac{1}{e}\right) \cdot \mathbf{OPT}$

MAX-SAT-ILP:		LP relaxation of MAX-SAT-ILP:	
$\max \sum_{j=1}^m y_j$		$\max \sum_{j=1}^m y_j$	
s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j 1$	$\leq j \leq m$	s.t. $\sum_{i \in S_i^+} x_i + \sum_{i \in S_j^-} (1 - x_i) \ge y_j$	$1 \le j \le m$
$ \begin{array}{c} x_i \in \{0,1\} & 1 \\ y_j \in \{0,1\} & 1 \end{array} $	$ \leq i \leq n \\ \leq j \leq m $	$x_i \in [0,1]$ $y_j \in [0,1]$	$1 \le i \le n$ $1 \le j \le m$

Optimal integral solution **OPT**

Clearly $OPT \leq OPT_{LP}$

Optimal *fractional* solution **OPT**_{LP}: $\overrightarrow{x^*} \in [0,1]^n, \overrightarrow{y^*} \in [0,1]^m$

Randomly generate *integral* solution **SOL** from **OPT**_{LP}:

 $\vec{x'} \in \{0,1\}^n$, specifically, $x'_i = \begin{cases} 1 \text{ with probability } x^*_i \\ 0 \text{ with probability } 1 - x^*_i \end{cases}$

 $\Pr[C_j \text{ satisfied in } \mathbf{SOL}] \ge (1 - 1/e) \cdot y_j^*$

 $\mathbb{E}[\text{# clauses satisfied in SOL}] \ge \sum_{j=1}^{m} \left(1 - \frac{1}{e}\right) \cdot y_{j}^{*}$ $= \left(1 - \frac{1}{e}\right) \cdot \mathbf{OPT}_{\mathbf{LP}} \ge \left(1 - \frac{1}{e}\right) \cdot \mathbf{OPT}$

How good is **SOL**?

Derandomize to get deterministic (1-1/e)-approx. alg.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Suppose
$$C_j = (l_1 \lor l_2 \lor \cdots \lor l_k)$$

- Random assignment:
 - 1/2-approximation
 - $\Pr[C_j \text{ satisfied}] = 1 2^{-k}$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Suppose
$$C_j = (l_1 \lor l_2 \lor \cdots \lor l_k)$$

- Random assignment:
 - 1/2-approximation
 - $\Pr[C_j \text{ satisfied}] = 1 2^{-k}$
- LP relaxation and randomized rounding:
 - (1-1/e)-approximation
 - $\Pr[C_j \text{ satisfied}] = [1 (1 1/k)^k] \cdot y_j^*$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Suppose
$$C_j = (l_1 \lor l_2 \lor \cdots \lor l_k)$$

- Random assignment:
 - 1/2-approximation
 - $\Pr[C_i \text{ satisfied}] = 1 2^{-k}$ Good when k is large.
- LP relaxation and randomized rounding:
 - (1-1/e)-approximation
 - $\Pr[C_j \text{ satisfied}] = [1 (1 1/k)^k] \cdot y_j^*$ Good when k is small.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Random assignment:

- 1/2-approximation
- $\Pr[C_j \text{ satisfied}] = 1 2^{-k}$

LP relaxation and randomized rounding:

- (1-1/e)-approximation
- $\Pr[C_j \text{ satisfied}] = [1 (1 1/k)^k] \cdot y_j^*$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Random assignment:

- 1/2-approximation
- $\Pr[C_j \text{ satisfied}] = 1 2^{-k}$

LP relaxation and randomized rounding:

- (1-1/e)-approximation
- $\Pr[C_j \text{ satisfied}] = [1 (1 1/k)^k] \cdot y_j^*$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Model problem as an ILP. Obtain LP relaxation of the ILP. Get optimal solution $\overrightarrow{x^*}$ of the LP. Randomized rounding $\overrightarrow{x^*}$ to $\overrightarrow{x'}$ as SOL.

Run each of the two algorithms once, return better solution.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Model problem as an ILP. Obtain LP relaxation of the ILP. Get optimal solution $\overrightarrow{x^*}$ of the LP. Randomized rounding $\overrightarrow{x^*}$ to $\overrightarrow{x'}$ as SOL.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\text{\# of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true, false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses.

Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\# \text{ of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses.

Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\# \text{ of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$

Assume clause C_j has k_j literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\# \text{ of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$

Assume clause C_i has k_i literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

$$\mathbb{E}[m_2] \ge \sum_{j=1}^m \left(1 - \left(1 - \frac{1}{k_j}\right)^{k_j}\right) \cdot y_j^*$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\text{\# of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$

Assume clause C_j has k_j literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

$$\mathbb{E}[m_2] \ge \sum_{j=1}^m \left(1 - \left(1 - \frac{1}{k_j}\right)^{k_j} \right) \cdot y_j^*$$
$$\mathbb{E}[m_1] = \sum_{j=1}^m (1 - 2^{-k_j}) \ge \sum_{j=1}^m (1 - 2^{-k_j}) \cdot y_j^*$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses.

$$\mathbb{E}[\text{# of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$$
$$\ge \sum_{j=1}^m \left[\left(1 - 2^{-k_j}\right) + \left(1 - \left(1 - 1/k_j\right)^{k_j}\right)\right] \cdot \frac{y_j^*}{2}$$

Assume clause C_j has k_j literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

$$\mathbb{E}[m_2] \ge \sum_{j=1}^m \left(1 - \left(1 - \frac{1}{k_j}\right)^{k_j} \right) \cdot y_j^*$$

$$\mathbb{E}[m_1] = \sum_{j=1}^{k} (1 - 2^{-k_j}) \ge \sum_{j=1}^{k} (1 - 2^{-k_j}) \cdot y_j^*$$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses. Assume clause C_i has k_i literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

 $\mathbb{E}[\# \text{ of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$ $\ge \sum_{j=1}^m \left[\left(1 - 2^{-k_j}\right) + \left(1 - \left(1 - 1/k_j\right)^{k_j}\right)\right] \cdot \frac{y_j^*}{2}$

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true}, \text{false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in \{\text{true, false}\}^n$ that maximize # of satisfied clauses.

Run each of the two algorithms once, return better solution.

Assume the solution of the rnd. assign. alg. satisfies m_1 clauses. Assume the solution of the LP relaxation & rounding alg. satisfies m_2 clauses. Assume clause C_i has k_i literals, and $(\overrightarrow{x^*}, \overrightarrow{y^*})$ is the opt. sol. of relaxed-ILP

 $\mathbb{E}[\text{\# of satisfied clauses}] = \mathbb{E}[\max\{m_1, m_2\}] \ge \mathbb{E}\left[\frac{m_1 + m_2}{2}\right]$ $\ge \sum_{j=1}^m \left[\left(1 - 2^{-k_j}\right) + \left(1 - \left(1 - 1/k_j\right)^{k_j}\right)\right] \cdot \frac{y_j^*}{2}$ $\ge \sum_{j=1}^m \frac{3}{4} \cdot y_j^* = \frac{3}{4} \cdot \text{OPT}_{\text{LP}} \ge \frac{3}{4} \cdot \text{OPT}$

MAX-SAT

Instance: A set of clauses C_1, C_2, \dots, C_m . **MAX-SAT:** Find $\vec{x} \in {\text{true, false}}^n$ that maximize # of satisfied clauses.

Assign each variable with true or false *uniformly* and *independently* at random.

Model problem as an ILP. Obtain LP relaxation of the ILP. Get optimal solution $\overrightarrow{x^*}$ of the LP. Randomized rounding $\overrightarrow{x^*}$ to $\overrightarrow{x'}$ as SOL.

Run each of the two algorithms once, return better solution.

- A rnd. alg. that satisfies at least $(3/4) \cdot OPT$ clauses in expectation.
- Can derandomize above alg. via the method of conditional expectation.
- The integrality gap of the LP relaxation for MAX-SAT is 3/4.
- MAX-3SAT has a (7/8)-approx. alg. by semidefinite programming, and cannot have better approx. alg. in poly-time unless P=NP.
- How about MAX-E3SAT?