Approximation Algorithms Greedy and Local Search

Advanced Algorithms
Nanjing University, Fall 2018

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

- This problem is NP-hard!
- Decision version is one of Karp's 21 NP-complete problems.

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

- This problem is NP-hard!
- Decision version is one of Karp's 21 NP-complete problems.
- Can we find good enough solutions efficiently?

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \emptyset$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
$U=U-S_{i}$.
Return C.

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

OPT (I): value of minimum set cover of instance I
SOL (I) : value of set cover returned by GreedyCover on instance I

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

> GreedyCover:
> Set $C=\emptyset$.
> While $U \neq \emptyset$ do:
> \quad Add i with largest $\left|S_{i} \cap U\right|$ to C. $\quad U=U-S_{i}$.
> Return C.

OPT (I): value of minimum set cover of instance I
SOL (I) : value of set cover returned by GreedyCover on instance I
GreedyCover has approximation ratio α if

$$
\forall \text { instance } I, \quad \frac{\mathrm{SOL}(I)}{\mathrm{OPT}(I)} \leq \alpha
$$

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

> GreedyCover:
> Set $C=\emptyset$
> While $U \neq \emptyset$ do:
> \quad Add i with largest $\left|S_{i} \cap U\right|$ to C. $\quad U=U-S_{i}$.
> Return C.

OPT(I): value of minimum set cover of instance I
SOL(I): value of set cover returned by GreedyCover on instance I
GreedyCover has approximation ratio α if

$$
\forall \text { instance } I, \quad \frac{\mathrm{SOL}(I)}{\mathrm{OPT}(I)} \leq \alpha
$$

For minimization problems, we want $\mathrm{SOL}(I) / \mathrm{OPT}(I) \leq \alpha$ where $\alpha \geq 1$
For maximization problems, we want $\operatorname{SOL}(I) / \mathrm{OPT}(I) \geq \alpha$ where $\alpha \leq 1$

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \varnothing$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
Set $\operatorname{price}(e)=\frac{1}{\left|S_{i} \cap U\right|}$ for all $e \in S_{i} \cap U$.
$U=U-S_{i}$.
Return C.

$$
|C|=\sum_{e \in U} \operatorname{price}(e)
$$

- Initially, there must exist some subset that covers its elements with price at most OPT(I)/n.
- Therefore, price of elements in the first subset covered by GreedyCover is at most OPT(I)/n.
- After k elements in t subsets are covered by GreedyCover, there must exist some subset such that the price of its uncovered elements is at most OPT $\left(I_{t}\right) /(n-k) \leq \mathrm{OPT}(I) /(n-k)$.
- In general, GreedyCover pays at most $\operatorname{OPT}(I) /(n-k+1)$ to cover the $k^{\text {th }}$ chosen element.

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \varnothing$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
Set $\operatorname{price}(e)=\frac{1}{\left|S_{i} \cap U\right|}$ for all $e \in S_{i} \cap U$.
$U=U-S_{i}$.
Return C.

Enumerate e_{k} in the order in which they are covered by GreedyCover:

$$
\operatorname{price}\left(e_{k}\right) \leq \frac{\mathrm{OPT}(I)}{n-k+1}
$$

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \varnothing$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
Set $\operatorname{price}(e)=\frac{1}{\left|S_{i} \cap U\right|}$ for all $e \in S_{i} \cap U$.
$U=U-S_{i}$.
Return C.

Enumerate e_{k} in the order in which they are covered by GreedyCover:

$$
\begin{gathered}
\operatorname{price}\left(e_{k}\right) \leq \frac{\operatorname{OPT}(I)}{n-k+1} \\
|C|=\sum_{e \in U}^{\operatorname{price}(e) \leq \sum_{k=1}^{n} \frac{\operatorname{OPT}(I)}{n-k+1}=H_{n} \cdot \mathrm{OPT}(I)}
\end{gathered}
$$

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \emptyset$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
Set $\operatorname{price}(e)=\frac{1}{\left|S_{i} \cap U\right|}$ for all $e \in S_{i} \cap U$.
$U=U-S_{i}$.
Return C.

- GreedyCover has approximation ratio $H_{n} \approx \ln n+O(1)$.

Set Cover Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

GreedyCover:

Set $C=\emptyset$.
While $U \neq \varnothing$ do:
Add i with largest $\left|S_{i} \cap U\right|$ to C.
Set $\operatorname{price}(e)=\frac{1}{\left|S_{i} \cap U\right|}$ for all $e \in S_{i} \cap U$.
$U=U-S_{i}$.
Return C.

- GreedyCover has approximation ratio $H_{n} \approx \ln n+O(1)$.
- [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1-o(1)) \ln (n)$ approx. algorithm unless NP = quasi-poly-time.
- [Ras, Safra 1997] For some constant c, there is no poly-time $c \ln (n)$ approx. algorithm unless NP = P.
- [Dinur, Steuer 2014] There is no poly-time $(1-o(1)) \ln (n)$ approx. algorithm unless NP = P .

Set Cover

Instance: Given a collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$, find the smallest $C \subseteq[m]$ such that $\cup_{i \in C} S_{i}=U$.

- This problem is NP-hard.
- We have $O(\ln n)$ approx. alg.
- Frequency of an element: \# of subsets the element is in.
- Use f_{I} to denote the frequency of the most frequent element in instance I.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

As a result, $\forall M:|M| \leq \mathrm{OPT}_{\text {primal }}=\min |C|$

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

As a result, $\forall M:|M| \leq$ OPT $_{\text {primal }}=\min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem. Return $C=\left\{i: S_{i} \cap M \neq \emptyset\right\}$.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

As a result, $\forall M:|M| \leq 0 \mathrm{PT}_{\text {primal }}=\min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem.
Return $C=\left\{i: S_{i} \cap M \neq \emptyset\right\}$.

Since M is maximal, returned C must be a cover.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$.
Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

As a result, $\forall M:|M| \leq 0 \mathrm{PT}_{\text {primal }}=\min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem.
Return $C=\left\{i: S_{i} \cap M \neq \emptyset\right\}$.

Since M is maximal, returned C must be a cover.
$|C| \leq f_{I} \cdot|M| \leq f_{I} \cdot$ OPT $_{\text {primal }}$

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$.
Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.

Since every $e \in M$ must consume a subset to cover

$$
\forall C, \forall M:|M| \leq|C|
$$

As a result, $\forall M:|M| \leq O P T_{\text {primal }}=\min |C|$

GreedyMatchingCover:

Find arbitrary maximal M for the dual problem.
Return $C=\left\{i: S_{i} \cap M \neq \varnothing\right\}$.

Since M is maximal, returned C must be a cover.
$|C| \leq f_{I} \cdot|M| \leq f_{I} \cdot$ OPT $_{\text {primal }}$
GreedyMatchingCover has approximation ratio f_{I}.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Set Cover: Find smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

What if the frequency of each element is exactly 2 ?

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Set Cover: Find smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

What if the frequency of each element is exactly 2 ?

incidence graph

Vertex Cover

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Set Cover: Find smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

What if the frequency of each element is exactly 2 ?

incidence graph

Instance: An undirected simple graph $G=(V, E)$.
Vertex Cover: Find smallest $C \subseteq V$ s.t. $\forall e \in E: e \cap C \neq \emptyset$.

Vertex Cover

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$. Set Cover: Find smallest $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.

What if the frequency of each element is exactly 2 ?

Instance: An undirected simple graph $G=(V, E)$.
Vertex Cover: Find smallest $C \subseteq V$ s.t. $\forall e \in E: e \cap C \neq \emptyset$.

- Vertex cover is also NP-hard.
- Decision version is one of Karp's 21 NP-complete problems.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$.
Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.
The frequency of each element is exactly 2
Instance: An undirected simple graph $G=(V, E)$.
Primal: Find $C \subseteq V$ s.t. $\forall e \in E: e \cap C \neq \emptyset$. (Vertex Cover)
Dual: Find $M \subseteq E$ s.t. $\forall v \in V:|v \cap M| \leq 1$. (Matching)

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$.
Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.
The frequency of each element is exactly 2
Instance: An undirected simple graph $G=(V, E)$.
Primal: Find $C \subseteq V$ s.t. $\forall e \in E: e \cap C \neq \emptyset$. (Vertex Cover)

Dual: Find $M \subseteq E$ s.t. $\forall v \in V:|v \cap M| \leq 1$. (Matching)

A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

Find arbitrary maximal matching M of the input graph. Return $C=\{v: v \in V$ and $v \cap M \neq \emptyset\}$.

Instance: A collection of subsets $S_{1}, S_{2}, \cdots, S_{m} \subseteq U$.
Primal: Find $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$.
Dual: Find $M \subseteq U$ such that $\left|S_{i} \cap M\right| \leq 1$ for all $i \in[m]$.
The frequency of each element is exactly 2
Instance: An undirected simple graph $G=(V, E)$.
Primal: Find $C \subseteq V$ s.t. $\forall e \in E: e \cap C \neq \emptyset$. (Vertex Cover)

Dual: Find $M \subseteq E$ s.t. $\forall v \in V:|v \cap M| \leq 1$. (Matching)

A 2-approximation algorithm for the vertex cover problem

GreedyMatchingCover:

Find arbitrary maximal matching M of the input graph. Return $C=\{v: v \in V$ and $v \cap M \neq \emptyset\}$.

- There is no poly-time <1.36-approx. alg. unless $P=N P$.
- Assuming the unique game conjecture, there is no poly-time (2-ह)-approx. alg.

Scheduling

m identical machines

Scheduling

m identical machines

n jobs

\square
\square
\square

\square
processing time p_{j}
3

1
4
2
6
3
5
2
4
3

Scheduling

m machines

n jobs each with processing time p_{j}

Scheduling

m machines

n jobs each with processing time p_{j}

Completion time:
(of machine i)
$C_{i}=\sum_{j: \text { jobs assigned to machine } i} p_{j}$

Scheduling

n jobs each with processing time p_{j}

Completion time:
(of machine i)
$C_{i}=\sum_{j: \text { jobs assigned to machine } i} p_{j}$

Makespan: $\quad C_{\max }=\max _{i} C_{i}$

Instance: n jobs $j=1,2, \cdots, n$ each with processing time $p_{j} \in \mathbb{Z}^{+}$. Problem: Find a schedule assigning n jobs to m identical machines so as the minimize the makespan.

Instance: n jobs $j=1,2, \cdots, n$ each with processing time $p_{j} \in \mathbb{Z}^{+}$. Problem: Find a schedule assigning n jobs to m identical machines so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
machines could be different, jobs could have release-dates/deadlines, etc...

Instance: n jobs $j=1,2, \cdots, n$ each with processing time $p_{j} \in \mathbb{Z}^{+}$. Problem: Find a schedule assigning n jobs to m identical machines so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
machines could be different, jobs could have release-dates/deadlines, etc...

If $m=2$, the scheduling problem can be used to solve the partition problem!
Instance: n positive integers $x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{Z}^{+}$.
Problem: Determine whether there exists a partition of $\{1,2, \cdots, n\}$ into two sets A and B such that $\sum_{i \in A} x_{i}=\sum_{i \in B} x_{i}$.

Instance: n jobs $j=1,2, \cdots, n$ each with processing time $p_{j} \in \mathbb{Z}^{+}$. Problem: Find a schedule assigning n jobs to m identical machines so as the minimize the makespan.

- "minimum makespan on identical machines"
- Scheduling problem has many variations:
machines could be different, jobs could have release-dates/deadlines, etc...

If $m=2$, the scheduling problem can be used to solve the partition problem!
Instance: n positive integers $x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{Z}^{+}$.
Problem: Determine whether there exists a partition of $\{1,2, \cdots, n\}$ into two sets A and B such that $\sum_{i \in A} x_{i}=\sum_{i \in B} x_{i}$.

- The partition problem is one of Karp's 21 NP-complete problems.
- Thus the considered scheduling problem is NP-hard.

Graham's List Algorithm for Scheduling

m identical machines
 n jobs each with processing time p_{j}

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

Graham's List Algorithm for Scheduling

m identical machines n jobs each with processing time p_{j}

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

Graham's List Algorithm for Scheduling

m identical machines

n jobs each with processing time p_{j}

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

Graham's List Algorithm for Scheduling

m identical machines

n jobs each with processing time p_{j}

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

Graham's List Algorithm for Scheduling

m identical machines
 n jobs each with processing time p_{j}

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

Graham's List Algorithm for Scheduling

m identical machines
 n jobs each with processing time p_{j}

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j}
$$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in the schedule, and last job on it is l.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in the schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do: Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in the schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$p_{l} \leq \max _{j} p_{j} \leq$ OPT

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in the schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$p_{l} \leq \max _{j} p_{j} \leq$ OPT

$$
C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}
$$

since machine k is least loaded when scheduling job l

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

This algorithm finishes within poly-time.
What about the approximation ratio?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in the schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2 \cdot$ OPT
$p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT}$

$$
C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}
$$

since machine k is least loaded when scheduling job l

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Algorithm List finishes within poly-time.
Algorithm List has approximation ratio 2.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2 \cdot$ OPT
$p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Algorithm List finishes within poly-time.
Algorithm List has approximation ratio 2.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2 \cdot$ OPT

$$
\begin{aligned}
p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad \sigma_{k} \quad p_{l} & \leq \frac{1}{m \sum_{j \neq l} p_{j}} \leq \frac{1}{m \sum_{j} p_{j}} \leq \begin{array}{l}
\text { OPT } \\
C_{k}-p_{l}
\end{array} \leq \frac{1}{m} \sum_{j \neq l} p_{j}
\end{aligned}
$$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Algorithm List finishes within poly-time.
AIgoritimitist has approsimationtatio 2.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2 \quad$ OPT $\leq\left(2-\frac{1}{m}\right) \cdot$ OPT $p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad G_{k} \quad p_{l}=\frac{1}{m \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} P_{j}=\text { OPT }}$

$$
C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}-\frac{p_{l}}{m}
$$

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Algorithm List finishes within poly-time.
AIgoritimitist has approsimationtatio 2.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2$ OPT $\leq\left(2-\frac{1}{m}\right) \cdot$ OPT $p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad G_{k} \quad p_{l}=\frac{1}{m \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}=\text { OPT }}$

$$
C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}-\frac{p_{l}}{m}
$$

Algorithm List has approximation ratio $2-1 / m$.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Algorithm List finishes within poly-time.
AIgoritimitist has approsimationtatio 2.

$$
\begin{gathered}
\text { Makespan } C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq 2 \text { OPT } \leq\left(2-\frac{1}{m}\right) \cdot \mathrm{OPT} \\
p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad G_{k} \quad p_{l} \leq \frac{1}{m \sum_{j \neq l} P_{j} \leq \frac{1}{m} \sum_{j} P_{j} \leq \mathrm{OPT}} \\
C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}-\frac{p_{l}}{m}
\end{gathered}
$$

Algorithm List has approximation ratio $2-1 / m$.
This bound is tight in the worst case. [Almost tight example: m^{2} unit jobs followed by a length m job. List generates makespan of $2 m$ while $\mathrm{OPT}=m+1$.]

Local Search for Scheduling

Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution, until no further improvement can be made (local optimum)

Local Search for Scheduling

Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution, until no further improvement can be made (local optimum)

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.

Local Search for Scheduling

Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution, until no further improvement can be made (local optimum)

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.

Local Search for Scheduling

Start with an arbitrary solution:

Keep making improvements by locally adjusting the solution, until no further improvement can be made (local optimum)

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$
\mathrm{OPT} \geq \max _{j} p_{j}
$$

$$
m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$
\mathrm{OPT} \geq \max _{j} p_{j}
$$

$$
m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in final schedule, and last job on it is l.

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$
\mathrm{OPT} \geq \max _{j} p_{j}
$$

$$
m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$p_{l} \leq \max _{j} p_{j} \leq$ OPT

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm?

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}-\frac{p_{l}}{m}$

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
This algorithm finishes within poly-time. (No job is transferred twice!)
The approximation ratio of this algorithm? $(2-1 / m)$

$$
\mathrm{OPT} \geq \max _{j} p_{j} \quad m \cdot \mathrm{OPT} \geq \sum_{j} p_{j}
$$

Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq\left(2-\frac{1}{m}\right) \cdot$ OPT
$p_{l} \leq \max _{j} p_{j} \leq \mathrm{OPT} \quad C_{k}-p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}=\frac{1}{m} \sum_{j} p_{j}-\frac{p_{l}}{m}$

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier: Transfer job l to earliest such i.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
LocalSearch finds a schedule with makespan $C_{\text {max }} \leq\left(2-\frac{1}{m}\right) \cdot$ OPT

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
LocalSearch finds a schedule with makespan $C_{\text {max }} \leq\left(2-\frac{1}{m}\right) \cdot$ OPT

List (Graham 1966):
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
The schedule returned by List must be a local optimum!

LocalSearch:

Start with an arbitrary schedule.
Repeat until no job can be reassigned (i.e., local optimum reached):
Let l be a job that finished last.
If exists machine i s.t. assigning job l to i allows l finish earlier:
Transfer job l to earliest such i.
LocalSearch finds a schedule with makespan $C_{\text {max }} \leq\left(2-\frac{1}{m}\right) \cdot$ OPT

List (Graham 1966):
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
The schedule returned by List must be a local optimum!

$$
\begin{aligned}
& \text { List will find a schedule with makespan } \\
& \qquad C_{\max } \leq\left(2-\frac{1}{m}\right) \cdot \mathrm{OPT}
\end{aligned}
$$

m identical machines

List (Graham 1966):
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
m identical machines

n jobs

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

List (Graham 1966):

Longest Processing Time (LPT)

m identical machines

n jobs

List (Graham 1966):
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

\square

\square

\square

\square

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$
W.I.o.g.: • \# of jobs > \# of machines (i.e., $n>m$)

- makespan is achieved by some job bigger than m (i.e., $l>m$)

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$
W.I.o.g.: • \# of jobs > \# of machines (i.e., $n>m$) $\quad p_{m}+p_{m+1} \leq$ OPT

- makespan is achieved by some job bigger than m (i.e., $l>m$)

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT}$
W.I.o.g.: • \# of jobs > \# of machines (i.e., $n>m$) $\quad p_{m}+p_{m+1} \leq$ OPT

- makespan is achieved by some job bigger than m (i.e., $l>m$) $p_{l} \leq p_{m+1}$

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\text {max }}=C_{k}=\left(C_{k}-p_{l}\right)+p_{l}$
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT} \quad p_{l} \leq p_{m+1} \leq \frac{1}{2}\left(p_{m}+p_{m+1}\right) \leq \frac{\mathrm{OPT}}{2}$
W.I.o.g.: • \# of jobs > \# of machines (i.e., $n>m$) $\quad p_{m}+p_{m+1} \leq$ OPT

- makespan is achieved by some job bigger than m (i.e., $l>m$) $p_{l} \leq p_{m+1}$

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.
This algorithm finishes within poly-time.
The approximation ratio of this algorithm?
Assume machine k finishes last in final schedule, and last job on it is l.
Makespan $C_{\max }=C_{k}=\left(C_{k}-p_{l}\right)+p_{l} \leq \frac{3}{2}$. OPT
$C_{k}-p_{l} \leq \frac{1}{m} \sum_{j} p_{j} \leq \mathrm{OPT} \quad p_{l} \leq p_{m+1} \leq \frac{1}{2}\left(p_{m}+p_{m+1}\right) \leq \frac{\mathrm{OPT}}{2}$
W.I.o.g.: • \# of jobs > \# of machines (i.e., $n>m$) $\quad p_{m}+p_{m+1} \leq$ OPT

- makespan is achieved by some job bigger than m (i.e., $l>m$) $p_{l} \leq p_{m+1}$

Otherwise, LPT returns an optimal solution already!

LongestProcessingTime (LPT):

Sort jobs so that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$.
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

- We have shown LPT has approximation ratio (at most) 3/2.
- By a more careful analysis, it can be shown LPT is actually a $4 / 3$ approximation algorithm.
- The problem of "minimum makespan on identical machines" has a PTAS (Polynomial Time Approximation Scheme). $\forall \epsilon>0$, ヨpoly-time $(1+\epsilon)$-approx. alg. for the problem

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines
Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines
Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines

Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

Online Scheduling

m identical machines
Jobs arrive (revealed) one-by-one

Schedule decision must be made once a job arrives, without seeing jobs in the future.

List (Graham 1966):
For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

Online Scheduling

m identical machines

Schedule decision must be made once a job arrives, without seeing jobs in the future.

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

LPT is not an online alg. for scheduling.

Competitive Analysis

The competitive ratio of an online algorithm \mathcal{A} is α if:
For every possible input sequence I of the considered problem:
$\frac{\text { solution value returned by online alg. } \mathcal{A} \text { on } I}{\text { solution value returned by optimal offline alg. on } I} \leq \alpha$

Competitive Analysis

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

The competitive ratio of an online algorithm \mathcal{A} is α if:
For every possible input sequence I of the considered problem:
$\frac{\text { solution value returned by online alg. } \mathcal{A} \text { on } I}{\text { solution value returned by optimal offline alg. on } I} \leq \alpha$

Competitive Analysis

List (Graham 1966):

For each job $j=1,2, \cdots, n$ do:
Assign job j to a currently least loaded machine.

The competitive ratio of an online algorithm \mathcal{A} is α if:
For every possible input sequence I of the considered problem:
$\frac{\text { solution value returned by online alg. } \mathcal{A} \text { on } I}{\text { solution value returned by optimal offline alg. on } I} \leq \alpha$

List is a 2-competitive online algorithm

