Advanced Algorithms

南京大学
尹一通

Constraint Satisfaction Problem (CSP)

- variables: $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- each variable ranges over a finite domain Ω
- an assignment $\sigma \in \Omega^{X}$ assigns each variable a value in Ω
- constraints: $\quad C_{1}, C_{2}, \ldots, C_{m}$
- each constraint C_{i} is a Boolean function

$$
C_{i}: \Omega^{S_{i}} \rightarrow\{\text { true, false }\}
$$

defined on a subset of variables $S_{i} \subseteq X$

- a constraint C_{i} is satisfied by an assignment $\sigma \in \Omega^{X}$ if

$$
C_{i}\left(\sigma_{S_{i}}\right)=\text { true }
$$

Constraint Satisfaction Problem (CSP)

- variables: $x_{1}, x_{2}, \ldots, x_{n} \in \Omega$
- constraints: $\quad C_{1}, C_{2}, \ldots, C_{m}$

$$
C_{i}: \Omega^{S_{i}} \rightarrow\{\text { true }, \text { false }\}
$$

Examples: satisfiability, optimization, counting, ...

- graph cut: $\Omega=\{0,1\}$, constraints: $x_{u} \neq x_{v}$ for each edge $u v$
- k-coloring: $\Omega=[k]$, constraints: $x_{u} \neq x_{v}$ for each edge $u v$
- matching/cover: $\Omega=\{0,1\}$, constraints:

$$
\sum_{j \in S_{i}} x_{j} \leq 1 \text { (matching) or } \sum_{j \in S_{i}} x_{j} \geq 1 \text { (cover) }
$$

- SAT: $\Omega=\{$ true, false $\}$, constraints are clauses

Algorithmic Problems for CSP

CSP	Satisfiability	Optimization	Counting
2SAT	\mathbf{P}	$\mathbf{N P}$-hard	\#P-complete
3SAT	NP-complete	$\mathbf{N P}$-hard	\#P-complete
matching	perfect matching \mathbf{P}	max matching \mathbf{P}	\#P-complete
cut (2-coloring)	bipartite test \mathbf{P}	max-cut $\mathbf{N P}-h a r d$	$\mathbf{F P}$ (poly-time)
3-coloring	$\mathbf{N P - c o m p l e t e ~}$	max-3-cut NP-hard	\#P-complete

Algorithmic Problems for CSP

Given a CSP instance:

- satisfiability: determine whether \exists an assignment satisfying all constraints
- search: return a satisfying assignment
- optimization: find an assignment satisfying as many constraints as possible
- refutation (dual): find a "proof" of "no assignment can satisfy $>m^{*}$ constraints" for m^{*} as small as possible
- counting: estimate the number of satisfying assignments
- sampling: random sample a satisfying assignments
- inference: calculate the possibility of a variable being assigned certain value

k-SAT

Instance: a k-CNF formula ϕ.
Determine whether ϕ is satisfiable.
(\exists a satisfying assignment σ s.t. $\phi(\sigma)=$ true)
CNF (Conjunctive Normal Form):

$$
\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{4} \vee x_{5}\right)
$$

k-SAT

Instance: a k-CNF formula ϕ.
Determine whether ϕ is satisfiable.
(\exists a satisfying assignment σ s.t. $\phi(\sigma)=$ true)
CNF (Conjunctive Normal Form):

- n Boolean variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{$ true, false $\}$
- m clauses: $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$
- each clause is in the form $C_{i}=\ell_{i_{1}} \vee \ell_{i_{2}} \vee \cdots \vee \ell_{i_{k_{i}}}$
- each literal $\ell_{i_{j}} \in\left\{x_{s}, \neg x_{s}\right\}$ for some $s \in\{1,2, \ldots, n\}$ k-CNF: (exact-k-CNF)
- each clause contains exactly k variables

k-SAT

Instance: a k-CNF formula ϕ.

Determine whether ϕ is satisfiable.

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

random $k-C N F$ formula with $m=\alpha n$ clauses
phase transition of satisfiability for random CSP:

[Ding, Sly, Sun, STOC'15]
[Krz̧akała, Montanari, Ricci-
Tersenghi, Semerjian, Zdeborová, PNAS'07]
[Achlioptas, Naor, Peres, Nature'05]

k-SAT

Instance: a k-CNF formula ϕ.
Determine whether ϕ is satisfiable.

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

k-CNF: (exact-k-CNF)

- each clause contains exactly k variables
degree d :
(shares variables)
- each clause intersects with $\leq d$ other clauses

Theorem: $d \leq 2^{k-2} \leadsto \phi$ is always satisfiable

The Lovász Local Lemma

$\phi:$ a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:
Theorem: $d \leq 2^{k-2} \square \phi$ is always satisfiable Algorithmic LLL for k-SAT:

Theorem (Moser 2009): \exists constant $c>0$
$d \leq 2^{k-c} \square$ satisfying assignment can be found in time $\mathrm{O}(n+k m)$ w.h.p.

The Probabilistic Method

ϕ : a k-CNF formula of degree d

Theorem: $d \leq 2^{k-2} \square \phi$ is always satisfiable

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

NaïveRandomGuess(ϕ)

sample a uniform random assignment

$$
X_{1}, X_{2}, \ldots, X_{n} \in\{\text { true, false }\} ;
$$

The
Probabilistic $\operatorname{Pr}[\phi(\boldsymbol{X})=$ true $]>0$ Method:

The Probabilistic Method

$\phi:$ a k-CNF formula of degree d

Theorem: $d \leq 2^{k-2} \square \phi$ is always satisfiable

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

sample a uniform random assignment

$$
X_{1}, X_{2}, \ldots, X_{n} \in\{\text { true, false }\} ;
$$

bad event A_{i} : clause C_{i} is unsatisfied

The Probabilistic
Method:

The Lovász Sieve

m bad event: $A_{1}, A_{2}, \ldots, A_{m}$

$$
\begin{equation*}
\text { Goal: } \quad \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0 \tag{*}
\end{equation*}
$$

- union bound: $\sum_{i=1}^{m} \operatorname{Pr}\left[A_{i}\right]<1 \quad \rightarrow(\star)$
- principle of inclusion exclusion (PIE):

$$
\sum_{\substack{s \in \mid=m p \\ s \neq 0}}(-1)^{|S|-1} \operatorname{Pr}\left[\bigwedge_{i \in S} A_{i}\right]<1
$$

- LLL: every A_{i} is independent of all but $\leq d$ other bad events
(degree $\leq d$)
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{4 d} \quad \square$
m bad event: $A_{1}, A_{2}, \ldots, A_{m}$
every A_{i} is independent of all but $\leq d$ other bad events
Lovász Local Lemma (Erdos-Lovász 1975):

$$
\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{4 d} \quad \measuredangle \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0
$$

Example:

dependency graph
(max degree d)
$A_{1}\left(X_{1}, X_{4}\right)$
$A_{2}\left(X_{1}, X_{2}\right)$
$A_{3}\left(X_{2}, X_{3}\right)$
$A_{4}\left(X_{4}\right)$
$A_{5}\left(X_{3}\right)$
are mutually independent
m bad event: $A_{1}, A_{2}, \ldots, A_{m}$
every A_{i} is independent of all but $\leq d$ other bad events
Lovász Local Lemma (Lovász 1977):
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{\mathrm{e}(d+1)} \leftrightharpoons \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0$

$$
\leadsto \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=\frac{1}{d+1}
$$

Lovász Local Lemma (asymmetric version):

$$
\begin{aligned}
& \exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in[0,1) \\
& \forall i: \operatorname{Pr}\left[A_{i}\right] \leq \alpha_{i} \prod_{j \sim i}\left(1-\alpha_{j}\right) \\
& \hline
\end{aligned}
$$

$j \sim i: A_{i}$ and A_{j} are adjacent in the dependency graph
m bad event: $A_{1}, A_{2}, \ldots, A_{m}$
every A_{i} is independent of all but $\leq d$ other bad events
Lovász Local Lemma (Erdos-Lovász 1975):

$$
\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{4 d} \quad \measuredangle \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0
$$

$$
\square \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=\frac{1}{2 d}
$$

Lovász Local Lemma (asymmetric version):

$$
\begin{aligned}
& \exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in[0,1) \\
& \forall i: \operatorname{Pr}\left[A_{i}\right] \leq \alpha_{i} \prod_{j \sim i}\left(1-\alpha_{j}\right) \\
& \hline
\end{aligned}
$$

$j \sim i: A_{i}$ and A_{j} are adjacent in the dependency graph

The Lovász Local Lemma

$\phi:$ a k-CNF formula of degree d

Theorem: $d \leq 2^{k-2} \square \phi$ is always satisfiable

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

sample a uniform rahdom assignment

$$
X_{1}, X_{2}, \ldots, X_{n} \in\{\text { true }, \text { false }\}
$$

bad event A_{i} : clause C_{i} is unsatisfied

$$
\begin{aligned}
\forall i: \quad \operatorname{Pr} & {\left.\left[A_{i}\right]=2^{-k} \leq \frac{1}{4 d} \quad \boxed{L L}\right\rangle } \\
(k-\mathrm{CNF}) & \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0 \\
& (\phi \text { is satisfiable })
\end{aligned}
$$

Algorithmic LLL

$\phi:$ a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:
Theorem: $d \leq 2^{k-2} \leadsto \phi$ is always satisfiable

Algorithmic LLL for k-SAT:
Theorem (Moser 2009): \exists constant $c>0$
$d \leq 2^{k-c} \square$ satisfying assignment can be found in time $\mathrm{O}(n+k m)$ w.h.p.

Moser's Algorithm

$\phi:$ a k-CNF formula of degree d

```
Solve(\phi)
sample a uniform random
    assignment }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{\prime}
while }\exists\mathrm{ unsatisfied clause C
    Fix(C);
```


Fix(C)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C $\mathbf{F i x}(D)$; (including C itself)
ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
\quad assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
\quad Fix $(C) ;$

$\operatorname{Fix}(C)$
resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
\quad Fix (D);

- terminate \Rightarrow successfully return a satisfying solution
- top-level: $\mathbf{F i x}(C)$ returned $\Rightarrow C$ remains satisfied

- T: total \# of calls to $\operatorname{Fix}(C)$ (including both top-level and recursive calls)
- total cost: $n+k T$ (total \# of random bits)

$\phi:$ a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
\quad assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
\quad Fix $(C) ;$

Fix(C)

resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
Fix(D);
$n+k T$ random bits

$\leq m$ recursive trees

T nodes in total

Observation:
$\operatorname{Fix}(C)$ is called
assignment of C is uniquely determined
ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
\quad assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
\quad Fix $(C) ;$

Fix (C)

resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
Fix(D);
$n+k T$ random bits
encode 1-1 mapping Enc_{ϕ}

$\leq m$ recursive trees

T nodes in total

represented by succinct representation:

$$
\leq m \log m+T\left(\log _{2} d+\mathrm{O}(1)\right) \text { bits }
$$

ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
Fix (C); ${ }^{\text {lexicographic order }}$

Fixx (C)
resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
\quad Fixx (D);

$n+k T$ random bits
encode 1-1 mapping $\mathrm{Enc}_{\boldsymbol{\phi}}$

$\leq m$ recursive trees

T nodes in total

+ final assignment $x_{1}, x_{2}, \ldots, x_{n}$
represented by succinct representation:

$$
\leq m+T\left(\log _{2} d+\mathrm{O}(1)\right) \text { bits }
$$

- an m-bit vector to indicate the root nodes
- $\mathrm{O}(1)$ bits to record the stack operation for each recursive call
ϕ : a k-CNF formula of degree d with m clauses on n variables

$\operatorname{Fix}(C)$
resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
$\quad \operatorname{Fix}(D) ;$

Fix(D);
$n+k T$ random bits

encode 1-1 mapping Enc_{ϕ}

Incompressibility Theorem (Kolmogorov):
N uniform random bits cannot be encoded to less than $N-l$ bits with probability at least 1-O(2-l).

$$
\begin{gathered}
\leq m+T\left(\log _{2} d+\mathrm{O}(1)\right) \text { bits } \quad+\quad n \text { bits } \\
\text { w.h.p.: } \quad n+k T-\log _{2} n \leq m+T\left(\log _{2} d+O(1)\right)+n \\
\Leftrightarrow\left(k-\log _{2} d-O(1)\right) T \leq m+\log _{2} n
\end{gathered}
$$

ϕ : a k-CNF formula of degree d with m clauses on n variables

Fix(C)

resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
Fix(D);

- T: total \# of calls to $\mathbb{F i x}(C)$
(including both top-level and recursive calls)
- total cost: $n+k T$

$$
\begin{array}{ll}
\text { w.h.p.: } & \left(k-\log _{2} d-O(1)\right) T \leq m+\log _{2} n \\
& d \leq 2^{k-c} \quad \triangleleft T \leq m+\log _{2} n
\end{array}
$$

satisfying assignment can be found in time $\mathrm{O}(n+k(m+\log n))$ w.h.p.
ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
Fix $(C) ;$ lexicographic order

Fix(C)

resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
Fix(D);

- T: total \# of calls to $\operatorname{Fix}(C)$
(including both top-level and recursive calls)
- total cost: $n+k T$

$$
\text { w.h.p.: } \quad\left(k-\log _{2} d-O(1)\right) T \leq m+\log _{2} n
$$

Theorem (Moser 2009): $\quad \exists$ constant $c>0$
$d<2^{k-c} \quad$ satisfying assignment can be found in time $\mathrm{O}(n+k m)$ w.h.p.
ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
Fix $(C) ;$ lexicographic order

$\operatorname{Fix}(C)$
resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
$\quad \operatorname{Fix}(D) ;$

- T : total \# of calls to $\mathbb{F i x}(C)$ Why should T be finite? (including both top-level and recursive calls)

Incompressibility Theorem (Kolmogorov): Does this hold when N is random? N uniform random bits cannot be encoded to less than $N-l$ bits with probability at least $1-\mathrm{O}\left(2^{-l}\right)$.

Theorem (Moser 2009): \exists constant $c>0$
$d \leq 2^{k-c} \square$ satisfying assignment can be found in time $\mathrm{O}(n+k m)$ w.h.p.

ϕ : a k-CNF formula of degree d with m clauses on n variables

Solve (ϕ)
sample a uniform random
assignment $x_{1}, x_{2}, \ldots, x_{n} ;$
while \exists unsatisfied clause C
Fix (C); lexicographic order

$\operatorname{Fix}(C)$
resample variables in C uniformly at random;
while \exists unsatisfied clause D intersecting C
\quad Fix (D);

- $n+k t$ random bits where $t=2(m+\log n)$ is fixed

- used as the random bits for the algorithm;
- force to terminate the algorithm if used up;

$$
\begin{array}{ll}
\text { w.h.p.: } & \left(k-\log _{2} d-O(1)\right) T \leq m+\log _{2} n \\
& d \leq 2^{k-c} \text { for some } \begin{array}{c}
\text { constant } c
\end{array}
\end{array}
$$

Algorithmic LLL

$\phi:$ a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:
Theorem: $d \leq 2^{k-2} \leadsto \phi$ is always satisfiable

Algorithmic LLL for k-SAT:
Theorem (Moser 2009): \exists constant $c>0$
$d \leq 2^{k-c} \square$ satisfying assignment can be found in time $\mathrm{O}(n+k m)$ w.h.p.

The Lovász Local Lemma

 m bad event: $A_{1}, A_{2}, \ldots, A_{m}$ every A_{i} is independent of all but $\leq d$ other bad eventsLovász Local Lemma (Lovász 1977):

$$
\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{\mathrm{e}(d+1)} \leadsto \operatorname{Pr}\left[\bigwedge_{i=1}^{m} \overline{A_{i}}\right]>0
$$

Lovász Local Lemma (asymmetric version):
$\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in[0,1)$
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \alpha_{i} \prod_{j \sim i}\left(1-\alpha_{j}\right) \quad \operatorname{Pr}\left[\bigwedge_{i=1} \overline{A_{i}}\right]>\prod_{i=1}\left(1-\alpha_{i}\right)$
$j \sim i: A_{i}$ and A_{j} are adjacent in the dependency graph

The Lovász Local Lemma

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \mathrm{vb}\left(A_{i}\right) \cap \mathrm{vb}\left(A_{j}\right) \neq \varnothing\right\}$

Lovász Local Lemma (asymmetric version):

$\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in[0,1)$
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \alpha_{i} \prod_{A_{j} \in \Gamma\left(A_{i}\right)}$

The Lovász Local Lemma

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \mathrm{vb}\left(A_{i}\right) \cap \mathrm{vb}\left(A_{j}\right) \neq \varnothing\right\}$

Moser-Tardos Algorithm

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \operatorname{vbl}\left(A_{i}\right) \cap \operatorname{vbl}\left(A_{j}\right) \neq \varnothing\right\}$

Assumption: The followings can be done efficiently:

- draw an independent sample of a random variable X_{j}.
- check whether a bad event A_{i} occurs on current X_{1}, \ldots, X_{n}.

> Moser-Tardos Algorithm:
> sample all X_{1}, \ldots, X_{n};
> while \exists an occurring bad event A_{i} : resample all $X_{j} \in \operatorname{vbl}\left(A_{i}\right)$;

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \operatorname{vbl}\left(A_{i}\right) \cap \mathrm{vb}\left(A_{j}\right) \neq \varnothing\right\}$

Moser-Tardos Algorithm:
 sample all X_{1}, \ldots, X_{n};
 while \exists an occurring bad event A_{i} : resample all $X_{j} \in \operatorname{vbl}\left(A_{i}\right)$;

Lovász Local Lemma (Moser-Tardos 2010):
$\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in[0,1)$
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \alpha_{i} \prod_{A_{i} \in\left\ulcorner\left(A_{j}\right)\right.}\left(1-\alpha_{j}\right)$
 a satisfying assignment is returned within $\sum_{i=1}^{m} \frac{\alpha_{i}}{1-\alpha_{i}}$ resamples in expectation

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \mathrm{vb}\left(A_{i}\right) \cap \mathrm{vb}\left(A_{j}\right) \neq \varnothing\right\}$

Moser-Tardos Algorithm:
 sample all X_{1}, \ldots, X_{n};
 while \exists an occurring bad event A_{i} : resample all $X_{j} \in \operatorname{vbl}\left(A_{i}\right)$;

Lovász Local Lemma (Moser-Tardos 2010):
$\forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{\mathrm{e}(d+1)}$
where $d \triangleq \max _{i}\left|\Gamma\left(A_{i}\right)\right|$ a satisfying assignment is returned within m / d resamples in expectation

- n mutually independent random variables: X_{1}, \ldots, X_{n}
- m bad events: $A_{1}, A_{2}, \ldots, A_{m}$, determined by X_{1}, \ldots, X_{n}
- $\operatorname{vbl}\left(A_{i}\right)$: set of variables on which A_{i} is defined
- neighborhood: $\Gamma\left(A_{i}\right) \triangleq\left\{A_{j} \mid j \neq i \wedge \mathrm{vb}\left(A_{i}\right) \cap \mathrm{vb}\left(A_{j}\right) \neq \varnothing\right\}$

Moser-Tardos Algorithm:
 sample all X_{1}, \ldots, X_{n};
 while \exists an occurring bad event A_{i} : resample all $X_{j} \in \operatorname{vbl}\left(A_{i}\right)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$
\begin{aligned}
& \forall i: \operatorname{Pr}\left[A_{i}\right] \leq \frac{1}{4 d} \\
& \text { where } d \triangleq \max _{i}\left|\Gamma\left(A_{i}\right)\right|
\end{aligned}
$$ a satisfying assignment is returned within $m /(2 d-1)$ resamples in expectation

k-SAT

$\phi:$ a k-CNF formula of degree d

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

Moser-Tardos Algorithm:

sample a uniform random assignment $x_{1}, x_{2}, \ldots, x_{n} \in\{$ true, false $\}$; while \exists an unsatisfied clause C : resample values of variables in C uniformly at random;
bad event A_{i} : clause C_{i} is unsatisfied

$$
\forall i: \quad \operatorname{Pr}\left[A_{i}\right]=2^{-k} \leq \frac{1}{4 d} \quad \square \quad \begin{aligned}
& \text { a satisfying assignment is } \\
& \text { returned within } m /(2 d-1) \\
& \text { (assuming } \left.d \leq 2^{k-2}\right) \\
& \text { resamples in expectation }
\end{aligned}
$$

k-SAT

$\phi:$ a k-CNF formula of degree d

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

Moser-Tardos Algorithm:

sample a uniform random assignment $x_{1}, x_{2}, \ldots, x_{n} \in\{$ true, false $\}$; while \exists an unsatisfied clause C : resample values of variables in C uniformly at random;

Theorem (Moser-Tardos 2010):
$d \leq 2^{k-2} \square \begin{aligned} & \text { satisfying assignment can be found } \\ & \text { in time } \mathrm{O}(n+k m / d) \text { in expectation }\end{aligned}$

- mutually independent random variables: $\mathscr{X} \triangleq\left\{X_{1}, \ldots, X_{n}\right\}$
- bad events: $\mathscr{A} \triangleq\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$
- $\forall A \in \mathscr{A}, \operatorname{vbl}(A) \subseteq \mathscr{X}$: set of variables determining A
- neighborhood: $\forall A \in \mathscr{A}, \Gamma(A) \triangleq\{B \neq A \mid \operatorname{vbl}(A) \cap \mathrm{vbl}(B) \neq \varnothing\}$

Moser-Tardos Algorithm:
 sample all $X \in \mathscr{X}$;
 while \exists an occurring event $A \in \mathscr{A}$: resample all $X \in \operatorname{vbl}(A)$;

Lovász Local Lemma (Moser-Tardos 2010):
$\exists \alpha: \mathscr{A} \rightarrow[0,1)$
$\forall A \in \mathscr{A}: \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)$ a satisfying assignment is returned within $\sum_{A \in \mathscr{A}} \frac{\alpha_{A}}{1-\alpha_{A}}$ resamples in expectation

Moser-Tardos Algorithm:

sample all $X \in \mathscr{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

$$
\forall A \in \mathscr{A}, \quad N_{A} \triangleq\left|\left\{i \mid \Lambda_{i}=A\right\}\right|
$$

total \# of times that A is resampled

Lovász Local Lemma (Moser-Tardos 2010):
$\exists \alpha: \mathscr{A} \rightarrow[0,1)$
$\forall A \in \mathscr{A}: \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)$
$\forall A \in \mathscr{A}:$
$\mathbb{E}\left[N_{A}\right] \leq \frac{\alpha_{A}}{1-\alpha_{A}}$

Moser-Tardos Algorithm:

sample all $X \in \mathcal{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

Witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_{v} \in \mathcal{A}$, such that siblings have distinct labels.

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- initially, T is a single root with label Λ_{t}
- for $i=t-1, t-2, \ldots, 1$
- if \exists a vertex v in T with label $A_{v} \in \Gamma^{+}\left(\Lambda_{i}\right)$
- add a new child u to the deepest such v and label it with Λ_{i}
- $T(\Lambda, t)$ is the resulting T
inclusive neighborhood: $\quad \Gamma^{+}(A) \triangleq\{B \in \mathscr{A} \mid \operatorname{vbl}(A) \cap \operatorname{vbl}(B) \neq \varnothing\}$
$=\Gamma(A) \cup\{A\}$
dependency graph:

exe-log Λ :

$$
\mathrm{D}, \mathrm{C}, \mathrm{E}, \mathrm{D}, \mathrm{~B}, \mathrm{~A}, \mathrm{C}, \mathrm{~A}, \mathrm{D}, \ldots
$$

$T(\Lambda, 8)$:

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- initially, T is a single root with label Λ_{t}
- for $i=t-1, t-2, \ldots, 1$
- if \exists a vertex v in T with label $A_{v} \in \Gamma^{+}\left(\Lambda_{i}\right)$
- add a new child u to the deepest such v and label it with Λ_{i}
- $T(\Lambda, t)$ is the resulting T
dependency graph:

exe- $\log \Lambda: \quad D, C, E, D, B, A, C, A, D, \ldots$

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :
- initially, T is a single root with label Λ_{t}
- for $i=t-1, t-2, \ldots, 1$
- if \exists a vertex v in T with label $A_{v} \in \Gamma^{+}\left(\Lambda_{i}\right)$
- add a new child u to the deepest such v and label it with Λ_{i}
- $T(\Lambda, t)$ is the resulting T

Moser-Tardos Algorithm:

sample all $X \in \mathscr{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;

execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

Witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_{v} \in \mathcal{A}$, such that siblings have distinct labels.

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- initially, T is a single root with label Λ_{t}
- for $i=t-1, t-2, \ldots, 1$
- if \exists a vertex v in T with label $A_{v} \in \Gamma^{+}\left(\Lambda_{i}\right)$
- add a new child u to the deepest such v and label it with Λ_{i}
- $T(\Lambda, t)$ is the resulting T
$T(\Lambda, s) \neq T(\Lambda, t)$ if $s \neq t \quad \quad \mathcal{T}_{\mathrm{A}}:$ set of all witness trees with root-label A
$\square \mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau]$

Moser-Tardos Algorithm:

sample all $X \in X$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;

execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events
$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- initially, T is a single root with label Λ_{t}
- for $i=t-1, t-2, \ldots, 1$
- if \exists a vertex v in T with label $A_{\nu} \in \Gamma+\left(\Lambda_{i}\right)$
- add a new child u to the deepest such v and label it with Λ_{i}
- $T(\Lambda, t)$ is the resulting T

Lemma 1 For any particular witness tree τ :

$$
\operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \leq \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]
$$

Moser-Tardos Algorithm:

sample all $X \in \mathscr{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$
\operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \leq \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]
$$

$N_{A}=\left\{\left\{i \mid \Lambda_{i}=A\right\} \mid \quad\right.$ total \# of times that A is resampled

$$
\mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \quad \mathcal{T}_{\mathrm{A}}^{\prime}: \begin{gathered}
\text { set of all witness trees } \\
\text { with root-label } A
\end{gathered}
$$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]$

Moser-Tardos Algorithm:

sample all $X \in X$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;

execution $\log \Lambda:$

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

$$
\begin{aligned}
& \text { LLL condition: } \quad \exists \alpha: \mathcal{A} \rightarrow[0,1) \\
& \forall A \in \mathcal{A}: \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)
\end{aligned}
$$

$$
\mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \quad \mathcal{T}_{\mathrm{A}}: \text { set of all witness trees }
$$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]$
(LLL cond.) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}(1-\alpha(B))\right]$

$$
\text { goal: } \leq \frac{\alpha_{A}}{1-\alpha_{A}}
$$

Moser-Tardos Algorithm:

sample all $X \in X$;

while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$
\operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \leq \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]
$$

$X_{i}^{(t)}: t$-th sampling of variable $X_{i} \in \mathcal{X}$ exe- $\log \Lambda: D, C, E, D, B, A, C, A, D, \ldots$

Moser-Tardos Algorithm:

sample all $X \in \mathscr{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda$:

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$
\operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \leq \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]
$$

$N_{A}=\left\{\left\{i \mid \Lambda_{i}=A\right\} \mid \quad\right.$ total \# of times that A is resampled

$$
\mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \quad \mathcal{T}_{\mathrm{A}}^{\prime}: \begin{gathered}
\text { set of all witness trees } \\
\text { with root-label } A
\end{gathered}
$$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]$

Moser-Tardos Algorithm:

sample all $X \in X$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;

execution $\log \Lambda:$

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

$$
\begin{aligned}
& \text { LLL condition: } \quad \exists \alpha: \mathcal{A} \rightarrow[0,1) \\
& \forall A \in \mathcal{A}: \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)
\end{aligned}
$$

$$
\mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \quad \mathcal{T}_{\mathrm{A}}: \text { set of all witness trees }
$$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]$
(LLL cond.) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}(1-\alpha(B))\right]$

$$
\text { goal: } \leq \frac{\alpha_{A}}{1-\alpha_{A}}
$$

grow a random witness tree $T_{A} \in \mathcal{T}_{\mathrm{A}}^{\prime}$:

- initially, T_{A} is a single root with label A
- for $i=1,2, \ldots$
- for every vertex v at depth i (root has depth 1) in T_{A}
- for every $B \in \Gamma^{+}\left(A_{v}\right)$:
- add a new child u to v independently with probability α_{B};
- and label it with B;
- stop if no new child added for an entire level
inclusive neighborhood: $\quad \Gamma^{+}(A) \triangleq\{B \in \mathscr{A} \mid \operatorname{vbl}(A) \cap \operatorname{vbl}(B) \neq \varnothing\}$

$$
=\Gamma(A) \cup\{A\}
$$

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_{\mathrm{A}}^{\prime}$:

$$
\operatorname{Pr}\left[T_{A}=\tau\right]=\frac{1-\alpha_{A}}{\alpha_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}\left(1-\alpha_{B}\right)\right]
$$

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_{\mathrm{A}}^{\prime}$:

$$
\operatorname{Pr}\left[T_{A}=\tau\right]=\frac{1-\alpha_{A}}{\alpha_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}\left(1-\alpha_{B}\right)\right]
$$

$$
\begin{aligned}
& \text { in } \tau: \\
& \operatorname{Pr}\left[T_{A}=\tau\right]=\frac{1}{\alpha_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma_{0}^{+}\left(A_{v}\right)}\left(1-\alpha_{B}\right)\right] \\
&= \frac{1-\alpha_{A}}{\alpha_{A}} \prod_{v \in \tau}\left[\frac{\alpha\left(A_{v}\right)}{1-\alpha\left(A_{v}\right)} \prod_{B \in \Gamma^{+}\left(A_{v}\right)}\left(1-\alpha_{B}\right)\right] \\
&= \frac{1-\alpha_{A}}{\alpha_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}\left(1-\alpha_{B}\right)\right]
\end{aligned}
$$

Moser-Tardos Algorithm:

sample all $X \in \mathcal{X}$;
while \exists an occurring event $A \in \mathscr{A}$:
resample all $X \in \operatorname{vbl}(A)$;
execution $\log \Lambda:$

$$
\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots \in \mathscr{A}
$$

random sequence of resampled events

$$
\begin{aligned}
& \text { LLL condition: } \exists \alpha: \mathcal{A} \rightarrow[0,1) \\
& \forall A \in \mathcal{A}: \quad \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)
\end{aligned}
$$

$$
\mathbf{E}\left[N_{A}\right]=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}[\exists t, T(\Lambda, t)=\tau] \quad \mathcal{T}_{\mathrm{A}}: \text { set of all witness trees }
$$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau} \operatorname{Pr}\left[A_{v}\right]$
(LLL cond.) $\leq \sum_{\tau \in \mathcal{T}_{A}} \prod_{v \in \tau}\left[\alpha\left(A_{v}\right) \prod_{B \in \Gamma\left(A_{v}\right)}(1-\alpha(B))\right]$
(lemma 2) $\leq \frac{\alpha_{A}}{1-\alpha_{A}} \sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}\left[T_{A}=\tau\right] \leq \frac{\alpha_{A}}{1-\alpha_{A}}$

- mutually independent random variables: $\mathscr{X} \triangleq\left\{X_{1}, \ldots, X_{n}\right\}$
- bad events: $\mathscr{A} \triangleq\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$
- $\forall A \in \mathscr{A}, \operatorname{vbl}(A) \subseteq \mathscr{X}$: set of variables determining A
- neighborhood: $\forall A \in \mathscr{A}, \Gamma(A) \triangleq\{B \neq A \mid \operatorname{vbl}(A) \cap \mathrm{vbl}(B) \neq \varnothing\}$

Moser-Tardos Algorithm:
 sample all $X \in \mathscr{X}$;
 while \exists an occurring event $A \in \mathscr{A}$: resample all $X \in \operatorname{vbl}(A)$;

Lovász Local Lemma (Moser-Tardos 2010):
$\exists \alpha: \mathscr{A} \rightarrow[0,1)$
$\forall A \in \mathscr{A}: \operatorname{Pr}[A] \leq \alpha_{A} \prod_{B \in \Gamma(A)}\left(1-\alpha_{B}\right)$ a satisfying assignment is returned within $\sum_{A \in \mathscr{A}} \frac{\alpha_{A}}{1-\alpha_{A}}$ resamples in expectation

