Advanced Algorithms

南京大学
尹一通

Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

- One of Karp's 21 NPC problems.
- Typical Max-CSP.
- Greedy is $1 / 2$-approximate.
- Random selection is $1 / 2$ approximate.
- Local search is $1 / 2$-approximate.

Greedy Algorithm

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

GreedyMaxCut

$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$; initially, $S=T=\varnothing$;
for $i=1,2, \ldots, n$
v_{i} joins one of S, T
to maximize current $E(S, T)$
1/2-approximate

Random Selection

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

RandomSelection

for each $v \in V$
v joins one of S, T uniformly and independently at random;

1/2-approximate

Local Search

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

LocalSearch

Start with an arbitrary bipartition; repeat until nothing changed:
if $\exists v$ flipping side will increase cut v moves to the other side;

1/2-approximate

Proof of Local Search

Given a simple undirected graph $G(V, E)$, for any $v \in V$ define
$\delta(v):=$ number of edges incident to v.
When the algorithm terminates, $\forall v \in S|\delta(v) \cap(S \times S)| \leq|\delta(v) \cap(S \times T)|$

$$
\forall v \in T|\delta(v) \cap(T \times T)| \leq|\delta(v) \cap(S \times T)|
$$

$\Rightarrow \sum_{v \in S}|\delta(v) \cap(S \times S)|+\sum_{v \in T}|\delta(v) \cap(T \times T)| \leq \sum_{v}|\delta(v) \cap(S \times T)|$
$\Rightarrow \sum_{v \in S}|\delta(v) \cap(S \times S)|+\sum_{v \in T}|\delta(v) \cap(T \times T)|+\sum_{v}|\delta(v) \cap(S \times T)| \leq 2 \sum_{v}|\delta(v) \cap(S \times T)|$
$\Rightarrow 2|E| \leq 4|S \times T|$
$\Rightarrow|S \times T| \geq \frac{1}{2}|E|$.

LP for Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

$\max \sum_{u v \in E} y_{u v}$
s.t. $\quad y_{u v} \leq\left|x_{u}-x_{v}\right|, \quad \forall u v \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

LP for Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

LP for Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

$\max \sum_{u v \in E} y_{u v}$
s.t. $\quad y_{u v} \leq y_{u w}+y_{w v}, \quad \forall u, v, w \in V$

$$
\begin{gathered}
y_{u v}+y_{u w}+y_{w v} \leq 2, \quad \forall u, v, w \in V \\
y_{u v} \in\{0,1\}, \quad \forall u, v \in V
\end{gathered}
$$

LP for Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

LP for Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

Quadratic Program for Max-Cut

$\max \sum_{u v \in E} y_{u v}$
s.t. $\quad y_{u v} \leq\left|x_{u}-x_{v}\right|, \quad \forall u v \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

quadratic program:
$\max \sum_{u v \in E} y_{u v}$
s.t. $\quad y_{u v} \leq \frac{1}{2}\left(1-x_{u} x_{v}\right), \quad \forall u v \in E$

$$
x_{v} \in\{-1,1\}, \quad \forall v \in V
$$

Quadratic Program for Max-Cut

$$
\max \sum_{u v \in E} y_{u v}
$$

s.t. $\quad y_{u v} \leq\left|x_{u}-x_{v}\right|, \quad \forall u v \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

strictly quadratic program:

$$
\begin{array}{ll}
\max & \sum_{u v \in E} \frac{1}{2}\left(1-x_{u} x_{v}\right) \\
\text { s.t. } & x_{v}^{2}=1, \quad \forall v \in V
\end{array}
$$

Nonlinear, non-convex!

Relaxation

strictly quadratic program:

$$
\begin{array}{ll}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right) \\
\text { s.t. } & x_{v}^{2}=1, \quad \forall v \in V \\
& x_{v} \in \mathbb{R}, \quad \forall v \in V
\end{array}
$$

relax to vector program: semidefinite program (SDP)

$$
\begin{array}{ll|l}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right) & \begin{array}{l}
\text { inner-products: } \\
\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle=\sum_{i=1}^{n} x_{v}(i) x_{u}(i)
\end{array} \\
\text { s.t. } & \left\langle\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right\rangle=1, \quad \forall v \in V & \\
& \boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V & n=|V|
\end{array}
$$

Positive Semidefiniteness

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite, denoted $A \geqslant 0$, if $\forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x} \geq 0$.

Theorem

For symmetric matrix $A \in \mathbb{R} n \times n$:

$$
A \geqslant 0 \Leftrightarrow \text { all eigenvalues } \lambda(A) \geq 0 \Leftrightarrow \exists B \in \mathbb{R}^{n \times n}, A=B^{\mathrm{T}} B .
$$

Semidefinite Programing (SDP)

$C, A_{1}, \ldots, A_{k} \in \mathbb{R}^{n \times n}, \quad b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{R}:$
maximize $\operatorname{tr}\left(C^{T} Y\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} y_{i j}$
subject to $\quad \operatorname{tr}\left(A_{r}^{T} Y\right) \leq b_{r}, \quad \forall 1 \leq r \leq k$

$$
Y \succeq 0,
$$

symmetric $Y \in \mathbb{R}^{n \times n}$.

Semidefinite Programing (SDP)

$C, A_{1}, \ldots, A_{k} \in \mathbb{R}^{n \times n}, \quad b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{R}:$
maximize $\operatorname{tr}\left(C^{T} Y\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} y_{i j}$
subject to $\quad \operatorname{tr}\left(A_{r}^{T} Y\right) \leq b_{r}, \quad \forall 1 \leq r \leq k$

$$
\begin{array}{ll}
Y \succeq 0, \\
\text { symmetric } & Y \in \mathbb{R}^{n \times n} .
\end{array} \begin{aligned}
& Y=V^{T} V \\
& V \in \mathbb{R}^{n \times n}
\end{aligned}
$$

V 's column vectors: $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n}$

Semidefinite Programing (SDP)

$C, A_{1}, \ldots, A_{k} \in \mathbb{R}^{n \times n}, \quad b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{R}:$
maximize $\operatorname{tr}\left(C^{T} Y\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} y_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle$
subject to

$$
\begin{aligned}
& \operatorname{tr}\left(A_{r}^{T} Y\right) \leq b_{r}, \quad \forall 1 \leq r \leq k \\
& Y \succeq 0, \\
& \text { symmetric } \quad Y \in \mathbb{R}^{n \times n} .
\end{aligned}
$$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(r)}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \leq b_{r}$
V 's column vectors: $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n}$

Semidefinite Programing (SDP)

vector program:
maximize $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle$
subject to

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(r)}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \leq b_{r} \quad \forall 1 \leq r \leq k \\
& \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n}
\end{aligned}
$$

Semidefinite Programing (SDP)

vector program: LP for inner products

Semidefinite Programing (SDP)

vector program: LP for inner products
$\begin{array}{lll}\text { maximize } & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \longleftarrow & \begin{array}{c}\text { linear combinations } \\ \text { of inner products }\end{array} \\ \text { subject to } & \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(r)}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle \leq b_{r} & \forall 1 \leq r \leq k \\ & \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n} & \end{array}$

- SDPs generalize LPs: $v_{i}=\left(x_{i}, 0, \ldots, 0\right)$
- SDPs are subclass of convex programs.
- "Efficiently solvable" by the ellipsoid method: find OPT $\pm \varepsilon$ in time $\operatorname{poly}(n, 1 / \varepsilon)$

SDP Relaxation

Max-Cut: undirected graph $G(V, E), \quad n=|V|$

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right) \\
\text { s.t. } & x_{v}^{2}=1, & \forall v \in V \\
& x_{v} \in \mathbb{R}, & \forall v \in V
\end{array}
$$

semidefinite program (SDP) relaxation:

$$
\begin{array}{ll}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right) \\
\text { s.t. } & \left\langle\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right\rangle=1, \quad \forall v \in V \\
& \boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V
\end{array}
$$

SDP Relaxation

Max-Cut: undirected graph $G(V, E), \quad n=|V|$

$$
\begin{array}{lll}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right) \\
\text { s.t. } & x_{v}^{2}=1, & \forall v \in V \\
& x_{v} \in \mathbb{R}, & \forall v \in V
\end{array}
$$

semidefinite program (SDP) relaxation:

$$
\begin{array}{cl}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right) \\
\text { s.t. } & \left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \\
& \boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V
\end{array}
$$

Rounding

Max-Cut: undirected graph $G(V, E), \quad n=|V|$

$$
\begin{array}{ll}
\max & \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right) \\
\text { s.t. } & x_{v}^{2}=1, \quad \forall v \in V \\
& x_{v} \in \mathbb{R}, \quad \forall v \in V
\end{array}
$$

Goemans-Williamson'95:
SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\quad\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V$

$$
\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V
$$

SDP optimal solution: \boldsymbol{x}_{v}^{*}

Rounding

Max-Cut: undirected graph $G(V, E), \quad n=|V|$
$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$

$$
\begin{array}{lll}
\text { s.t. } & x_{v}^{2}=1, \quad \forall v \in V \\
& x_{v} \in \mathbb{R}, \quad \forall v \in V
\end{array}
$$

Goemans-Williamson'95:

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V$

$$
\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V
$$

SDP optimal solution: \boldsymbol{x}_{v}^{*}
uniform random unit vector

$$
\boldsymbol{u} \in \mathbb{R}^{n}, \quad\|\boldsymbol{u}\|_{2}=1
$$

$$
\hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{u}\right\rangle\right)
$$

Rounding

Max-Cut: undirected graph $G(V, E), \quad n=|V|$
$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$

$$
\begin{array}{lll}
\text { s.t. } & x_{v}^{2}=1, \quad \forall v \in V \\
& x_{v} \in \mathbb{R}, \quad \forall v \in V
\end{array}
$$

Goemans-Williamson'95:

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \quad$ each $r_{i} \sim N(0,1)$ i.i.d.

$$
\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V
$$

SDP optimal solution: \boldsymbol{x}_{v}^{*}
normal distribution

rounding:

random

$$
\boldsymbol{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in \mathbb{R}^{n}
$$

$\hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$
s.t. $\quad x_{v}^{2}=1, \quad \forall v \in V$

$$
x_{v} \in \mathbb{R}, \quad \forall v \in V
$$

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
rounding:

random

$$
\boldsymbol{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in \mathbb{R}^{n}
$$

s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \quad$ each $r_{i} \sim N(0,1)$ i.i.d.

$$
\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V \quad \text { normal distribution }
$$

SDP optimal solution: $\boldsymbol{x}_{v}^{*} \quad \hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\boldsymbol{u}=\frac{\boldsymbol{r}}{\|\boldsymbol{r}\|_{2}}$ is uniform random unit vector
spherically symmetric:

$$
\operatorname{Pr}\left[\left(r_{1}, \ldots, r_{n}\right)\right]=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-r_{i}^{2} / 2}=(2 \pi)^{-d / 2} e^{-\|\boldsymbol{r}\|^{2} / 2}
$$

$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$
s.t. $\quad x_{v}^{2}=1, \quad \forall v \in V$

$$
x_{v} \in \mathbb{R}, \quad \forall v \in V
$$

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \quad$ each $r_{i} \sim N(0,1)$ i.i.d. $\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V \quad$ normal distribution
SDP optimal solution: $\boldsymbol{x}_{v}^{*} \quad \hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\mathbf{E}[$ cut $]=\sum_{u v \in E} \operatorname{Pr}\left[\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{u}^{*} \cdot \boldsymbol{r}\right\rangle\right) \neq \operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*} \cdot \boldsymbol{r}\right\rangle\right)\right]=\sum_{u v \in E} \frac{\theta_{u v}}{\pi}$

$$
\begin{gathered}
\text { where } \theta_{u v}=\angle \boldsymbol{x}_{u}^{*} \boldsymbol{o} \boldsymbol{x}_{v}^{*} \\
\left\|\boldsymbol{x}_{u}^{*}\right\| \cdot\left\|\boldsymbol{x}_{v}^{*}\right\| \cdot \cos \theta_{u v}=\left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle
\end{gathered}
$$

$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$
s.t. $\quad x_{v}^{2}=1, \quad \forall v \in V$

$$
x_{v} \in \mathbb{R}, \quad \forall v \in V
$$

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \quad$ each $r_{i} \sim N(0,1)$ i.i.d. $\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V \quad$ normal distribution
SDP optimal solution: $\boldsymbol{x}_{v}^{*} \quad \hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\mathbf{E}[$ cut $]=\sum_{u v \in E} \operatorname{Pr}\left[\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{u}^{*} \cdot \boldsymbol{r}\right\rangle\right) \neq \operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*} \cdot \boldsymbol{r}\right\rangle\right)\right]=\sum_{u v \in E} \frac{\theta_{u v}}{\pi}$

$$
=\sum_{u v \in E} \frac{\arccos \left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle}{\pi} \quad \begin{array}{ll}
\text { where } \theta_{u v}=\angle \boldsymbol{x}_{u}^{*} \boldsymbol{o} \boldsymbol{x}_{v}^{*} \\
\cos \theta_{u v}=\left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle
\end{array}
$$

$$
g(x)=0.878 \cdot \frac{1}{2}(1-x)_{0.4} \quad f(x)=\frac{1}{\pi} \arccos (x)
$$

random hyperplane
$\left., \ldots, r_{n}\right) \in \mathbb{R}^{n}$
$(0,1)$ i.i.d.

- 1 distribution

SDP optimal solution: $\boldsymbol{x}_{v}^{*} \quad \hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\mathbf{E}[$ cut $]=\sum_{u v \in E} \frac{\arccos \left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle}{\pi} \geq \alpha \sum_{u v \in E} \frac{1}{2}\left(1-\left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle\right)$
where $\alpha=\inf _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)}=0.87856 \ldots$
$\max \frac{1}{2} \sum_{u v \in E}\left(1-x_{u} x_{v}\right)$
s.t. $\quad x_{v}^{2}=1, \quad \forall v \in V$

$$
x_{v} \in \mathbb{R}, \quad \forall v \in V
$$

SDP relaxation:
$\max \frac{1}{2} \sum_{u v \in E}\left(1-\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle\right)$
s.t. $\left\|\boldsymbol{x}_{v}\right\|_{2}=1, \quad \forall v \in V \quad$ each $r_{i} \sim N(0,1)$ i.i.d. $\boldsymbol{x}_{v} \in \mathbb{R}^{n}, \quad \forall v \in V \quad$ normal distribution
SDP optimal solution: $\boldsymbol{x}_{v}^{*} \quad \hat{x}_{v}=\operatorname{sgn}\left(\left\langle\boldsymbol{x}_{v}^{*}, \boldsymbol{r}\right\rangle\right)$
$\mathbf{E}[$ cut $]=\sum_{u v \in E} \frac{\arccos \left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle}{\pi} \geq \alpha \sum_{u v \in E} \frac{1}{2}\left(1-\left\langle\boldsymbol{x}_{u}^{*}, \boldsymbol{x}_{v}^{*}\right\rangle\right)=\alpha \mathrm{OPT}_{\mathrm{SDP}}$
where $\quad \alpha=\inf _{x \in[-1,1]} \frac{2 \arccos (x)}{\pi(1-x)}=0.87856 \ldots$

Max-Cut

Instance: An undirected graph $G(V, E)$
Find a bipartition of V into S and T that maximize the size of the cut $E(S, T)=\{u v \in E \mid u \in S, v \in T\}$.

- One of Karp's 21 NPG problems.
- Typical Max-CSP.
- Rounding SDP relaxation is 0.878~-approximate.
- Assuming the unique games conjecture: no poly-time algorithm with approx. ratio. $<0.878 \sim$

Unique Games Conjecture

Unique Label Gover (ULC):

Instance: An undirected graph $G(V, E)$; q colors; each edge e associated with a bijection $\phi_{e}:[q] \rightarrow[q]$. A coloring $\sigma \in[q]^{V}$ satisfies the constraint of the edge $e=(u, v) \in E$ if $\phi_{e}\left(\sigma_{u}\right)=\phi_{e}\left(\sigma_{v}\right)$.

Unique Games Conjecture:
 (Khot 2002)
$\forall \varepsilon, \exists q$ such that it is $\mathbf{N P}$-hard to distinguish between ULC instances:

- $>1-\varepsilon$ fraction of edges satisfied by a coloring;
- no more than ε fraction of edges satisfied by any coloring;

Constraint Satisfaction Problem

- variables: $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- domain: Ω, usually $\Omega=[q]$ for a finite q
- constraints: $c=(\psi, S)$ where $\psi: \Omega^{k} \rightarrow\{0,1\}$ and scope $S \subseteq X$ is a subset of k variables
- CSP instance: a set of constraints defined on X
- assignment: $\sigma \in \Omega^{X}$ assigns values to variables
- a constraint $c=(\psi, S)$ is satisfied if $\psi\left(\sigma_{S}\right)=1$
- examples:
- max-cut: $q=2$, constraints are \neq
- k-SAT: $q=2$, constraints are k-clauses
- matching/cover: $q=2$, constraints are $\sum \leq 1$ (or $\sum \geq 1$)
- k-coloring: $q=k$, constraints are \neq
- graph homomorphism: constraint is adjacency matrix

Constraint Satisfaction Problem

- variables: $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- domain: Ω, usually $\Omega=[q]$ for a finite q
- constraints: $c=(\psi, S)$ where $\psi: \Omega^{k} \rightarrow\{0,1\}$ and scope $S \subseteq X$ is a subset of k variables
- CSP instance: a set of constraints defined on X
- assignment: $\sigma \in \Omega^{X}$ assigns values to variables
- a constraint $c=(\psi, S)$ is satisfied if $\psi\left(\sigma_{S}\right)=1$
- examples:
- unique games: $\Omega=[q]$, each constraint is an arbitrary binary bijective predicate:
$\psi: \Omega^{2} \rightarrow\{0,1\}$ where $\forall a \in \Omega, \exists$ unique $b \in \Omega, \psi(a, b)=1$

Algorithmic Problems for CSP

Given a CSP instance I :

- satisfiability: decide whether \exists an assignment satisfying all constraints
- search: find such a satisfying assignment
- optimization: find an assignment satisfying as many constraints as possible
- refutation (dual): find a "proof" of "no assignment can satisfy $>m$ constraints" for m as small as possible
- counting: estimate the number of satisfying assignments
- sampling: random sample a satisfying assignments
- inference: observing part of a satisfying assignment, guess the value of an unobserved variable

Algorithmic Problems for CSP

CSP	Satisfiability	optimization	counting
2SAT	\mathbf{P}	$\mathbf{N P}$-hard	\#P-complete
3SAT	NP-complete	$\mathbf{N P}$-hard	\#P-complete
matching	perfect matching \mathbf{P}	max matching \mathbf{P}	\#P-complete
cut (2-coloring)	bipartite test \mathbf{P}	max-cut $\mathbf{N P}-h a r d$	$\mathbf{F P}$ (poly-time)
3-coloring	$\mathbf{N P - c o m p l e t e ~}$	max-3-cut NP-hard	\#P-complete

A Wishlist for Optimization Algorithms

- Nonlinear, non-convex objectives.
- Powerful enough to tackle hard problems in a systematic way, and meanwhile is still practical.
- Becoming more accurate as we're paying more (but certainly won't beat the inapproximability).
- A generic framework that can be applied obviously to various problems.
sum-of-squares (SoS) SDP, Lasserre hierarchy, Lovász-Schrijver hierarchy, ...

