Advanced Algorithms

南京大学

尹一通
Set Cover

Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

Find the smallest $C \subseteq \{1, 2, ..., m\}$ that $\bigcup_{i \in C} S_i = U$.

![Diagram of set cover problem](attachment:image.png)
Hitting Set

Instance: A number of sets $S_1, S_2, \ldots, S_n \subseteq U$. Find the smallest $H \subseteq U$ that $\forall i, S_i \cap H \neq \emptyset$.

![Diagram](image-url)
Set Cover

Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Find the smallest $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

- **NP-hard**
- **one of Karp's 21 NP-complete problems**
- **frequency:** # of sets an element is in

$$frequency(x) = |\{S_i : x \in S_i\}|$$
Vertex Cover

Instance: An undirected graph $G(V,E)$
Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

![Vertex Cover Diagram]

[incidence graph instance of set cover with frequency =2]
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

- **NP-hard**
- one of Karp’s 21 **NP-complete problems**

VC is **NP-hard** \Rightarrow SC is **NP-hard**
Set Cover

Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.
Find the smallest $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

GreedyCover

Initially $C = \emptyset$;
while $U \neq \emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \setminus S_i$;
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U.$

GreedyCover

Initially $C=\emptyset$;
while $U\neq\emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \setminus S_i$;

OPT(I): value of minimum set cover of instance I

SOL(I): value of the set cover returned by the GreedyCover algorithm on instance I

GreedyCover has *approximation ratio* α if

$$\forall \text{ instance } I, \quad \frac{\text{SOL}(I)}{\text{OPT}(I)} \leq \alpha$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

- **GreedyCover**
 - Initially $C=\emptyset$;
 - while $U\neq\emptyset$ do:
 - add i with largest $|S_i \cap U|$ to C;
 - $U = U \setminus S_i$;
 - $\forall x \in S_i \cap U$, $price(x) = 1/|S_i \cap U|$

\[
|C| = \sum_{x \in U} price(x)
\]

enumerate $x_1, x_2, \ldots x_n$ in the order in which they are covered.

Elements can be matched to the sets in OPT cover

\[
\exists S_i, \quad |S_i| \geq \frac{|U|}{OPT} \quad \Rightarrow \quad price(x_1) \leq \frac{OPT}{|U|}
\]
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

GreedyCover

Initially $C = \emptyset$;

while $U \neq \emptyset$ do:

1. add i with largest $|S_i \cap U|$ to C;
2. $U = U \setminus S_i$;
3. $\forall x \in S_i$, $\text{price}(x) = 1/|S_i \cap U|$

$$|C| = \sum_{x \in U} \text{price}(x)$$

enumerate x_1, x_2, \ldots, x_n in the order in which they are covered

consider U_t in iteration t where x_k is covered:

$$|U_t| \geq n-k+1$$

all $S_i \cap U_t$ form a set cover instance: $\leq \text{OPT}$

price

$$\text{price}(x_k) \leq \frac{\text{OPT}}{n-k+1}$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

GreedyCover

Initially $C=\emptyset$;

while $U\neq\emptyset$ do:

- add i with largest $|S_i \cap U|$ to C;
- $U = U \setminus S_i$;

$\forall x \in S_i$, $\text{price}(x) = 1/|S_i \cap U|$.

$$|C| = \sum_{x\in U} \text{price}(x) \leq \sum_{k=1}^{n} \frac{OPT}{n-k+1} = H_n \cdot OPT$$

enumerate x_1, x_2, \ldots, x_n in the order in which they are covered.

$$\text{price}(x_k) \leq \frac{OPT}{n-k+1}$$
GreedyCover

Initially $C = \emptyset$;
while $U \neq \emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \backslash S_i$;

• **GreedyCover** has approximation ratio $H_n \approx \ln n + O(1)$.

• [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1-o(1))\ln n$-approx. algorithm unless $\mathbf{NP} = \text{quasi-poly-time}$.

• [Ras, Safra 1997] For some c there is no poly-time $c \ln n$-approximation algorithm unless $\mathbf{NP} = \mathbf{P}$.

• [Dinur, Steuer 2014] There is no poly-time $(1-o(1))\ln n$-approximation algorithm unless $\mathbf{NP} = \mathbf{P}$.
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min |C|$$

Dual: $M \subseteq U$ that $\forall i$, $|S_i \cap M| \leq 1$.

$$\forall C, \forall M: |M| \leq |C| \quad \text{every } x \in M \text{ must consume a set to cover}$$

$$\forall M: |M| \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min |C|$$

- Find a *maximal* M; return $C = \{i : S_i \cap M \neq \emptyset\}$;

 - M is *maximal* \Rightarrow C must be a cover

 $$|C| \leq f \cdot |M| \leq f \cdot \text{OPT}_{\text{primal}}$$

Dual: $M \subseteq U$ that $\forall i$, $|S_i \cap M| \leq 1$.

$$\forall M: |M| \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Find a *maximal* $M \subseteq U$ that $\forall i, |S_i \cap M| \leq 1$; return $C = \{i : S_i \cap M \neq \emptyset\}$;

For vertex cover: This gives a 2-approximation algorithm.

Frequency assumption:

$\forall x \in U$, $|\{i : x \in S_i\}| \leq f$

$|C| \leq f \cdot \text{OPT}$
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

a 2-approximation algorithm:

Find a *maximal matching*; return the *matched* vertices;

- [Dinur, Safra 2005] There is no poly-time <1.36-approximation algorithm unless $\text{NP} = \text{P}$.

- [Khot, Regev 2008] Assuming the unique games conjecture, there is no poly-time $(2-\varepsilon)$-approximation algorithm.
Computational Complexity

• decision problem \(f: \{0,1\}^* \rightarrow \{0,1\} \)

• formal language \(L \subseteq \{0,1\}^* \) \(L = \{x: f(x)=1\} \)

• poly-time Turing machine (Algorithm) \(M \):
 \[\forall \text{ input } x \in \{0,1\}^*, M(x) \text{ terminates in time } < \text{ poly}(|x|) \]

• \(P, NP \): classes of formal languages (decision problems)

• \(L \in P \): \(\exists \) poly-time TM \(M \) \text{ decides } \(L \)
 \[\begin{align*}
 & \quad \bullet \ x \in L \Rightarrow M(x) \text{ accepts; } \quad \bullet \ x \notin L \Rightarrow M(x) \text{ rejects}
 \end{align*} \]

• \(L \in NP \): \(\exists \) poly-time TM \(M \) \text{ verifies } \(L \)
 \[\begin{align*}
 & \quad \bullet \ x \in L \Rightarrow \exists \text{ certificate } y \in \{0,1\}^*, M(x,y) \text{ accepts; } \\
 & \quad \bullet \ x \notin L \Rightarrow \forall y \in \{0,1\}^*, M(x,y) \text{ rejects; }
 \end{align*} \]

 \textit{nondeterministic} poly-time TM accepts \(L \)
Computational Complexity

- **decision problem** \(f: \{0,1\}^* \rightarrow \{0,1\} \)

- **formal language** \(L \subseteq \{0,1\}^* \quad L = \{x: f(x)=1\} \)

- **poly-time Turing machine** (Algorithm) \(M \):
 \(\forall \) input \(x \in \{0,1\}^* \), \(M(x) \) terminates in time \(<\) poly(\(|x|\))

- **P, NP**: classes of formal languages (decision problems)
 - **P**: \(L \in \text{P} \): \(\exists \) poly-time TM \(M \) **decides** \(L \)
 - \(x \in L \Rightarrow M(x) \) accepts;
 - \(x \notin L \Rightarrow M(x) \) rejects
 - **NP**: \(L \in \text{NP} \): \(\exists \) poly-time TM \(M \) **verifies** \(L \)

- **L \in \text{coNP}**: \(\overline{L} \in \text{NP} \) "no"-instances are easy to verify

\(\text{P} \subseteq \text{NP} \cap \text{coNP} \)
Computational Complexity

- decision problem $f: \{0,1\}^* \rightarrow \{0,1\}$

- formal language $L \subseteq \{0,1\}^*$ $L = \{x: f(x)=1\}$

- poly-time (Turing) reduction from L to L':

 a poly-time TM M that decides L
 given accesses to an oracle that decides L'

 L' is poly-time decidable \Rightarrow L is poly-time decidable

 L is hard \Rightarrow L' is hard

 “L' is at least as hard as L”

- a problem is **NP-hard** if every $L \in \text{NP}$ is poly-time reducible to it

- L is **NP-complete** if $L \in \text{NP}$ and L is NP-hard
Optimization

Optimization problem Π: minimization/maximization

- a set D of valid instances (inputs);
- each instance $I \in D$ defines a set of feasible solutions $S(I)$;
- an objective function obj that assigns each instance $I \in D$ and solution $s \in S(I)$ a value.

NP-optimization problem Π:

- feasibility of a solution is poly-time checkable;
- objective function is poly-time computable.

optimal solution is certificate

Optimization: thresholding

What is the optimal solution?

Decision: binary search

Can any solution be this good?
Approximation

Optimization problem \(\Pi \): minimization/maximization

- a set \(D \) of valid instances (inputs);
- each instance \(I \in D \) defines a set of feasible solutions \(S(I) \);
- an objective function \(\text{obj} \) that assigns each instance \(I \in D \) and solution \(s \in S(I) \) a value.

\[
\text{OPT}(I) = \text{objective value of optimal solution } s^* \in S(I) \text{ of instance } I
\]

- algorithm \(A \): returns a solution \(s \in S(I) \) on every instance \(I \)

\[
\text{SOL}_A(I) = \text{objective value of the solution } s \in S(I) \text{ returned by } A \text{ on instance } I
\]

minimization: approximation ratio of algorithm \(A \) is \(\alpha \)

if \(\forall \) instance \(I \): \[
\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \leq \alpha
\]
Approximation

Optimization problem Π: minimization/maximization

• a set D of valid instances (inputs);
• each instance $I \in D$ defines a set of feasible solutions $S(I)$;
• an objective function obj that assigns each instance $I \in D$ and solution $s \in S(I)$ a value.

\[\text{OPT}(I) = \text{objective value of optimal solution } s^* \in S(I) \text{ of instance } I \]

• algorithm A: returns a solution $s \in S(I)$ on every instance I

\[\text{SOL}_A(I) = \text{objective value of the solution } s \in S(I) \text{ returned by } A \text{ on instance } I \]

maximization: approximation ratio of algorithm A is α

if \forall instance $I : \frac{\text{SOL}_A(I)}{\text{OPT}(I)} \geq \alpha$
Scheduling

m machines

n jobs

processing time p_j

3
1
4
2
6
3
5
2
4
3
Scheduling

\(m \) machines

\(n \) jobs with processing time \(p_j \)

completion time:
\[
C_i = \sum_{j: \text{jobs assigned to machine } i} p_j
\]

makespan:
\[
C_{\text{max}} = \max_i C_i
\]
Instance: n jobs $j=1, 2, \ldots, n$

each with processing time $p_j \in \mathbb{Z}^+$.

Solution: A schedule of n jobs to m machines

that minimizes the makespan C_{max}.

“minimum makespan on identical machines”: $P|\text{C}_{\text{max}}$

Graham’s “$\alpha|\beta|\gamma$” notation for scheduling

α: machine environment

• 1: a single machine;
• P: m identical machines;
• Q: m machines with different speed s_i, the length of job j on machine i is p_j/s_i;
• R: m unrelated machines, the length of job j on machine i is p_{ij};

β: job characteristics

• r_j: each job has a release time r_j;
• d_j: each job has a deadline d_j;
• pmtn: preemption is allowed;

γ: objective

• C_{max}: makespan; $\sum_j C_j$: total completion time; L_{max}: maximum lateness;
Instance: \(n \) jobs \(j=1, 2, \ldots, n \) each with processing time \(p_j \in \mathbb{Z}^+ \).

Solution: A schedule of \(n \) jobs to \(m \) machines that minimizes the makespan \(C_{\text{max}} \).

“minimum makespan on identical machines”: \(P|\ |C_{\text{max}} \)

when \(m=2 \), the problem can solve the **partition** problem:

Input: \(n \) numbers \(x_1, x_2, \ldots, x_n \in \mathbb{Z}^+ \).

Determine whether \(\exists \) a partition of \(\{1, 2, \ldots, n\} \) into \(A \) and \(B \) such that \(\sum_{i \in A} x_i = \sum_{i \in B} x_i \).

the **partition** problem is among Karp’s 21 **NPC** problems
Graham’s *List Algorithm* (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the *current least heavily loaded* machine;
List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$
assign job j to the current least heavily loaded machine;

n jobs: p_1, p_2, \ldots, p_n; m machines

$$\text{OPT} \geq \max_j p_j \quad \text{OPT} \geq \frac{1}{m} \sum_j p_j$$

for the schedule returned by the list algorithm:

makespan $C_{\text{max}} = C_i \leq 2 \cdot \text{OPT}$
the last job assigned to machine i is job l
before job l was assigned, machine i is the least heavily loaded

$$C_i - p_l \leq \frac{1}{m} \sum_j p_j \leq \text{OPT}$$
$$p_l \leq \max_j p_j \leq \text{OPT}$$
List Algorithm (Graham 1966)

For $j = 1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;

returns a schedule with makespan $C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT$

$$C_i - p_\ell \leq \frac{1}{m} \sum_{j \neq \ell} p_j$$

$$C_i \leq \frac{1}{m} \sum_j p_j + \left(1 - \frac{1}{m} \right) p_\ell \leq (2 - \frac{1}{m}) \cdot OPT$$

Tight in the worst-case!
Local Search

start with a solution:

- locally modify the solution to make improvement until no improvement can be made (local optimum)

Start with an arbitrary schedule;
repeat until no job is reassigned (a local optimum is encountered):
 let \(l \) be a job that fished last;
 if \(\exists \) machine \(i \) s.t. \(job \ l \) will finish earlier after reassigned to machine \(i \)
 transfer job \(l \) to machine \(i \);
Start with an arbitrary schedule; repeat until no job is reassigned (a local optimum is encountered):

let \(l \) be a job that finished last;
if \(\exists \) machine \(i \) s.t. job \(l \) will finish earlier after reassigned to machine \(i \) transfer job \(l \) to machine \(i \);

\[
OPT \geq \max_j p_j \quad OPT \geq \frac{1}{m} \sum_j p_j
\]

in a local optimum: suppose makespan \(C_{\max} = C_i \)

for the job \(l \) that finished last

local optimum \(\Rightarrow \) \(C_i - p_l \) must be the least heavily loaded

\[
C_i - p_l \leq \frac{1}{m} \sum_{j \neq l} p_j
\]

\[
C_i \leq \frac{1}{m} \sum_j p_j + \left(1 - \frac{1}{m}\right) p_l \leq (2 - \frac{1}{m}) \cdot OPT
\]
Start with an arbitrary schedule; repeat until no job is reassigned (a local optimum is encountered):
- let l be a job that fished last;
- if \exists machine i s.t. job l will finish earlier after reassigned to machine i
 transfer job l to machine i;

finds a schedule with makespan $C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT$

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$
- assign job j to the current least heavily loaded machine;

the schedule returned by the List algorithm must be a local optimum

the schedule returned by the List algorithm has makespan $C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT$
Longest Processing Time (LPT)

m machines

n jobs

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the *current least heavily loaded* machine;
Longest Processing Time (LPT)

\[p_1 \geq p_2 \geq \cdots \geq p_n; \]

for \(j = 1, 2, \ldots, n \)

assign job \(j \) to the current least heavily loaded machine;

\[
OPT \geq \frac{1}{m} \sum_j p_j
\]

for the schedule returned by the LPT algorithm:

makespan \(C_{\text{max}} = C_i \leq \frac{3}{2} \cdot OPT \)

the last job assigned to machine \(i \) is job \(l \leftarrow \)

WLOG:

\[
C_i - p_l \leq \frac{1}{m} \sum_j p_j \leq OPT
\]

\[
p_l \leq p_{m+1}
\]

\[
OPT \geq p_m + p_{m+1} \geq 2p_{m+1}
\]

\[
\implies p_l \leq \frac{1}{2} OPT
\]
Longest Processing Time (LPT)

\[p_1 \geq p_2 \geq \cdots \geq p_n; \]

for \(j = 1, 2, \ldots, n \)

assign job \(j \) to the *current* least heavily loaded machine;

for the schedule returned by the LPT algorithm:

\[\text{makespan} \ C_{\text{max}} \leq \frac{3}{2} \cdot OPT \]

• With a more careful analysis, the LPT is a \(\frac{4}{3} \)-approximation algorithm.

• The problem of minimum makespan on identical machines has a **PTAS** (Polynomial Time Approximation Scheme).

\[\forall \varepsilon > 0, \ \exists \ \text{poly-time} \ (1+\varepsilon) \text{-algorithm for the problem} \]
Online Scheduling

m machines n jobs arrive one-by-one

schedule decision must be made when a job arrives without seeing jobs in the future

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$
assign job j to the *current* least heavily loaded machine;
Competitive Analysis

List Algorithm (Graham 1966)

For \(j = 1, 2, \ldots, n \)

assign job \(j \) to the current least heavily loaded machine;

the **competitive ratio** of the online algorithm is \(\alpha \) if:

\[\forall \text{ input sequence } I: \]

solution returned by the **online** algorithm on \(I \) \[\leq \alpha \]

solution returned by the **optimal offline** algorithm on \(I \)

the list algorithm is 2-competitive
Max-Cut

Instance: An undirected graph $G(V, E)$.

Solution: A bipartition of V into S and T that maximizes the cut $E(S,T) = \{uv \in E: u \in S, v \in T\}$.

- **NP-hard.**
- One of Karp’s 21 **NP-complete** problems (reduction from the Partition problem).
- A typical **Max-CSP** (Constraint Satisfaction Problem).
- **Greedy** is $1/2$-approximate.
Max-Cut

Instance: An undirected graph $G(V, E)$.

Solution: A bipartition of V into S and T that maximizes the cut $E(S,T) = \{uv \in E: u \in S, v \in T\}$.

GreedyMaxCut

$V = \{v_1, v_2, \ldots, v_n\}$;
initially, $S=T=\emptyset$;
for $i = 1, 2, \ldots, n$
v_i joins one of S, T
to maximize current $E(S, T)$

GreedyMaxCut is $1/2$-approximate
Max-Cut

Instance: An undirected graph $G(V, E)$.

Solution: A bipartition of V into S and T that maximizes the cut $E(S,T) = \{uv \in E: u \in S, v \in T\}$.

Local Search

Start with an *arbitrary* bipartition; repeat until nothing changed:

- if $\exists v$ flipping side will increase cut v moves to the other side;
Local Search

Start with an *arbitrary* bipartition; repeat until nothing changed:

- If $\exists v$ flipping side will increase cut v moves to the other side;

in a local optimum:

\[
\forall v \in S, \quad |E(v, S)| \leq |E(v, T)| \\
\Rightarrow 2|E(S, S)| \leq |E(S, T)| \\
\forall v \in T, \quad |E(v, T)| \leq |E(v, S)| \\
\Rightarrow 2|E(T, T)| \leq |E(S, T)| \\
|E(S, S)| + |E(T, T)| \leq |E(S, T)|
\]

OPT \leq |E| = |E(S, S)| + |E(T, T)| + |E(S, T)| \leq 2|E(S, T)|

\[
\Rightarrow |E(S, T)| \geq \frac{1}{2} \cdot OPT
\]
Local Search

Start with an arbitrary bipartition; repeat until nothing changed:
 if \(\exists v \) flipping side will increase cut
 \(v \) moves to the other side;

in a local optimum: \(|E(S,T)| \geq \frac{1}{2} \cdot OPT \)

GreedyMaxCut

\(V = \{v_1, v_2, \ldots, v_n\} \);
initially, \(S=T=\emptyset \);
for \(i = 1, 2, \ldots, n \)
 \(v_i \) joins one of \(S, T \)
to maximize current \(E(S,T) \)

Is the cut returned by GreedyMaxCut locally optimal?
Max-Cut

Instance: An undirected graph $G(V, E)$.

Solution: A bipartition of V into S and T that maximizes the cut $E(S,T) = \{uv \in E: u \in S, v \in T\}$.

- **NP-hard.**
- **Greedy** and local search are $1/2$-approximate.
- Rounding semidefinite programing has approximation ratio $0.878\sim$.
- Assuming the unique game conjecture, no poly-time <0.878-approximate algorithm.