Advanced Algorithms

南京大学

尹一通

Constraint Satisfaction Problem (CSP)

- variables: $X = \{x_1, x_2, ..., x_n\}$
 - ullet each variable ranges over a finite domain Ω
 - ullet an assignment $\sigma \in \Omega^X$ assigns each variable a value in Ω
- constraints: $C_1, C_2, ..., C_m$
 - each constraint C_i is a Boolean function

$$C_i: \Omega^{S_i} \to \{\texttt{true}, \texttt{false}\}$$

defined on a subset of variables $S_i \subseteq X$

• a constraint C_i is satisfied by an assignment $\sigma \in \Omega^X$ if

$$C_i(\sigma_{S_i}) = \text{true}$$

Constraint Satisfaction Problem (CSP)

- variables: $x_1, x_2, ..., x_n \in \Omega$
- constraints: $C_1, C_2, ..., C_m$ $C_i: \Omega^{S_i} \to \{\texttt{true}, \texttt{false}\}$

Examples: satisfiability, optimization, counting, ...

- graph cut: $\Omega = \{0,1\}$, constraints: $x_u \neq x_v$ for each edge uv
- k-coloring: $\Omega = [k]$, constraints: $x_u \neq x_v$ for each edge uv
- matching/cover: $\Omega = \{0,1\}$, constraints:

$$\sum_{j \in S_i} x_j \le 1 \text{ (matching)} \quad \text{or} \quad \sum_{j \in S_i} x_j \ge 1 \text{ (cover)}$$

• SAT: $\Omega = \{\text{true}, \text{false}\}, \text{ constraints are } \textit{clauses}$

Algorithmic Problems for CSP

CSP	Satisfiability	Optimization	Counting
2SAT	P	NP -hard	#P -complete
3SAT	NP- complete	NP -hard	#P -complete
matching	perfect matching P	max matching P	#P -complete
cut (2-coloring)	bipartite test P	max-cut NP -hard	FP (poly-time)
3-coloring	NP -complete	max-3-cut NP -hard	#P -complete

Algorithmic Problems for CSP

Given a CSP instance:

- satisfiability: determine whether ∃ an assignment satisfying all constraints
 - search: return a satisfying assignment
- optimization: find an assignment satisfying as many constraints as possible
 - refutation (dual): find a "proof" of "no assignment can satisfy $> m^*$ constraints" for m^* as small as possible
- counting: estimate the number of satisfying assignments
 - sampling: random sample a satisfying assignments
 - inference: calculate the possibility of a variable being assigned certain value

Instance: a k-CNF formula ϕ .

Determine whether ϕ is satisfiable.

(\exists a satisfying assignment σ s.t. $\phi(\sigma)$ = true)

CNF (Conjunctive Normal Form):

$$(x_1 \lor \neg x_3 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor x_5) \land (x_2 \lor x_4 \lor x_5)$$

Instance: a k-CNF formula ϕ .

Determine whether ϕ is satisfiable.

(\exists a satisfying assignment σ s.t. $\phi(\sigma)$ = true)

CNF (Conjunctive Normal Form):

- n Boolean variables: $x_1, x_2, ..., x_n \in \{\text{true, false}\}$
- m clauses: $C_1 \wedge C_2 \wedge \cdots \wedge C_m$
- each clause is in the form $C_i = \ell_{i_1} \vee \ell_{i_2} \vee \cdots \vee \ell_{i_{k_i}}$
- each literal $\mathcal{C}_{i_j} \in \{x_s, \neg x_s\}$ for some $s \in \{1, 2, ..., n\}$

k-CNF: (exact-*k*-CNF)

 \bullet each clause contains exactly k variables

Instance: a k-CNF formula ϕ .

Determine whether ϕ is satisfiable.

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

random k-CNF formula with $m=\alpha n$ clauses

phase transition of satisfiability for random CSP:

[Ding, Sly, Sun, **STOC**'15] [Krzakała, Montanari, Ricci-Tersenghi, Semerjian, Zdeborová, **PNAS**'07] [Achlioptas, Naor, Peres, **Nature**'05]

Instance: a k-CNF formula ϕ .

Determine whether ϕ is satisfiable.

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

k-CNF: (exact-k-CNF)

• each clause contains exactly k variables

degree d:

(shares variables)

• each clause intersects with $\leq d$ other clauses

Theorem: $d \le 2^{k-2} \longrightarrow \phi$ is always satisfiable

 ϕ : a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:

Theorem:
$$d \le 2^{k-2} \implies \phi$$
 is always satisfiable

Algorithmic *LLL* for *k*-SAT:

Theorem (Moser 2009): \exists constant c > 0 $d \le 2^{k-c} \Longrightarrow \text{satisfying assignment can be found}$ in time O(n + km) w.h.p.

The Probabilistic Method

 ϕ : a k-CNF formula of degree d

Theorem: $d \le 2^{k-2} \longrightarrow \phi$ is always satisfiable

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

$NaiveRandomGuess(\phi)$

sample a uniform random assignment $X_1, X_2, \dots, X_n \in \{\text{true, false}\};$

The Probabilistic Pr[$\phi(X)$ =true] > 0 Method:

∃ a satisfying assignment $(\phi \text{ is satisfiable})$

The Probabilistic Method

 ϕ : a k-CNF formula of degree d

Theorem: $d \le 2^{k-2} \longrightarrow \phi$ is always satisfiable

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

sample a uniform random assignment

$$X_1, X_2, \dots, X_n \in \{\text{true, false}\};$$

bad event A_i : clause C_i is unsatisfied

The Probabilistic Pr
$$\left[\bigwedge_{i=1}^{m} \overline{A_i} \right] > 0$$
 \Rightarrow a satisfying assignment $(\phi \text{ is satisfiable})$

(ϕ is satisfiable)

The Lovász Sieve

m bad event: $A_1, A_2, ..., A_m$

Goal:
$$\Pr\left[\bigwedge_{i=1}^{m} \overline{A_i}\right] > 0$$
 (**)

- union bound: $\sum_{i=1}^{m} \Pr[A_i] < 1 \quad (\bigstar)$
- principle of inclusion exclusion (PIE):

$$\sum_{\substack{S \subseteq \{1,\ldots,m\}\\ S \neq \emptyset}} (-1)^{|S|-1} \Pr\left[\bigwedge_{i \in S} A_i\right] < 1 \quad (\bigstar)$$

• LLL: every A_i is independent of all but $\leq d$ other bad events

 $(degree \leq d)$

$$\forall i: \Pr[A_i] \leq \frac{1}{4d} \qquad (\bigstar)$$

m bad event: $A_1, A_2, ..., A_m$

every A_i is independent of all but $\leq d$ other bad events

Lovász Local Lemma (Erdos-Lovász 1975):

$$\forall i: \Pr[A_i] \le \frac{1}{4d} \quad \longrightarrow \quad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > 0$$

Example:

dependency graph (max degree d)

$$A_1(X_1, X_4)$$
 $A_2(X_1, X_2)$
 $A_3(X_2, X_3)$
 $A_4(X_4)$
 $A_5(X_3)$
 $A_5(X_3)$

$$\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$$
 are mutually independent

m bad event: $A_1, A_2, ..., A_m$

every A_i is independent of all but $\leq d$ other bad events

Lovász Local Lemma (Lovász 1977):

$$\forall i: \Pr[A_i] \le \frac{1}{\mathrm{e}(d+1)} \qquad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > 0$$

$$\alpha_1 = \alpha_2 = \dots = \alpha_m = \frac{1}{d+1}$$

Lovász Local Lemma (asymmetric version):

$$\exists \alpha_1, \alpha_2, \dots, \alpha_m \in [0, 1)$$

$$\forall i: \Pr[A_i] \le \alpha_i \prod_{j \sim i} (1 - \alpha_j) \quad \text{Pr} \left[\bigwedge_{i=1}^m \overline{A_i} \right] > \prod_{i=1}^m (1 - \alpha_i)$$

 $j\sim i$: A_i and A_j are adjacent in the dependency graph

m bad event: $A_1, A_2, ..., A_m$

every A_i is independent of all but $\leq d$ other bad events

Lovász Local Lemma (Erdos-Lovász 1975):

$$\forall i: \Pr[A_i] \le \frac{1}{4d} \quad \longrightarrow \quad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > 0$$

$$\alpha_1 = \alpha_2 = \dots = \alpha_m = \frac{1}{2d}$$

Lovász Local Lemma (asymmetric version):

$$\exists \alpha_1, \alpha_2, \dots, \alpha_m \in [0, 1)$$

$$\forall i: \Pr[A_i] \le \alpha_i \prod_{j \sim i} (1 - \alpha_j) \quad \text{Pr}\left[\bigwedge_{i=1}^m \overline{A_i}\right] > \prod_{i=1}^m (1 - \alpha_i)$$

 $j\sim i$: A_i and A_j are adjacent in the dependency graph

 ϕ : a k-CNF formula of degree d

Theorem: $d \le 2^{k-2} \implies \phi$ is always satisfiable

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

sample a uniform random assignment

$$X_1, X_2, \dots, X_n \in \{\text{true, false}\};$$

bad event A_i : clause C_i is unsatisfied

$$\forall i: \Pr[A_i] = 2^{-k} \le \frac{1}{4d} \qquad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > 0$$

$$(k\text{-CNF})$$

$$(\phi \text{ is satisfiable})$$

Algorithmic LLL

 ϕ : a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:

Theorem:
$$d \le 2^{k-2} \implies \phi$$
 is always satisfiable

Algorithmic *LLL* for *k*-SAT:

Theorem (Moser 2009):
$$\exists$$
 constant $c > 0$

$$d \le 2^{k-c} \Longrightarrow \text{satisfying assignment can be found}$$
in time $O(n + km)$ w.h.p.

Moser's Algorithm

 ϕ : a k-CNF formula of degree d

```
Solve(\phi)

sample a uniform random assignment X_1, X_2, ..., X_n; while \exists unsatisfied clause C

Fix(C);
```

Fix(C) resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting CFix(D); (including C itself)

Solve(ϕ) sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C);

```
Fix(C)

resample variables in C uniformly at random;

while \exists unsatisfied clause D intersecting C

Fix(D);
```

- terminate ⇒ successfully return a satisfying solution
- top-level: Fix(C) returned $\Rightarrow C$ remains satisfied

- T: total # of calls to Fix(C)
 (including both top-level and recursive calls)
- total cost: n + kT (total # of random bits)

$Solve(\phi)$

sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C);

Fix(*C*)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C Fix(D);

n + kT random bits

Observation:

Fix(C) is called

assignment of C is uniquely determined

Solve (ϕ)

sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C);

Fix(*C*)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C Fix(D);

n + kT random bits

1-1 mapping $\operatorname{Enc}_{\phi}$

final assignment $x_1, x_2, ..., x_n$

represented by succinct representation:

$$\leq m \log m + T (\log_2 d + O(1))$$
 bits

n bits

Solve(ϕ) sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C): lexicographic order

Fix(C) resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting CFix(D);

n + kT random bits

1-1 mapping $\operatorname{Enc}_{\phi}$

represented by succinct representation:

$$\leq m + T(\log_2 d + O(1))$$
 bits

n bits

- an *m*-bit vector to indicate the root nodes
- ullet O(1) bits to record the stack operation for each recursive call

$Solve(\phi)$

sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause C [lexicographic order

Fix(*C*)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C Fix(D);

n + kT random bits

Incompressibility Theorem (Kolmogorov):

N uniform random bits cannot be encoded to less than N-l bits with probability at least 1-O(2-l).

$$\leq m + T(\log_2 d + O(1))$$
 bits $+ n$ bits
w.h.p.: $n + kT - \log_2 n \leq m + T(\log_2 d + O(1)) + n$
 $\Leftrightarrow (k - \log_2 d - O(1))T \leq m + \log_2 n$

Solve(ϕ) sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C): lexicographic order

Fix(*C*)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C Fix(D);

- T: total # of calls to Fix(C)
 (including both top-level and recursive calls)
- total cost: n + kT

w.h.p.:
$$(k - \log_2 d - O(1))T \le m + \log_2 n$$

 $d \le 2^{k-c}$ $T \le m + \log_2 n$

for some constant c

satisfying assignment can be found in time $O(n + k(m + \log n))$ w.h.p.

Solve (ϕ)

sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause C [lexicographic order

Fix(C)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C Fix(D);

- T: total # of calls to Fix(C)
 (including both top-level and recursive calls)
- total cost: n + kT

w.h.p.:
$$(k - \log_2 d - O(1))T \le m + \log_2 n$$

Theorem (Moser 2009): \exists constant c > 0

$$d \leq 2^{k-c}$$

satisfying assignment can be found in time O(n + km) w.h.p.

Solve(ϕ) sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C): lexicographic order

```
Fix(C)

resample variables in C uniformly at random;

while \exists unsatisfied clause D intersecting C

Fix(D);
```

T: total # of calls to Fix(C) Why should T be finite?
 (including both top-level and recursive calls)

Incompressibility Theorem (Kolmogorov): **Does this hold when N is random?** N uniform random bits cannot be encoded to less than N-l bits with probability at least $1-O(2^{-l})$.

Theorem (Moser 2009): \exists constant c > 0 $d \le 2^{k-c} \Longrightarrow \text{satisfying assignment can be found in time } O(n + km) \text{ w.h.p.}$

$Solve(\phi)$

sample a uniform random assignment $x_1, x_2, ..., x_n$; while \exists unsatisfied clause CFix(C); lexicographic order

Fix(C)

resample variables in C uniformly at random; while \exists unsatisfied clause D intersecting C $\mathbf{Fix}(D);$

• n + kt random bits where $t = 2(m + \log n)$ is fixed

- used as the random bits for the algorithm;
- force to terminate the algorithm if used up;

w.h.p.:
$$(k - \log_2 d - O(1))T \le m + \log_2 n$$

 $d \le 2^{k-c}$ for some constant c $T \le m + \log_2 n$

Algorithmic LLL

 ϕ : a k-CNF formula of degree d

The Lovász Local Lemma (LLL) for k-SAT:

Theorem:
$$d \le 2^{k-2} \implies \phi$$
 is always satisfiable

Algorithmic *LLL* for *k*-SAT:

Theorem (Moser 2009):
$$\exists$$
 constant $c > 0$

$$d \le 2^{k-c} \Longrightarrow \text{satisfying assignment can be found in time } O(n + km) \text{ w.h.p.}$$

m bad event: $A_1, A_2, ..., A_m$

every A_i is independent of all but $\leq d$ other bad events

Lovász Local Lemma (Lovász 1977):

$$\forall i: \Pr[A_i] \le \frac{1}{\operatorname{e}(d+1)} \qquad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > 0$$

Lovász Local Lemma (asymmetric version):

$$\exists \alpha_1, \alpha_2, \dots, \alpha_m \in [0, 1)$$

$$\forall i: \Pr[A_i] \le \alpha_i \prod_{j \sim i} (1 - \alpha_j) \qquad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > \prod_{i=1}^m (1 - \alpha_i)$$

 $j\sim i$: A_i and A_j are adjacent in the dependency graph

- n mutually independent random variables: X_1, \ldots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Lovász Local Lemma (asymmetric version):

$$\exists \alpha_1, \alpha_2, \dots, \alpha_m \in [0, 1) \\ \forall i: \Pr[A_i] \le \alpha_i \prod_{A_j \in \Gamma(A_i)} (1 - \alpha_j) \qquad \qquad \Pr\left[\bigwedge_{i=1}^m \overline{A_i}\right] > \prod_{i=1}^m (1 - \alpha_i)$$

- n mutually independent random variables: X_1, \ldots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Lovász Local Lemma (asymmetric version):

$$\exists \alpha_1, \alpha_2, ..., \alpha_m \in [0,1)$$
 \exists an assignment of $X_1, ..., X_n$ avoiding all bad events $A_1, ..., A_m$

∃ an assignment of bad events $A_1, ..., A_m$

Moser-Tardos Algorithm

- *n* mutually independent random variables: X_1, \ldots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Assumption: The followings can be done efficiently:

- draw an independent sample of a random variable X_j .
- check whether a bad event A_i occurs on current X_1, \ldots, X_n .

Moser-Tardos Algorithm:

sample all $X_1, ..., X_n$; while \exists an occurring bad event A_i : resample all $X_j \in \text{vbl}(A_i)$;

- *n* mutually independent random variables: X_1, \ldots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Moser-Tardos Algorithm:

sample all $X_1, ..., X_n$; while \exists an occurring bad event A_i : resample all $X_i \in \text{vbl}(A_i)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$\exists \alpha_1, \alpha_2, \dots, \alpha_m \in [0, 1)$$

$$\forall i: \Pr[A_i] \le \alpha_i \prod_{A_j \in \Gamma(A_i)} (1 - \alpha_j)$$

a satisfying assignment is returned within $\sum_{i=1}^{m} \frac{\alpha_i}{1-\alpha_i}$ resamples in expectation

- *n* mutually independent random variables: X_1, \dots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Moser-Tardos Algorithm:

sample all $X_1, ..., X_n$; while \exists an occurring bad event A_i : resample all $X_i \in \text{vbl}(A_i)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$\forall i: \Pr[A_i] \leq \frac{1}{\operatorname{e}(d+1)}$$
where $d \triangleq \max_i |\Gamma(A_i)|$

a satisfying assignment is returned within m/d resamples in expectation

- *n* mutually independent random variables: X_1, \ldots, X_n
- m bad events: $A_1, A_2, ..., A_m$, determined by $X_1, ..., X_n$
- $vbl(A_i)$: set of variables on which A_i is defined
- neighborhood: $\Gamma(A_i) \triangleq \{A_j \mid j \neq i \land vbl(A_i) \cap vbl(A_j) \neq \emptyset \}$

Moser-Tardos Algorithm:

sample all $X_1, ..., X_n$; while \exists an occurring bad event A_i : resample all $X_i \in \text{vbl}(A_i)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$\forall i: \Pr[A_i] \leq \frac{1}{4d}$$
where $d \triangleq \max_i |\Gamma(A_i)|$

a satisfying assignment is returned within m/(2d-1) resamples in expectation

k-SAT

 ϕ : a k-CNF formula of degree d

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Moser-Tardos Algorithm:

sample a uniform random assignment $x_1, x_2, ..., x_n \in \{\text{true, false}\};$ while \exists an unsatisfied clause C:

resample values of variables in C uniformly at random;

bad event A_i : clause C_i is unsatisfied

$$\forall i: \Pr[A_i] = 2^{-k} \le \frac{1}{4d}$$
(assuming $d \le 2^{k-2}$)

a satisfying assignment is returned within m/(2d-1) resamples in expectation

k-SAT

 ϕ : a k-CNF formula of degree d

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Moser-Tardos Algorithm:

sample a uniform random assignment $x_1, x_2, ..., x_n \in \{\text{true, false}\};$ while \exists an unsatisfied clause C:

resample values of variables in C uniformly at random;

Theorem (Moser-Tardos 2010):

$$d \le 2^{k-2} \square$$

satisfying assignment can be found in time O(n + km/d) in expectation

- mutually independent random variables: $\mathcal{X} \triangleq \{X_1, ..., X_n\}$
- bad events: $\mathcal{A} \triangleq \{A_1, A_2, ..., A_m\}$
- $\forall A \in \mathcal{A}$, $\mathsf{vbl}(A) \subseteq \mathcal{X}$: set of variables determining A
- neighborhood: $\forall A \in \mathcal{A}, \Gamma(A) \triangleq \{B \neq A \mid vbl(A) \cap vbl(B) \neq \emptyset\}$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$\exists \alpha : \mathscr{A} \to [0,1)$$

$$\forall A \in \mathscr{A} : \Pr[A] \leq \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\text{returned within } \sum_{A \in \mathscr{A}} \frac{\alpha_A}{1 - \alpha_A}$$

$$\text{resamples in expectation}$$

a satisfying assignment is resamples in expectation

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

$$\forall A \in \mathcal{A}, \quad N_A \triangleq |\{i \mid \Lambda_i = A\}|$$

total # of times that A is resampled

Lovász Local Lemma (Moser-Tardos 2010):

$$\exists \alpha: \mathcal{A} \to [0,1)$$

$$\forall A \in \mathcal{A} : \Pr[A] \le \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\mathbb{E}[N_A] \le \frac{\alpha_A}{1 - \alpha_A}$$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_v \in \mathcal{A}$, such that siblings have distinct labels.

- ullet initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

inclusive neighborhood:
$$\Gamma^+(A) \triangleq \{B \in \mathcal{A} \mid \text{vbl}(A) \cap \text{vbl}(B) \neq \emptyset\}$$

= $\Gamma(A) \cup \{A\}$

dependency graph:

exe-log
$$\Lambda$$
: D, C, E, D, B, A, C, A, D, ...

- initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

dependency graph:

exe-log Λ : D, C, E, D, B, A, C, A, D, ...

 $T(\Lambda, 9)$:

- initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$$

random sequence of resampled events

witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_v \in \mathcal{A}$, such that siblings have distinct labels.

- ullet initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

$$T(\Lambda, s) \neq T(\Lambda, t)$$
 if $s \neq t$ T_A : set of all witness trees with root-label A $\mathbf{E}[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ :

- ullet initially, T is a single root with label Λ_t
- for i = t-1, t-2,...,1
 - if \exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

Lemma 1 For any particular witness tree τ :

$$\Pr[\exists t, T(\Lambda, t) = \tau] \le \prod_{v \in \tau} \Pr[A_v]$$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$\Pr[\exists t, T(\Lambda, t) = \tau] \le \prod_{v \in \tau} \Pr[A_v]$$

$$N_A = |\{i \mid \Lambda_i = A\}|$$
 total # of times that A is resampled

$$\mathbf{E}[N_A] = \sum_{ au \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = au]$$
 \mathcal{T}_A : set of all witness trees with root-label A

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

LLL condition:
$$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$$

$$\forall A \in \mathcal{A} : \Pr[A] \le \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\mathbf{E}[N_A] = \sum_{ au \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = au]$$
 \mathcal{T}_A : set of all witness trees with root-label A

with root-label A

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(LLL cond.)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

goal:
$$\leq \frac{\alpha_A}{1 - \alpha_A}$$

sample all $X \in \mathcal{X}$;

while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$\Pr[\exists t, T(\Lambda, t) = \tau] \le \prod_{v \in \tau} \Pr[A_v]$$

$$X_i^{(t)}$$
: t-th sampling of variable $X_i \in X$

$$(1) \qquad (2) \qquad (3) \qquad (4)$$

$$X_1: \left[X_1^{(0)}, X_1^{(1)}, X_1^{(2)}, X_1^{(3)}, X_1^{(4)}, \dots\right]$$

$$X_2: X_2^{(0)} X_2^{(1)}, X_2^{(2)}, X_2^{(3)}, X_2^{(4)}, \dots \quad A(X_1, X_2)$$

$$X_3: X_3^{(0)} X_3^{(1)}, X_3^{(2)}, X_3^{(3)}, X_3^{(4)}, \dots$$

$$X_4: X_4^{(0)} X_4^{(1)}, X_4^{(2)}, X_4^{(3)}, X_4^{(4)}, \dots$$

exe-log Λ : D,C,E,D,B,A,C,A,D, ...

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in \text{vbl}(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

Lemma 1 For any particular witness tree τ :

$$\Pr[\exists t, T(\Lambda, t) = \tau] \le \prod_{v \in \tau} \Pr[A_v]$$

$$N_A = |\{i \mid \Lambda_i = A\}|$$
 total # of times that A is resampled

$$\mathbf{E}[N_A] = \sum_{ au \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = au]$$
 \mathcal{T}_A : set of all witness trees with root-label A

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

LLL condition:
$$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$$

$$\forall A \in \mathcal{A} : \Pr[A] \le \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\mathbf{E}[N_A] = \sum_{ au \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = au]$$
 \mathcal{T}_A : set of all witness trees with root-label A

with root-label A

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(LLL cond.)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

goal:
$$\leq \frac{\alpha_A}{1 - \alpha_A}$$

grow a random witness tree $T_A \in \mathcal{T}_A$:

- initially, T_A is a single root with label A
- for i = 1, 2, ...
 - for every vertex v at depth i (root has depth 1) in T_A
 - for every $B \in \Gamma^+(A_v)$:
 - add a new child u to v independently with probability α_B ;
 - and label it with B;
- stop if no new child added for an entire level

inclusive neighborhood:
$$\Gamma^+(A) \triangleq \{B \in \mathcal{A} \mid \text{vbl}(A) \cap \text{vbl}(B) \neq \emptyset\}$$

= $\Gamma(A) \cup \{A\}$

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_A$:

$$\Pr[T_A = \tau] = \frac{1 - \alpha_A}{\alpha_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha_B) \right]$$

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_A$:

$$\Pr[T_A = \tau] = \frac{1 - \alpha_A}{\alpha_A} \prod_{v \in \tau} \left| \alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha_B) \right|$$

$$\Gamma^{+}(A) : \bullet \bullet \bullet \bullet$$

$$\Gamma^{+}(A) : \bullet \bullet \bullet \bullet$$

$$\Gamma^{+}(A) : \bullet$$

$$\Gamma^{+}(A$$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

execution $\log \Lambda$:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathscr{A}$$

random sequence of resampled events

LLL condition:
$$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$$

$$\forall A \in \mathcal{A} : \Pr[A] \le \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\mathbf{E}[N_A] = \sum_{ au \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = au]$$
 \mathcal{T}_A : set of all witness trees with root-label A

with root-label A

(lemma 1)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(LLL cond.)
$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

(lemma 2)
$$\leq \frac{\alpha_A}{1 - \alpha_A} \sum_{\tau \in \mathcal{T}_A} \Pr[T_A = \tau] \leq \frac{\alpha_A}{1 - \alpha_A}$$

- mutually independent random variables: $\mathcal{X} \triangleq \{X_1, ..., X_n\}$
- bad events: $\mathcal{A} \triangleq \{A_1, A_2, ..., A_m\}$
- $\forall A \in \mathcal{A}$, $\mathsf{vbl}(A) \subseteq \mathcal{X}$: set of variables determining A
- neighborhood: $\forall A \in \mathcal{A}, \Gamma(A) \triangleq \{B \neq A \mid vbl(A) \cap vbl(B) \neq \emptyset\}$

sample all $X \in \mathcal{X}$; while \exists an occurring event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

Lovász Local Lemma (Moser-Tardos 2010):

$$\exists \alpha : \mathscr{A} \to [0,1)$$

$$\forall A \in \mathscr{A} : \Pr[A] \leq \alpha_A \prod_{B \in \Gamma(A)} (1 - \alpha_B)$$

$$\text{returned within } \sum_{A \in \mathscr{A}} \frac{\alpha_A}{1 - \alpha_A}$$

$$\text{resamples in expectation}$$

a satisfying assignment is resamples in expectation