Advanced Algorithms



Constraint Satisfaction Problem
(CSP)

® variables: X= {x1,x2, ..., Xn}
® cach variable ranges over a finite domain €

® an assignment o € ()X assigns each variable a value in 2

® constraints: Ci, Ca, ..., Cy
® ecach constraint C; is a Boolean function
C,: Q% — {true,false)
defined on a subset of variables §; C X

® a constraint C; is satisfied by an assighment o € QX if

CI(GSZ) = true



Constraint Satisfaction Problem
(CSP)

® variables: x1,x2, ..., xn € (2

® constraints: Ci, Cy, ..., Cn
C,: Q% — {true,false)

Examples: satisfiability, optimization, counting, ...

® graph cut: Q={0,1}, constraints: x,#x, for each edge uv
® [-coloring: € = [k], constraints: x.#x, for each edge uv
® matching/cover: Q = {0,1}, constraints:

ij <1 (matching) or ij >1 (cover)

JES; JES;
o SAT: Q = {true, false}, constraints are clauses



Algorithmic Problems for CSP

CSP Satisfiability | Optimization Counting
2SAT P NP-hard | #P-complete
3SAT |NP-complete| NP-hard |#P-complete
matching PerfeCt;:atChing max m;tChmg H#P-complete
cut bipartite test | max-cut FP
(2-coloring) P NP-hard (poly-time)
3-coloring | NP-complete max-3-cut #P-complete

NP-hard




Algorithmic Problems for CSP

Given a CSP instance:

® satisfiability: determine whether 3 an assignment
satisfying all constraints

® search: return a satisfying assignment

® optimization: find an assignment satisfying as many
constraints as possible

® refutation (dual): find a “proof” of “no assignment
can satisfy >m”* constraints’ for m* as small as possible

® counting: estimate the number of satisfying assignments
® sampling: random sample a satisfying assignments

® inference: calculate the possibility of a variable being
assigned certain value



k-SAT

Instance: a k-CNF formula ¢.

Determine whether ¢ is satisfiable.

(3 a satisfying assighment o s.t. ¢(o) = true)

CNF (Conjunctive Normal Form):

(X V3 Vaxp) AT Vs Vas) Ao Vi,V xs)



k-SAT

Instance: a k-CNF formula ¢.

Determine whether ¢ is satisfiable.
(3 a satisfying assignment o s.t. ¢(o) = true)

CNF (Conjunctive Normal Form):

® 7 Boolean variables: x1, x2, ... , x» € {true, false}
® mclauses: C,AC,A--AC,

® cach clause is in the form C; = £; NV eV fiki
® cach literal fl.j € {x,,—x,} forsomese {12, ..., n}
k-CNF: (exact-A-CNF)

® cach clause contains exactly /& variables



k-SAT

Instance: a k-CNF formula ¢.

Determine whether ¢ is satisfiable.

¢=C1/\Cz/\'”/\cm

random A-CNF formula with m=on clauses

phase transition of satisfiability
for random CSP:

—k
2 Asat

uniq Qclust CGcond Qgat

e |1 e 1T

uniqueness extremality clustering condensation

[Ding, Sly, Sun, STOC’15]
| Krzakata, Montanari, Ricci-
Tersenghi, Semerjian, Zdeborova, PNAS’07]

E B O ..

unsat

[Achlioptas, Naor, Peres, Nature’0)]



k-SAT

Instance: a k-CNF formula ¢.

Determine whether ¢ is satisfiable.
¢=C1/\Cz/\‘”/\Cm
k-CNF: (exact-k-CNF)

® cach clause contains exactly /& variables

degree d:

(shares variables)
® cach clause intersects with <d other clauses

Theorem: ( < 2k—2 _:> ¢ is always satisfiable




The Lovasz Local Lemma

¢: a k-CNF formula of degree d

The Lovdsz Local Lemma (LLL) for k-SAT:

Theorem: J < 2k2 ::> ¢ is always satisfiable

Algorithmic LLL for k-SAT:

Theorem (Moser 2009): 3 constant ¢ > 0

< k—c satisfying assighment can be found
d<27 > in time O(n + km) wh.p.




The Probabilistic Method

¢: a k-CNF formula of degree d

Theorem: ( < k2 :|> ¢ is always satisfiable

¢=C1AC2/\"°/\Cm
NaiveRandomGuess())

sample a uniform random assignment
X1, X2, ... , Xu € {true, false};

The 3 a satisfying
) Probabilistic Pr[ ¢p(X)=true | >0 :> assighment
B § Method (¢ is satisfiable)




The Probabilistic Method

¢: a k-CNF formula of degree d

Theorem: ( < 2k—2

¢=C1/\Cz/\'”/\Cm

::> ¢ is always satisfiable

sample a uniform random assignment

X1, X2, ... , Xn € {true, false};

bad event A4;: clause C; is unsatisfied

Pr

/m\fTi] > 0
=1

3 a satisfying
:{> assignment

(¢ is satisfiable)



The Lovasz Sieve

m bad event: A1, A2, ..., Am

Goal:  Pr| AA| >0 (%)
=1

® union bound: ZPT[A]<1 = (%)

® principle of |nc|u5|on exclusion (PIE):

3 Dis-pr /\Ai <1 :> (%)

SC{l,...,m} :
S+ LieS

® [[[: every A;isindependent of all
but <d other bad events

y i
Vi: PrA] < :'> (%)

(degree <d)




m bad event: A1, A2, ..., Am

every A; is independent of all but <d other bad events

Lovasz Local Lemma (Erdos-Lovasz 1975):

1 m
Vi: PrlA] < — A
l [l]_4d > Pr /\l > 0

Example:
A A (X1, Xy)
: A3 Ax(X 1, Xy
y As5(X;3)
A5 Ay A3(X5, X3)
dependency graph X, X, Xz, X,

(max degree d) are mutually independent



m bad event: A1, A2, ..., Am

every A; is independent of all but <d other bad events

Lovasz Local Lemma (Lovasz 1977):

Vi:

Pr[A,] <
e(d+ 1)

>

al :azz coe

:am:

Pr /m\Kl > 0
=1

1
d+ 1

Lovasz Local Lemxma (asymmetric version):

day, a,, ..

La, €0,1)

Vi: PrA] <o ][ -a)

ji

D0l

AR
=1

> ﬁ(l — ;)
i=1

j~i: Ai and A4; are adjacent in the dependency graph



m bad event: A1, A2, ..., Am

every A; is independent of all but <d other bad events

Lovasz Local Lemma (Erdos-Lovasz 1975):

1
Vi: Pr[A] < —
4d

>

Pr /m\Kl > 0
=1

Lovasz Local Lemxma (asymmetric version):

da, o, ...,a, € [0,1)

Vi: PrA] <o ][ -a)
Jj~i

D0l

AR
=1

> ﬁ(l — ;)
i=1

j~i: Ai and A4; are adjacent in the dependency graph



The Lovasz Local Lemma

¢: a k-CNF formula of degree d

Theorem: ( < k2 :|> ¢ is always satisfiable

Vi: PrA]=2"% -
(k-CNF)

L%> Pr| AZ| >0
=1 _

(¢ is satisfiable)



Algorithmic LLL

¢: a k-CNF formula of degree d

The Lovdsz Local Lemma (LLL) for k-SAT:

Theorem: J < 2k2 ::> ¢ is always satisfiable

Algorithmic LLL for k-SAT:

Theorem (Moser 2009): 3 constant ¢ > 0

d < 2k—c

-

satisfying assighment can be found
in time O(n + km) w.h.p.



Moser’s Algorithm

¢: a k-CNF formula of degree d

Solve(o)

sample a uniform random
assignment X1, Xo, ... , Xu;

while 3 unsatisfied clause C
Fix(O);

Fix(C)

resample variables in C uniformly at random;

while 3 unsatisfied clause D intersecting C
Fix(D); (including C itself)




¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(C): Fix(D);

® terminate = successfully return a satisfying solution

o top-level: Fix(C) returned = C remains satisfied

A <m recursive trees A
T nodes in total

...........................................

...........................................

o T: total # of calls to Fix(()
(including both top-level and recursive calls)

® total cost: n+ kT (total # of random bits)



¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(C): Fix(D);

n + kT random bits

----------------------------------------------------------------------

<m recursive trees S |
A A . == :final assignment:

...........................................

...........................................

---------------------------------------------------------------------

Observation: assignment of C is

Fi1x(C) is called ::> uniquely determined




¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(C); Fix(D);

n + kT random bits

~geecle = 1-1 mapping Enc,

----------------------------------------------------------------------

<m recursive trees S |
A A . == :final assignment:

...........................................

...........................................

---------------------------------------------------------------------

represented by succinct representation:

< mlog m+ T (log> d + O(1)) bits



¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(c);lexicographic order Fix(D);

n + kT random bits

|
-; M \ Y 4 =Y

a CN1CO0C g 1-1 mapping Enc,

----------------------------------------------------------------------

<m recursive trees S |
A A . == :final assignment:

...........................................

...........................................

---------------------------------------------------------------------

represented by succinct representation:
< m+ T (logd + O(1)) bits

® an m-bit vector to indicate the root nodes
® (1) bits to record the stack operation for each recursive call



¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

while 3 unsatisfied clause C

assignment x1, X2, ... , Xn;

FiX(C);Iexicographic order

resample variables in C uniformly at random;

while 3 unsatisfied clause D intersecting C

n + kT random bits

~liseiss > 1-1 mapping Ency

Incompressibility Theorem (Kolmogorov):

N uniform random bits cannot be encoded to less
than N - [ bits with probability at least 1-O(2).

<m+ T (logxd

O(1)) bits +  n bits

w.h.p.: n+ kT —log,n <m+ T(log,d+ O(1)) +n
<& (k—log,d — O(1)T < m+ log,n



¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

. resample variables in C uniformly at random;
assignment xi, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(c);lexicographic order Fix(D);

o T: total # of calls to Fix(()
(including both top-level and recursive calls)

® total cost: n + kT

w.hp: (k—=log,d — O(1))T < m+log,n
d <2k Z:> T'<m+log,n

for some . o :
satisfying assignment can be found
constant ¢

in time O(n + k(m + log n)) w.h.p.




¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

. resample variables in C uniformly at random;
assignment x1, x2, ... , Xn;

, : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

FiX(C);Iexicographic order ;

o T: total # of calls to
(including both top-level and calls)

® total cost: n + kT

w.hp: (k—=log,d — O(1))T < m+log,n

Theorem (Moser 2009): 3 constant ¢ > 0

< k—c satisfying assighment can be found
d<2 ::> in time O(n + km) w.h.p.




¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(c);lexicographic order Fix(D);

o T: total # of calls to Fix(C) Why should T be finite?
(including both top-level and recursive calls)

Incompressibility Theorem (Kolmogorov):

es this hold when is randam?
N unlfgrm ranéom !)ItS cannot be encocfé% to less

than N - [ bits with probability at least 1-O(2-).

Theorem (Moser 2009): 3 constant ¢ > 0

< k—c satisfying assighment can be found
d<?2 ::> in time O(n + km) w.h.p.




¢: a k-CNF formula of degree d with m clauses on n variables

Solve(p)

sample a uniform random

Fix(C)

resample variables in C uniformly at random;

assignment x1, X2, ... , Xn;

: : while 3 unsatisfied clause D intersecting C
while 3 unsatisfied clause C

Fix(c);lexicographic order Fix(D);

® 5+ kt random bits where 7 = 2(m + log n) is fixed

* used as the random bits for the algorithm;
* force to terminate the algorithm if used up;

----------------------------------------------------------------------

I- 11C (\"/“ Y-

<m recursive trees final assignment
A A + oL, X

...........................................

s e (maybe unsatisfying)
<m+ T (log>d + O(l)) bits + n bits

+ (#-7)k unused random bits
w.hp.. (k—=log,d—O(1))T <m+log,n

k—c f
d <2070 S T T<m+logn




Algorithmic LLL

¢: a k-CNF formula of degree d

The Lovdsz Local Lemma (LLL) for k-SAT:

Theorem: J < 2k2 ::> ¢ is always satisfiable

Algorithmic LLL for k-SAT:

Theorem (Moser 2009): 3 constant ¢ > 0

d < 2k—c

-

satisfying assignment can be found
in time O(n + km) w.h.p.



The Lovasz Local Lemma

m bad event: A1, A2, ..., Am
every A; is independent of all but <d other bad events

Lovasz Local Lemma (Lovasz 1977):

Vi: Pr[A] < : P /m\K > 0
l . Ir - Ir :
T ed+1) VT

Lovasz Local Lemma (asymmetric version):

da, ay,...,a, € [0,1) - .
Vi: PriA] <o ] ]I -a) > Pr /\Ai >H(1—ai)
=1 _ i=1

ji

j~i: Ai and A4; are adjacent in the dependency graph



The Lovasz Local Lemma

¢ n mutually independent random variables: Xji, ..., X,

® m bad events: A1, A, ..

., Am, determined by X, ... , X,

e vbl(A4,): set of variables on which A4; is defined
® neighborhood:1'(4;) £ {4;|j#i A vbl(4:)Nvbl(4)) # & }

Lovasz Local Lemma (asymmetric version):

da, ay,...,a, € [0,1)

Vi: PriAl<a; || (1-a)
A€l(A)

>

AR
=1

> ﬁ(l — )
i=1




The Lovasz Local Lemma

¢ n mutually independent random variables: Xji, ..., X,
® m bad events: A1, A2, ..., Am, determined by X1, ... , X
e vbl(A4,): set of variables on which A4; is defined

® neighborhood:1'(4;) £ {4;|j#i A vbl(4:)Nvbl(4)) # & }

Lovasz Local Lemma (asymmetric version):

Jda;, a, ..., a, € [0,1) 3 an assignment of

Vi: PriAl<a; || (1-a) X1, ... , Xn avoiding all
A€T(A) bad events A1, ..., An




Moser-Tardos Algorithm

¢ n mutually independent random variables: Xji, ... , X,
® m bad events: A1, A2, ..., Am, determined by X, ... , X
e vbl(A4,): set of variables on which A4; is defined

® neighborhood:T'(4;) £ {4;|j#i A vbl(4,))Nvbl(4)) # D }

Assumption: The followings can be done efficiently:

e draw an independent sample of a random variable X.
e check whether a bad event A; occurs on current X1, ... , X..

Moser-Tardos Algorithm:
sample all X1, ... , Xj;
while 3 an occurring bad event A::

resample all Xje vbl(A));




¢ n mutually independent random variables: Xi, ... , X,
® m bad events: A1, A2, ..., Am, determined by X1, ... , X,
e vbl(A;): set of variables on which A4; is defined

® neighborhood:1'(4;) £ {4;|j#i A vbl(4,))Nvbl(4)) # D }

Moser-Tardos Algorithm:
sample all Xi, ..., Xy;
while 3 an occurring bad event A;:

resample all X;e vbl(Aj);

Lovasz Local Lemma (Moser-Tardos 2010):

a satisfying assighment is
m a,

da, ay,...,a, € [0,1)

Vi: PrA]<a H (1 -a) returned within Z‘l—%

A€r@A) resamples in expectation




¢ n mutually independent random variables: Xi, ... , X,
® m bad events: A1, A2, ..., Am, determined by X1, ... , X,
e vbl(A;): set of variables on which A4; is defined

® neighborhood:1'(4;) £ {4;|j#i A vbl(4,))Nvbl(4)) # D }

Moser-Tardos Algorithm:
sample all Xi, ..., Xy;
while 3 an occurring bad event A;:

resample all X;e vbl(Aj);

Lovasz Local Lemma (Moser-Tardos 2010):

a satisfying assignment is

e(d+1) returned within m/d
where d £ max |I'(4;) |

Vi: Pr[A;] <

resamples in expectation




¢ n mutually independent random variables: Xi, ... , X,
® m bad events: A1, A2, ..., Am, determined by X1, ... , X,
e vbl(A;): set of variables on which A4; is defined

® neighborhood:1'(4;) £ {4;|j#i A vbl(4,))Nvbl(4)) # D }

Moser-Tardos Algorithm:
sample all Xi, ..., Xy;
while 3 an occurring bad event A;:

resample all X;e vbl(Aj);

Lovasz Local Lemma (Moser-Tardos 2010):

1 a satisfying assienment is
Vi: Pr{A] < — /s 25518

4d returned within m/(2d-1)
where d £ max |I'(4;) |

resamples in expectation




k-SAT

¢: a k-CNF formula of degree d

¢:C1/\C2/\"'/\Cm

Moser-Tardos Algorithm:
sample a uniform random assignment x1, x2, ... , X, {true, false};

while 3 an unsatisfied clause C:
resample values of variables in C uniformly at random;

bad event A4;: clause C; is unsatisfied

Vi- PrlA k< 1 a satisfying assignment is
b Al = - 4_d returned within m/(2d-1)

(assuming d < 2k—2) resamples in expectation




k-SAT

¢: a k-CNF formula of degree d

¢:C1/\C2/\"'/\Cm

Moser-Tardos Algorithm:
sample a uniform random assignment x1, x2, ... , X, {true, false};

while 3 an unsatisfied clause C:
resample values of variables in C uniformly at random;

Theorem (Moser-Tardos 2010):

< k=2 satisfying assighment can be found
d<2 :> in time O(n + km/d) in expectation




mutually independent random variables: 2" = X X,

bad events: o = {A, A, ...,A }

n

VA € of, vbl(A) € X : set of variables determining 4
neighborhood: VA € o, T'(A) £ {B # A | vbl(A) N vbl(B) # &}

Moser-Tardos Algorithm:

sample all X € ;
while 3 an occurring event A € o :

resample all X € vbl(A);

Lovasz Local Lemma (Moser-Tardos 2010):

Ja : &/ — [0,1)

VAed: PrAl <a, H (1 — ) returned within
Bel'(A) resamples in expectation

2

Aed

a satisfying assighment is

7

1—aA




Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

VAed, N,=|{i|A =A}]
total # of times that A is resampled

Lovasz Local Lemma (Moser-Tardos 2010):

da : o — [0,1) VAe o .
_ Ay
VAe of: Pr[A]l <ay I I (1 — ap) f|> E[N,] <

BET(A) 1 —ay




Moser-Tardos Algorithm: execution |Og A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S *Qi
resample all X € vbl(A); random sequence of resampled events

witnhess tree: A witness tree 7 is a labeled tree in which every vertex

v is labeled by an event A,&4, such that siblings have distinct labels.

T(A, 1) is a witness tree constructed from exe-log A:

* initially, 7' is a single root with label A;
* fori=t-1,12,....1
e if 3 a vertex vin T with label A,&1 +(A\))

* add a new child u to the deepest such v and label it with A;
* T(A, 1) is the resulting T

inclusive neighborhood: T*(A) £ {B € & | vbl(A) N vbl(B) # &)
=T(A)U{A}



dependency graph: B
A C

E D
exe-log A: D,C,E,D,B,A,C,A,D, ..
A

T(A, 1) is a witness tree constructed from exe-log A:

* initially, T is a single root with label A;
* fori=t-1,t2,....1
e if 3 a vertex vin T with label A,&l +(A\))
* add a new child u to the deepest such v and label it with A;
* T(A, 1) is the resulting T



dependency graph: B
A C

E D
exe-log A: D,C,E,D,B,A,C,A,D, ..
A

T(A, 8): TA,9: 0
B D
E
C
D

T(A, 1) is a witness tree constructed from exe-log A:

* initially, T is a single root with label A;
* fori=t-1,t2,....1
e if 3 a vertex vin T with label A,&l +(A\))
* add a new child u to the deepest such v and label it with A;
* T(A, 1) is the resulting T



Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

witnhess tree: A witness tree 7 is a labeled tree in which every vertex

v is labeled by an event A,&4, such that siblings have distinct labels.

T(A, 1) is a witness tree constructed from exe-log A:

* initially, T is a single root with label A;
e fori=1t-1,12,....1
e if 3a vertex vin T with label A,&l+(A))

* add a new child u to the deepest such v and label it with A;
* T(A,1t)is the resulting T

TN, ) Z2T(A,p)ifs#t TAI set of all witness trees with root-label A

> E[Nal= Y Pi[3t,T(At) = 7]

TET A




Moser-Tardos Algorithm: execution |Og A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Q{
resample all X € vbl(A); random sequence of resampled events

T(A, 1) is a witness tree constructed from exe-log A:

* initially, 7' is a single root with label A;
* fori=1¢t1,1-2,....1
e if 3 a vertex vin T with label A,&1 +(A\))
* add a new child u to the deepest such v and label it with A;
* T(A,1t)is the resulting T

Lemma 1l For any particular witness tree 7:

Pr(3t, T(A,t) = 7] < | | Pr[A,]

veET



Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

Lemma 1l  For any particular witness tree 7:

Pr[3t, T(A,t) = 7] < | | Pr[A,]

VET

Na=|{il A=A }|  total # of times that A is resampled

E[NA] — Z Pr[ﬂt, T(A, t) — 7'] TAZ set of all witness trees

TET A with root-label A

(lemma 1) < Z HPI‘[AU]

TET A VET



Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

LLL condition: da: A — [0,1)

E[NA] — Z Pr[ﬂt, T(A, t) — T] TAZ set of all witness trees

TET A with root-label A

(lemmal) < Z HPr[AU]

TET A VET

(LLLcond.) < » [[ [a(4Ay) ][] (1-a(B))

TETA VET BeTl'(Ay)

XA
goal: <
1 —ag



Moser-Tardos Algorithm: execution |Og A:

(sample all X e fl”;)

while 3 an occurring event A € - Al’ AZ’ A39 o E ‘Q{
resample all X € vbl(A); random sequence of resampled events

Lemma 1l  For any particular witness tree 7:

Pr[3t, T(A,t) = 7] < | | Pr[A,]

VET

X,L-(t) . t-th sampling of variable X; € X exe-log A: DCEDBACAD,...

©| v 2 3 §@
Xy | X7 X, X, XX, B(X>,X5)
Xy | XY x5V X X x5 A C(X3,X3)
DEREP ¢ I eRID ¢ RID ¢ ID ¢
X, [ X2 xV, xP xP x®W L B D(X:)




Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

Lemma 1l  For any particular witness tree 7:

Pr[3t, T(A,t) = 7] < | | Pr[A,]

VET

Na=|{il A=A }|  total # of times that A is resampled

E[NA] — Z Pr[ﬂt, T(A, t) — 7'] TAZ set of all witness trees

TET A with root-label A

(lemma 1) < Z HPI‘[AU]

TET A VET



Moser-Tardos Algorithm: execution |0g A:

sample all X € X;

while 3 an occurring event A € - Al’ AZ’ A39 S ‘Qf
resample all X € vbl(A); random sequence of resampled events

LLL condition: da: A — [0,1)

E[NA] — Z Pr[ﬂt, T(A, t) — T] TAZ set of all witness trees

TET A with root-label A

(lemmal) < Z HPr[AU]

TET A VET

(LLLcond.) < » [[ [a(4Ay) ][] (1-a(B))

TETA VET BeTl'(Ay)

XA
goal: <
1 —ag



grow a random witness tree T4 € T4 :

* initially, 74 is a single root with label A
e fori=1,2, ..
* for every vertex v at depth i (root has depth 1) in T4
e for every BEI+(A)):
* add a new child u to v independently with probability as;
e and label it with B;
* stop if no new child added for an entire level

inclusive neighborhood: T*(4) £ {B € o | vbl(A) N vbl(B) # &)
=1(A)U A}

Lemma?2 For any particular witness tree 7 € Ta:

Pr(ls =1 = — AT |a(4)) T (1-an)

87
A veET Bel'(Ay)




Lemma 2 For any particular witness tree 7 € Ta:

]l — o
Pr[Ty = 7] = “T1 [e4) [ (1 -as)
A veT | BeTl'(Ay) 1
In T: A
I (A) / X
T (4)
1
Pr[Ty =7] = — a(Ay) ] (1-ap)
O W n
veT | Bel'j (Ay) |
1 — A a(Av)
— 1 —
A Ul;[_ 1 —Oé(Av) B€I1:[(AU)( aB)




Moser-Tardos Algorithm: execution |0g A:
sample all X € X; A Aa A = Qf
while 3 an occurring event A € o 194229 £ 23y o0
resample all X' € vbl(A); random sequence of resampled events

LLL condition: da: A — [0,1)

BET(A)
E[NA] — Z Pl”[ﬂt, T(A, t) — T] TAZ set of all witness trees
TETA with root-label A
(lemmal) < Z H Pr|A,]
TET A v€7: ]
(LLLcond.) < » [[ [a(4Ay) ][] (1-a(B))
TETA VET i BeTl'(Ay) )




mutually independent random variables: 2" = X X,

bad events: o = {A, A, ...,A }

n

VA € of, vbl(A) € X : set of variables determining 4
neighborhood: VA € o, T'(A) £ {B # A | vbl(A) N vbl(B) # &}

Moser-Tardos Algorithm:

sample all X € ;
while 3 an occurring event A € o :

resample all X € vbl(A);

Lovasz Local Lemma (Moser-Tardos 2010):

Ja : &/ — [0,1)

VAed: PrAl <a, H (1 — ) returned within
Bel'(A) resamples in expectation

2

Aed

a satisfying assighment is

7

1—aA




