Advanced Algorithms Balls into Bins

尹一通 Nanjing University, 202 Fall

Balls into Bins

uniform & independent

random function $f: [n] \rightarrow [m]$

birthday, coupon collector, occupancy, ...

Random Function

• *n* balls into *m* bins:

$$\Pr[\text{assignment}] = \frac{1}{m} \cdots \frac{1}{m} = \frac{1}{m^n}$$

• uniform random function:

$$\Pr[f] = \frac{1}{\left| [n] \to [m] \right|} = \frac{1}{m^n}$$

1-1	birthday
on-to	coupon collector
pre-image size	occupancy

uniform random function $f: [n] \rightarrow [m]$

Paradox:

(i) a statement that leads to a contradiction;(ii) a situation which defies intuition.

In a class of m>57 students, with >99% probability, there are two students with the same birthday.

Assumption: birthdays are uniformly & independently distributed.

n balls are thrown into *m* bins:

event \mathscr{E} : each bin receives ≤ 1 balls

n balls are thrown into *m* bins: event \mathscr{E} : each bin receives ≤ 1 balls

$$\Pr[\mathscr{E}] = \frac{\left| [n] \xrightarrow{1-1} [m] \right|}{\left| [n] \to [m] \right|} = \frac{m(m-1)\cdots(m-n+1)}{m^n}$$

$$=\prod_{i=0}^{n-1}\left(1-\frac{i}{m}\right)$$

n balls are thrown into *m* bins: event \mathcal{E} : each bin receives ≤ 1 balls

Suppose that balls are thrown one-by-one:

 $\Pr[\mathscr{E}] = \Pr[\text{all } n \text{ balls are thrown into ditinct bins}]$

chain = $\prod_{i=1}^{n} \Pr[\text{the } i\text{th ball is thrown into an empty bin }]$ **rule**

first i - 1 balls are thrown into ditinct bins]

$$=\prod_{i=1}^{n} \left(1 - \frac{i-1}{m}\right) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{m}\right)$$

n balls are thrown into *m* bins: event \mathscr{E} : each bin receives ≤ 1 balls

(Taylor: $1 - x \approx e^{-x}$ for x = o(1))

$$\Pr[\mathscr{E}] = \prod_{i=0}^{n-1} \left(1 - \frac{i}{m} \right) \approx \prod_{i=0}^{n-1} e^{-\frac{i}{m}} \approx e^{-n^2/2m}$$

Formally:
$$e^{-(1+o(1))n^2/2m} \le \prod_{i=0}^{n-1} \left(1 - \frac{i}{m}\right) \le e^{-(1-o(1))n^2/2m}$$

(assuming $n \ll m$)

when
$$n = \sqrt{2m \ln \frac{1}{p}} \implies \Pr[\mathscr{E}] = (1 \pm o(1))p$$

Data Structure for Set

Data: a set *S* of *n* items $x_1, x_2, ..., x_n \in U = [N]$ **Query**: an item $x \in U$ Determine whether $x \in S$.

- Space cost: size of data structure (in bits)
 - entropy of a set: $O(n \log N)$ bits (when $N \gg n$)
- Time cost: time to answer a query (in memory accesses)
- Balanced tree: O(n log N) space, O(log n) time
- Perfect hashing: $O(n \log N)$ space, O(1) time

Perfect Hashing

 $S = \{a, b, c, d, e, f\} \subseteq [N]$ of size n

SUHA: Simple Uniform Hash Assumption

Query(x):

retrieve hash function h;

check whether T[h(x)] = x;

Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family \mathcal{H} of hash functions in $U \rightarrow [m]$ is k-universal if for any distinct $x_1, \ldots, x_k \in U$,

$$\Pr_{n \in \mathcal{H}} \left[h(x_1) = \dots = h(x_k) \right] \le \frac{1}{m^{k-1}}$$

Moreover, \mathcal{H} is strongly *k*-universal (*k*-wise independent) if for any distinct $x_1, ..., x_k \in U$ and any $y_1, ..., y_k \in [m]$,

$$\Pr_{h \in \mathscr{H}} \left[\bigwedge_{i=1}^{k} h(x_i) = y_i \right] = \frac{1}{m^k}$$

k-Universal Hash Family

hash functions $h: U \rightarrow [m]$

- Linear congruential hashing:
 - Represent $U \subseteq \mathbb{Z}_p$ for sufficiently large prime p
 - $h_{a,b}(x) = ((ax + b) \mod p) \mod m$

•
$$\mathscr{H} = \left\{ h_{a,b} \mid a \in \mathbb{Z}_p \setminus \{0\}, b \in \mathbb{Z}_p \right\}$$

Theorem:

The linear congruential family ${\mathscr H}$ is 2-wise independent.

- Degree-k polynomial in finite field with random coefficients
- Hashing between binary fields: $GF(2^w) \rightarrow GF(2^l)$

$$h_{a,b}(x) = (a*x+b)>>(w-l)$$

Birthday Paradox (pairwise independence)

n balls are thrown into *m* bins: by 2-universal hashing event \mathscr{C} : each bin receives ≤ 1 balls

- Location of *n* balls: $X_1, X_2, \ldots, X_n \in [m]$
- Total # of collisions:

$$Y = \sum_{i < j} I[X_i = X_j]$$

• Linearity of expectation:

$$\mathbb{E}[Y] = \sum_{i < j} \Pr[X_i = X_j] \le {\binom{n}{2}} \frac{1}{m}$$
2-universal

• Markov's inequality: $\Pr[\neg \mathscr{C}] = \Pr[Y \ge 1] \le \mathbb{E}[Y] \le \mathscr{C}$

Perfect Hashing

 $S = \{a, b, c, d, e, f\} \subseteq [N] \text{ of size } n$

2-universal
$$h$$
 $[N] \rightarrow [m]$ $\Pr[imperfect] = \frac{n(n-1)}{2m}$
Table T: $e \ b \ d \ f \ c \ a \ m$

For 2-universal family \mathscr{H} from [N] to [m], if $m > \binom{n}{2}$, for any $S \subseteq [N]$ of size n, there is an $h \in \mathscr{H}$ that cause no collisions over S.

Query(*x*):

retrieve hash function *h*;

check whether T[h(x)] = x;

(Fredman, Komlós, Szemerédi, 1984)

Data: a set *S* of *n* items $x_1, x_2, ..., x_n \in U = [N]$ **Query**: an item $x \in U$

Determine whether $x \in S$.

• Space cost: O(n) words (each of $O(\log N)$ bits)

• Time cost: O(1) for each query in the worst case

• $\exists h_1, \ldots, h_n$ from 2-universal family s.t. h_i is perfect for B_i for all i

Collision Number

n balls are thrown into *m* bins by 2-universal hashing

- Location of *n* bins: $X_1, X_2, \dots, X_n \in [m]$ Collision #: $Y = \sum_{i < j} I[X_i = X_j]$
- Linearity of expectation:

$$\mathbb{E}[Y] = \sum_{i < j} \Pr[X_i = X_j] \le {\binom{n}{2}} \frac{1}{m}$$
2-universal

• Size of the *i*-th bin: $|B_i|$

$$Y = \sum_{i=1}^{n} \binom{|B_i|}{2} = \frac{1}{2} \sum_{i=1}^{n} |B_i| (|B_i| - 1) \implies \mathbb{E}\left[\sum_{i=1}^{n} |B_i|^2\right] = \frac{n(n-1)}{m} + n$$

• $\exists h$ from a 2-universal family s.t. the total space cost is O(n)

(Fredman, Komlós, Szemerédi, 1984)

Data: a set *S* of *n* items $x_1, x_2, ..., x_n \in U = [N]$ **Query**: an item $x \in U$

Determine whether $x \in S$.

- $O(n \log N)$ space, O(1) time in the worst case
- Dynamic version: [Dietzfelbinger, Karlin, Mehlhorn, Heide, Rohnert, Tarjan, 1984]

Balls into Bins

(Coupon Collector)

n bins

surjection (cover all bins)

coupons in cookie box

each box comes with a uniformly random coupon

number of boxes bought to collect all *n* coupons

number of balls thrown to cover all *n* bins

X: number of balls thrown to make all the *n* bins nonempty

X: number of balls thrown to make all the *n* bins nonempty

Theorem: For c > 0,

$$\Pr[X \ge n \ln n + cn] \le e^{-c}$$

Proof: For one bin, it misses all balls with probability

X: number of balls thrown to make all the *n* bins nonempty

Theorem: For c > 0,

 $\Pr[X \ge n \ln n + cn] \le e^{-c}$

Proof: For one bin, it misses all balls with probability $< \frac{1}{ne^c}$ union bound!

 $\Pr[\exists a \text{ bin misses all balls}] \leq n \Pr[\text{ first bin misses all bins}]$

$$< e^{-c}$$

X: number of balls thrown to make all the *n* bins nonempty

Theorem: For c > 0,

 $\Pr[X \ge n \ln n + cn] \le e^{-c}$

a sharp threshold:

 $\lim_{n \to \infty} \Pr[X \ge n \ln n + cn] = 1 - e^{-e^{-c}}$

Stable Matching

n men *n* women

- each man has a preference order of the *n* women;
- each woman has a preference order of the *n* men;
- solution: *n* couples
- Marriages are stable!

Stable Matching

n men

n women

unstable (blocking pair):

a man and a woman, who prefer each other to their current partners

stable: no blocking pairs

local optimum fixed point equilibrium deadlock

Proposal Algorithm

(Gale-Shapley 1962)

Single man:

propose to the most preferable women who has not rejected him

Woman:

upon received a proposal: accept if she's single or married to a less preferable man (divorce!)

Proposal Algorithm

(Gale-Shapley 1962)

- woman: once got married always married
 (will only switch to better men!)
- man: will only get worse ...
- once all women are married, the algorithm terminates, and the marriages are stable
- total number of proposals:

 $< n^2$

Single man:

propose to the most preferable women who has not rejected him

Woman:

upon received a proposal: accept if she's single or married to a less preferable man (divorce!)

Average-Case Performance (Knuth 1976)

- Every man/woman has a uniform random permutation as preference list
- Expected total number of proposals?

Mariages stables et leurs relations avec d'autres problèmes combinatoires

Introduction à l'analyse mathématique des algorithmes

Donald E. Knuth

Édition revue et corrigée

1976 Les Presses de l'Université de Montréal C.P. 6128, succ. «A», Montréal, Qué., Canada H3C 3J7

Single man:

propose to the most preferable women who has not rejected him

Woman:

upon received a proposal: accept if she's single or married to a less preferable man (divorce!)

Principle of Deferred Decisions

Principle of deferred decision

The decision of random choice in the random input is deferred to the running time of the algorithm.

Principle of Deferred Decisions

proposing in the order of a uniformly random permutation

at each time, proposing to a uniformly random woman who has not rejected him

decisions of the inputs are deferred to the time when Alg accesses them

Stochastic Domination

at each time, proposing to a uniformly random woman who has not rejected him

ΙΛ

at each time, proposing to a uniformly & independently random woman

the man forgot who had rejected him (!)

Average-Case Performance

- uniformly and independently proposing to *n* women
- Alg stops once all women got proposed.
- Coupon collector!
- Expected $n \ln n + O(n)$ proposals.

