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Balls into Bins

 ballsn

 binsm

uniform & independent

birthday, coupon collector, occupancy, ...

random function  f : [n] → [m]



Random Function
• n balls into m bins:





• uniform random function:


Pr[assignment] = 1
m

⋯ 1
m

= 1
mn

Pr[ f ] = 1
[n] → [m]

= 1
mn

[n] [m]

uniform random function  
f : [n] → [m]1-1 birthday

on-to coupon collector

pre-image size occupancy



Birthday Paradox

Paradox:
(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.(ii) a situation which defies intuition.

In a class of m>57 students, with >99% probability, 
there are two students with the same birthday.

Assumption:  birthdays are uniformly & independently distributed.

n balls are thrown into m bins:

event : each bin receives  balls ℰ ≤ 1



Birthday Paradox

Pr[ℰ] =
[n] 1−1 [m]

[n] → [m]
= m(m − 1)⋯(m − n + 1)

mn

=
n−1

∏
i=0

(1 − i
m )

n balls are thrown into m bins:

event : each bin receives  balls ℰ ≤ 1



Birthday Paradox

Pr[ℰ] = Pr[all n balls are thrown into ditinct bins]

=
n

∏
i=1

Pr[the ith ball is thrown into an empty bin ∣

first i − 1 balls are thrown into ditinct bins]

Suppose that balls are thrown one-by-one: 

=
n

∏
i=1

(1 − i − 1
m ) =

n−1

∏
i=0

(1 − i
m )

n balls are thrown into m bins:

event : each bin receives  balls ℰ ≤ 1

chain 
rule



Birthday Paradox

Pr[ℰ] =
n−1

∏
i=0

(1 − i
m ) ≈

n−1

∏
i=0

e− i
m ≈ e−n2/2m

e−(1+o(1))n2/2m ≤
n−1

∏
i=0

(1 − i
m ) ≤ e−(1−o(1))n2/2m

(Taylor:  for )1 − x ≈ e−x x = o(1)

Formally:
(assuming )n ≪ m

when n = 2m ln 1
p ⟹ Pr[ℰ] = (1 ± o(1))p

n balls are thrown into m bins:

event : each bin receives  balls ℰ ≤ 1



Birthday Paradox
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∏
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∏
i=0

(1 − i
m ) ≤ e−(1−o(1))n2/2m

(Taylor:  for )1 − x ≈ e−x x = o(1)
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Data Structure for Set

Data: a set  of  items 

Query: an item 

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S

• Space cost:  size of data structure (in bits)

• entropy of a set:   O(n log N) bits (when N≫n)


• Time cost:  time to answer a query (in memory accesses)

• Balanced tree:  O(n log N) space, O(log n) time

• Perfect hashing: O(n log N) space, O(1) time



Perfect Hashing

 of size n S = {a, b, c, d, e, f} ⊆ [N]

af cb de

h

Table T:
m

uniform
random Pr[perfect]

Birthday
= n2

[N ] ! [m]

SUHA:  Simple Uniform Hash Assumption

no collision

Query(x):

retrieve hash function h;

check whether T[h(x)] = x;

≈ e−n2/2m > 1/2



Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family  of hash functions in  is -universal  
if for any distinct , 


.


Moreover,  is strongly -universal ( -wise independent) 
if for any distinct  and any ,


.

ℋ U → [m] k
x1, …, xk ∈ U

Pr
h∈ℋ

[ h(x1) = ⋯ = h(xk) ] ≤ 1
mk−1

ℋ k k
x1, …, xk ∈ U y1, …, yk ∈ [m]

Pr
h∈ℋ [

k

⋀
i=1

h(xi) = yi ] = 1
mk



k-Universal Hash Family

• Linear congruential hashing:

• Represent  for sufficiently large prime 


• 


• 


• Degree-  polynomial in finite field with random coefficients 

• Hashing between binary fields: 

(a*x+b)>>(w-l) 

U ⊆ ℤp p
ha,b(x) = ((ax + b) mod p) mod m

ℋ = {ha,b ∣ a ∈ ℤp∖{0}, b ∈ ℤp}

k
GF(2w) → GF(2l)

ha,b(x) =

hash functions h : U → [m]

Theorem: 

The linear congruential family  is 2-wise independent. ℋ



Birthday Paradox (pairwise independence)

n balls are thrown into m bins:

event : each bin receives  balls ℰ ≤ 1

by 2-universal hashing

• Location of  balls:  

• Total # of collisions:


 


• Linearity of expectation:


n X1, X2, …, Xn ∈ [m]

Y = ∑
i<j

I[Xi = Xj]

.[Y] = ∑
i<j

Pr[Xi = Xj] ≤ (n
2) 1

m
2-universal

Pr[¬ℰ] = Pr[Y ≥ 1] ≤ .[Y]• Markov’s inequality:

when 

n ≤ 2mϵ

≤ ϵ



Perfect Hashing

 of size n S = {a, b, c, d, e, f} ⊆ [N]

af cb de

h

Table T:
m

2-universal Pr[imperfect][N ] ! [m]

Query(x):

retrieve hash function h;

check whether T[h(x)] = x;

= n(n − 1)
2m

For 2-universal family  from  to , if , for any  
of size , there is an  that cause no collisions over .

ℋ [N] [m] m > (n
2) S ⊆ [N]

n h ∈ ℋ S



FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984) 

540 M.L .  FREDMAN, J. KOMLOS, AND E. SZEMERI~DI 

COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x  mod 
p)mod r 2 is one-to-one when restrtcted to W. 

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j)  <- 1 
for all j. I"! 

Given S c U, [ S I = n, our technique for representing the set S works as follows. 
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as 
determined by the value of the function f(x) = (kx mod p)mod n; pointers to 
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_ 
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n), 
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is 
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash 
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first 
location of Tj we store I W~I, and in the second location we store the value k' 
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12] 
+ 2 of block Tj. 

A membership query for q is executed as follows: 

1. Set k = T[0] and setj  = (kq mod p)mod n. 
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the 

quantities [ I11::1 and k' in the first two locations of block Tj. 
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q 

lies in this cell. 

A query requires five probes, and our choice of k in Corollary 1 implies that the 
size of T is at most 6n. An example is provided below. 

Example 
m - - 3 0 ,  p = 3 1 ,  n = 6 ,  S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1  

0 1 2 3  4 5 6 

12 13 14 15 16 17 18 19 20 21 22 
1111141  1211 1 5 1 2 1  I I 1 2 1 3 1  I 1181301 
I W21k'  I W4I k '  I WsI k '  

23 24 
I l l  1 1151 
I W61 k '  

A query for 30 is processed as follows: 

1. k = T[0] = 2 , j  = (30.2 mod 31)mod 6 = 5. 
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two 

elements and that k' --- 3. 
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5 

and find that 30 is indeed present. 

The time required to construct the representation for S might be as bad as O(mn) 
in the worst case; finding k may require testing many possible values before a 
suitable one is found. However, by increasing the size of T by a constant factor, 

• Space cost:  words (each of  bits)

• Time cost:  for each query in the worst case 

O(n) O(log N)
O(1)

Data: a set  of  items 

Query: an item 

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S



FKS Perfect Hashing

h

B1 B2 Bn

buckets:

n itemsS :

[N ]� [n]primary hashing

h2 hnh1

� �perfect hashing for B1 perfect hashing for Bn



FKS Perfect Hashing

perfect hashing for B1 perfect hashing for Bn

h2 hn

h

B1 B2 Bn

�

h1

�

[N ]� [n]
Query(x):


retrieve primary hash h;

goto bucket ;

retrieve secondary hash ;

check whether ;

i = h(x)
hi

Ti[hi(x)] = x

Set  of size S ⊆ [N] n

using space |B1 |2 using space |Bn |2

•   from 2-universal family s.t.  is perfect for  for all ∃ h1, …, hn hi Bi i



Collision Number
n balls are thrown into m bins by 2-universal hashing

• Location of  bins:  

Collision #:    


• Linearity of expectation:




• Size of the i-th bin: 

n X1, X2, …, Xn ∈ [m]
Y = ∑

i<j
I[Xi = Xj]

.[Y] = ∑
i<j

Pr[Xi = Xj]

|Bi |

≤ (n
2) 1

m
2-universal

Y =
n

∑
i=1

( |Bi |
2 ) = 1

2
n

∑
i=1

|Bi | ( |Bi | − 1) ⟹ . [
n

∑
i=1

|Bi |
2 ] = n(n − 1)

m
+ n



FKS Perfect Hashing

perfect hashing for B1 perfect hashing for Bn

h2 hn

h

B1 B2 Bn

�

h1

�

[N ]� [n]
Query(x):


retrieve primary hash h;

goto bucket ;

retrieve secondary hash ;

check whether ;

i = h(x)
hi

Ti[hi(x)] = x

Set  of size S ⊆ [N] n

•  from a 2-universal family s.t. the total space cost is O(n)∃h
using space |B1 |2 using space |Bn |2



FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984) 

540 M.L .  FREDMAN, J. KOMLOS, AND E. SZEMERI~DI 

COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x  mod 
p)mod r 2 is one-to-one when restrtcted to W. 

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j)  <- 1 
for all j. I"! 

Given S c U, [ S I = n, our technique for representing the set S works as follows. 
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as 
determined by the value of the function f(x) = (kx mod p)mod n; pointers to 
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_ 
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n), 
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is 
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash 
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first 
location of Tj we store I W~I, and in the second location we store the value k' 
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12] 
+ 2 of block Tj. 

A membership query for q is executed as follows: 

1. Set k = T[0] and setj  = (kq mod p)mod n. 
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the 

quantities [ I11::1 and k' in the first two locations of block Tj. 
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q 

lies in this cell. 

A query requires five probes, and our choice of k in Corollary 1 implies that the 
size of T is at most 6n. An example is provided below. 

Example 
m - - 3 0 ,  p = 3 1 ,  n = 6 ,  S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1  

0 1 2 3  4 5 6 

12 13 14 15 16 17 18 19 20 21 22 
1111141  1211 1 5 1 2 1  I I 1 2 1 3 1  I 1181301 
I W21k'  I W4I k '  I WsI k '  

23 24 
I l l  1 1151 
I W61 k '  

A query for 30 is processed as follows: 

1. k = T[0] = 2 , j  = (30.2 mod 31)mod 6 = 5. 
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two 

elements and that k' --- 3. 
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5 

and find that 30 is indeed present. 

The time required to construct the representation for S might be as bad as O(mn) 
in the worst case; finding k may require testing many possible values before a 
suitable one is found. However, by increasing the size of T by a constant factor, 

•  space,  time in the worst case

• Dynamic version: [Dietzfelbinger, Karlin, Mehlhorn, Heide, 

Rohnert, Tarjan, 1984]

O(n log N) O(1)

Data: a set  of  items 

Query: an item 

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S



Balls into Bins
(Coupon Collector)

 binsn

uniform & independent

surjection (cover all bins)



Coupon Collector

number of boxes bought 
to collect all n coupons

each box comes with a 
uniformly random coupon

number of balls thrown to 
cover all n bins

coupons in cookie box



number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins

Coupon Collector

bins
i − 1

 is geometric!Xi

with pi = 1 − i − 1
n

X :

Xi :

Xi = 4

X =
n

∑
i=1

Xi

.[Xi] = 1
pi

= n
n − i + 1



Coupon Collector

linearity of expectations

Harmonic number

number of balls thrown to make
 all the n bins nonempty

number of balls thrown while there 
are exactly  (i-1) nonempty bins

X :

Xi :

expected  ballsn ln n + O(n)

X =
n

∑
i=1

Xi

.[Xi] = 1
pi

= n
n − i + 1

.[X] =
n

∑
i=1

.[Xi]

=
n

∑
i=1

n
n − i + 1

= n
n

∑
i=1

1
i

= nH(n)



Coupon Collector

number of balls 
thrown to make all the 
n bins nonempty

For one bin, it misses all balls with probabilityProof:

X : Theorem: For ,
c > 0
Pr[ X ≥ n ln n + cn ] ≤ e−c

(1 − 1
n )

n ln n+cn

= (1 − 1
n )

n(ln n+c)

< e−(ln n+c)

< 1
nec



Coupon Collector

Proof:

union bound!

number of balls 
thrown to make all the 
n bins nonempty

X : Theorem: For ,
c > 0
Pr[ X ≥ n ln n + cn ] ≤ e−c

< 1
nec

Pr[ ∃ a bin misses all balls ] ≤ n Pr[ first bin misses all bins ]

< e−c

For one bin, it misses all balls with probability



Coupon Collector

a sharp threshold:

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

number of balls 
thrown to make all the 
n bins nonempty

X : Theorem: For ,
c > 0
Pr[ X ≥ n ln n + cn ] ≤ e−c

lim
n→∞

Pr[X ≥ n ln n + cn] = 1 − e−e−c



Stable Matching

• each man has a 
preference order of 
the n women;


• each woman has a 
preference order of 
the n men;


• solution: n couples


• Marriages are stable!

n men n women



Stable Matching

prefer

prefer
unstable (blocking pair):

a man and a woman, 
who prefer each other to 

their current partners

stable: no blocking pairs

local optimum

fixed point

equilibrium

deadlock

n men n women



Proposal Algorithm
(Gale-Shapley 1962)

n men n women

propose
proposepropose

Single man:
propose to the most 

preferable women who 
has not rejected him

Woman:
upon received a proposal: 
accept if she’s single or 

married to a less 
preferable man 

(divorce!)



Proposal Algorithm
(Gale-Shapley 1962)

• woman: once got married 
always married 


• man: will only get worse ...


• once all women are 
married, the algorithm 
terminates, and the 
marriages are stable


• total number of proposals:

(will only switch to better men!)

≤ n2

Single man:
propose to the most 

preferable women who 
has not rejected him

Woman:
upon received a proposal: 
accept if she’s single or 

married to a less 
preferable man 

(divorce!)



Average-Case Performance

• Every man/woman has a 
uniform random permutation 
as preference list


• Expected total number of 
proposals?

Single man:
propose to the most 

preferable women who 
has not rejected him

Woman:
upon received a proposal: 
accept if she’s single or 

married to a less 
preferable man 

(divorce!)

(Knuth 1976)



Principle of Deferred Decisions

Principle of  deferred decision
The decision of random choice in the random input  

is deferred to the running time of the algorithm.



Principle of Deferred Decisions

proposing in the 

order of a uniformly


 random permutation

at each time, proposing to

a uniformly random woman 

who has not rejected him

decisions of the inputs are deferred to 
the time when Alg accesses them



Stochastic Domination

at each time, proposing to

a uniformly & independently 

random woman

≤
the man forgot who had 

rejected him (!)

uniform &

independent

at each time, proposing to

a uniformly random woman 

who has not rejected him



Average-Case Performance

• uniformly and independently 
proposing to n women


• Alg stops once all women 
got proposed.


• Coupon collector!


• Expected  
proposals.

n ln n + O(n)

uniform &

independent


