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Balls into Bins
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Balls into Bins

n balls

uniform & independent

m bins i

random function f: [n] — [m]

birthday, coupon collector, occupancy, ...



Random Function

e 5 balls into m bins:

Pr|assignment| = —---
m m m”

e uniform random function:

1 1
Pr{f] = =—
[n] = [m]| m
1-1 birthday
on-to coupon collector
pre-image size occupancy
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uniform random function

f:n] = [m]



Birthday Paradox

Paradox:

(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.

In a class of m>57 students, with >99% probability,
there are two students with the same birthday.

Assumption: birthdays are uniformly & independently distributed.

n balls are thrown into m bins:
event &: each bin receives < 1 balls




Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

[n] = [m] Cm(m—1)e(m—n+ 1)

Pr[&] =

(2] = [m]| m

110 -5)



Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

Suppose that balls are thrown one-by-one:

Pr[#] = Pr[all n balls are thrown into ditinct bins]

chain = HPr[the ith ball is thrown into an empty bin |

rule i=1
first i — 1 balls are thrown into ditinct bins]

-T1(-57) -1I(-+)




Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls

(Taylor: 1 —x ~ e forx = o(1))

n—1 . n—1
l i
PI'[%] — I I (1 _;) ~ c " =~ e—n2/2m

=0

n—1 :
Formally: e~(+e(m2m < (1 _ L) < e—(1=o(L)n*/2m

, m
(assuming n < m) i=0

1
when n = \/zmlnp —> Pr[&] = (1 %= o(1))p



Birthday Paradox

n balls are thrown into m bins:
event &: each bin receives < 1 balls
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1
when n = \/zmlnp — Pr[é&] =1 X o(l))p




Data Structure for Set

Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x € §.

Space cost: size of data structure (in bits)
* entropy of a set: O(n log N) bits (when N>»n)

Time cost: time to answer a query (in memory accesses)
Balanced tree: O(n log N) space, O(log n) time
Perfect hashing: O(n log N) space, O(1) time



Perfect Hashing

S=1{a,b,c,d,e,f} C|N] of sizen

uniform
random

Table T:

no collision
h| [N] — [m] Prperfect] ~ e 72" > 1/2
_ m = n2
e cld
bl |d f Birthday

SUHA: Simple Uniform Hash Assumption

Query(x):

retrieve hash function 7;

check whether TTA(x)] = x;




Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family #Z of hash functions in U — [m] is k-universal
if for any distinct x;, ..., x;, € U,

h};{ [h(x1) S h(xk)] < —

Moreover, # is strongly k-universal (k-wise independent)
if for any distinct x;, ...,x, € Uand any y, ..., ¥, € [m],

he# mk .

- -
1
| i=1 |




k-Universal Hash Family

hash functions h : U — [m]

* Linear congruential hashing:

« Represent U C Zp for sufficiently large prime p
e h,,(x) = ((ax + b) mod p) mod m

L H = {ha,b la€ Z\(0}.b e zp}

Theorem:
The linear congruential family #Z is 2-wise independent.

« Degree-k polynomial in finite field with random coefficients
- Hashing between binary fields: GF(2") — GF(2))
h, ,(x) = (a*x+b)>>(w-1)



Blrthday Paradox (pairwise independence)

n balls are thrown into m bins: by 2-universal hashing
event &: each bin receives < 1 balls

Location of n balls: X, X,,...,X € [m]

Total # of collisions:

Y= ) I[X, = X]
i<j
Linearity of expectation:
n\ 1
—[Y] = Z PriX; = X;] < (2)% when
</ 2-universal n <y 2me

Markov’s inequality: Pr[-&] =Pr[Y > 1] < E[Y] f¢€



Perfect Hashing

S=1{a,b,c,d,e,f} C|N] of sizen

2-universal | h

N| — |m Pr[imperfect] =

nn—1)

2m

m

Table T: | e

bl dl /] |c

A

For 2-universal family #Z from [N] to [m], if m > <
of size n, there is an h € # that cause no collisions over S.

n
2

), for any S C [NV]

Query(x):

retrieve hash function 7;

check whether TTA(x)] = x;




FKS Perfect Hashing

(Fredman, Komlos, Szemeredi, 1984)
Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x & §.

m=30, p=31l, n=6, §=1{2,4,5,15, 18, 30|

01 23 4 5 6
2 7 10{16]22
k

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1114 211 ]151]2 213 18 {30 111115
W K | Wal k’ | Ws| k’ | Wel k'
IR e e ———

« Space cost: O(n) words (each of O(log N) bits)

« Time cost: O(1) for each query in the worst case



FKS Perfect Hashing

primary hashing | j | [N| — |n]

perfect hashing for B, perfect hashing for B,



FKS Perfect Hashing

Set § C |[N] of size n
Query(x):
h [N] N [n] retrieve primary hash #;
goto bucket i = h(x);
By Byeeoeooooono B, retrieve secondary hash /;
L e oooowoeoes check whether T[h(x)] = x;
/r ‘\\ R
nl ... T T 790
R/_/ H/_/
perfect hashing for B perfect hashing for B,
using space | B, |2 using space | B, |2

e 4 hy,..., 1, from 2-universal family s.t. /; is perfect for B; for all i



Collision Number

n balls are thrown into m bins by 2-universal hashing

e Location of n bins: X, X,, ...,X € [m]
Collision #: ¥ = Z I1X; = X]]

i<j
* Linearity of expectation:

(Y] =) PrlX; = X]] < (’;)%

i<j 2-universal
« Size of the i-th bin: | B; |

o (IBl) 1 & _ nin—1)
Y—l;( , >—5§|B,-|<|B,-|—1>=> E| Y 1B =

| =1




FKS Perfect Hashing

Set § C |[N] of size n

Query(x):
h [N] N [n] retrieve primary hash #;
goto bucket i = h(x);
By Byeeoeooooono B, retrieve secondary hash /;
b e eeococsos check whether T[h(x)] = x;
/ | .\\ .\
hl ..... h2 ......... hn .....
perfect hashing for B perfect hashing for B,
using space | B, |2 using space | B, |2

« Jh from a 2-universal family s.t. the total space cost is O(n)



FKS Perfect Hashing

(Fredman, Komlos, Szemeredi, 1984)
Data: a set $ of nitems x, x,, ...,x, € U = [N]
Query: anitemx € U

Determine whether x & §.

m=30, p=31l, n=6, §=1{2,4,5,15, 18, 30|

01 23 4 5 6
2 7 10{16]22
k

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1114 211 ]151]2 213 18 {30 111115
W K | Wal k’ | Ws| k’ | Wel k'
IR e e ———

« O(nlog N) space, O(1) time in the worst case

 Dynamic version: [Dietzfelbinger, Karlin, Mehlhorn, Heide,
Rohnert, Tarjan, 1984]



Balls into Bins

(Coupon Collector)

uniform & independent

nbins fo..b

surjection (cover all bins)



Coupon Collector

coupons in cookie box

each box comes with a
uniformly random coupon

number of boxes bought
to collect all n coupons

=

number of balls thrown to
cover all n bins




Coupon Collector

X - number of balls thrown to make
’ all the n bins nonempty
. X, =4
bins [ L | | ] | ]

1 — 1

X, is geometric!

with p, = 1 — .=
n
1 n
_[Xi]=_= :
pi n—i+1



Coupon Collector

n
Y - number of balls thrown to make X = Z Xi
' all the n bins nonempty i—1
Y. - number of balls thrown while there
! * are exactly (i-1) nonempty bins _[Xi] — — = )
- pi n—i+1

E[X]= ) EIX] linearity of expectations

- _Harmonic number
= nH(n) expected nlnn + O(n) balls




Coupon Collector

X :  number of balls Theorem: For ¢ > 0,
thrown to make all the .
n bins nonempty PrlX>nlnn+cn] <e

Proof: For one bin, it misses all balls with probability

1 nlnn+cn 1 n(ln n+c)
| —— =(1-=
n n

< e—(ln n+c)
1

ne¢

<




Coupon Collector

X :  number of balls Theorem: For ¢ > 0,
thrown to make all the .
n bins nonempty PrlX>nlnn+cn] <e

Proof: For one bin, it misses all balls with probability
1

nec¢

<

union bound|

Pr[ 3 a bin misses all balls | < n Pr[ first bin misses all bins |

<e ¢



Coupon Collector

X :

number of balls
thrown to make all the
n bins nonempty

a sharp threshold:

Im PrI X >nlnn+cn]j=1—-¢e"°

n—0o0

Theorem: For ¢ > 0,
PrlX>nlnn+cn] <e™*

—C




Stable Matching

n men n women

e ecach man has a
preference order of
the » women;

each woman has a
preference order of
the » men;

e solution: n couples

e Marriages are stable!
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Stable Matching

n men n women

dl Q unstable (blocking pair):

a man and a woman,
who prefer each other to
their current partners

local optimum
fixed point
equilibrium
deadlock

G—%
dl ,:?:::é;"’;é Q stable: no blocking pairs
g @



Proposal Algorithm
(Gale-Shapley 1962)

Single man:

propose to the most
preferable women who
has not rejected him

Woman:

upon received a proposal:
accept if she’s single or
married to a less
preferable man
(divorce!)




Proposal Algorithm
(Gale-Shapley 1962)

° : once got married Single man:

always married
(will only switch to better menl)
/¢ man: will only get worse ...

propose to the most
preferable women who
has not rejected him

e once all women are

marr?ed, the algorithm Woman:
terminates, and the
. Mmarriages are stable upon received a proposal:
~——> accept if she’s single or
e total number of proposals: married to a less
< pn? preferable man
(divorce!)




Average-Case Performance

(Knuth 1976)

e Every man/woman has a
uniform random permutation
as preference list

e Expected total number of
proposals?

Mariages stables et
leurs relations avec
d’autres problémes
combinatoires

nnnnnnnnnnnn
5P

Les Presses de I'Université de Montréal

Single man:

propose to the most
preferable women who
has not rejected him

Woman:

upon received a proposal:
accept if she’s single or
married to a less
preferable man
(divorce!)




Principle of Deferred Decisions

Principle of deferred decision

The decision of random choice in the random input
Is deferred to the running time of the algorithm.

—




Principle of Deferred Decisions

proposing in the
order of a uniformly
random permutation

N
NS

at each time, proposing to
a uniformly random woman
who has not rejected him

decisions of the inputs are deferred to
the time when Alg accesses them

QQQ QG

+O+O+O+O+0O



Stochastic Domination

at each time, proposing to
a uniformly random woman
who has not rejected him

JA\

at each time, proposing to
a uniformly & independently
random woman

the man forgot who had
rejected him (1)

¥ ;
~Uniform &
independent

Y Q



uniformly and independently
proposing to » women

Alg stops once all women
got proposed.

Coupon collector!

Expected nlnn + O(n)
proposals.

o}

Average-Case Performance



