Advanced Algorithms

Concentration of Measure

尹一通 Nanjing University， 2022 Fall

Measure Concentration

- Flip a coin for many times:

Chernoff-Hoeffding Bounds

Chernoff Bound

(Bernstein Inequalities)

Herman Chernoff
Chernoff face

Chernoff Bound

Chernoff Bound:

For independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

For any $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

Chernoff Bound

Chernoff Bound:

For independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $0<\delta<1$,

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq \exp \left(-\frac{\mu \delta^{2}}{3}\right) \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(-\frac{\mu \delta^{2}}{2}\right)
\end{aligned}
$$

For $t \geq 2 \mathrm{e} \mu$:

$$
\operatorname{Pr}[X \geq t] \leq 2^{-t}
$$

Balls into Bins

m balls are thrown into n bins.
 X_{i} : number of balls in the i-th bin

$$
\begin{aligned}
& 0 \text { with prob. } 1-\frac{1}{n} \\
& X_{i} \sim \operatorname{Bin}(m, 1 / n) \quad \mu=\mathbb{E}\left[X_{i}\right]=\frac{m}{n}
\end{aligned}
$$

Chernoff Bound: For $\delta>0$,

$$
\operatorname{Pr}\left[X_{i} \geq(1+\delta) \mu\right] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

Chernoff Bound: For $\delta>0$,

$$
\operatorname{Pr}\left[X_{i} \geq(1+\delta) \mu\right] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

- When $m=n: \quad \mu=1$

$$
\operatorname{Pr}\left[X_{i} \geq L\right] \leq \frac{\mathrm{e}^{L}}{\mathrm{e} L^{L}} \leq \frac{1}{n^{2}} \quad \text { for } L=\frac{\mathrm{e} \ln n}{\ln \ln n}
$$

- union bound:

$$
\begin{gathered}
\operatorname{Pr}\left[\max _{1 \leq i \leq n} X_{i} \geq L\right] \leq n \operatorname{Pr}\left[X_{i} \geq L\right] \leq \frac{1}{n} \\
\text { Max load is } O\left(\frac{\log n}{\log \log n}\right) \text { w.h.p. }
\end{gathered}
$$

Chernoff Bound: For $L \geq 2 \mathrm{e} \mu$,

$$
\operatorname{Pr}\left[X_{i} \geq L\right] \leq 2^{-L}
$$

- When $m \geq n \ln n: \quad \mu \geq \ln n$

$$
\operatorname{Pr}\left[X_{i} \geq \frac{2 \mathrm{e} m}{n}\right]=\operatorname{Pr}\left[X_{i} \geq 2 \mathrm{e} \mu\right] \leq 2^{-2 \mathrm{e} \mu} \leq 2^{-2 \mathrm{e} \ln n} \leq \frac{1}{n^{2}}
$$

- union bound:

$$
\begin{gathered}
\operatorname{Pr}\left[\max _{1 \leq i \leq n} X_{i} \geq \frac{2 \mathrm{e} m}{n}\right] \leq n \operatorname{Pr}\left[X_{i} \geq \frac{2 \mathrm{e} m}{n}\right] \leq \frac{1}{n} \\
\text { Max load is } O\left(\frac{m}{n}\right) \text { w.h.p. }
\end{gathered}
$$

Balls into Bins

- m balls are thrown into n bins uniformly and independently:

Theorem: With high probability, the maximum load is

$$
\begin{cases}O\left(\frac{\log n}{\log \log n}\right) & \text { when } m=n \\ O\left(\frac{m}{n}\right) & \text { when } m \geq n \ln n\end{cases}
$$

Chernoff Bound

Chernoff Bound:

For independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

For any $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

Markov’s Inequality

Markov’s Inequality

For nonnegative random variable X, for any $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Corollary

For random variable X and nonnegative-valued function f, for any $t>0$,

$$
\operatorname{Pr}[f(X) \geq t] \leq \frac{\mathbb{E}[f(X)]}{t}
$$

Moment Generating Function

Moment generating function (MGF):

The MGF of a random variable X is defined as

$$
M(\lambda)=\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]
$$

- Taylor's expansion:

$$
\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]=\mathbb{E}\left[\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} X^{k}\right]=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \mathbb{E}\left[X^{k}\right]
$$

- Independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

- Markov for MGF: (for any $\lambda>0$) (Markov's inequality)

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq \operatorname{Pr}\left[\mathrm{e}^{\lambda X} \geq \mathrm{e}^{\lambda(1+\delta) \mu}\right] \leq \frac{\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]}{\mathrm{e}^{\lambda(1+\delta) \mu}}
$$

- Bound MGF:

$$
\begin{aligned}
& \mathbb{E}\left[\mathrm{e}^{\lambda X}\right]=\mathbb{E}\left[\prod_{i=1}^{n} \mathrm{e}^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[\mathrm{e}^{\lambda X_{i}}\right] \leq \prod_{i=1}^{n} \mathrm{e}^{\left(\mathrm{e}^{\lambda}-1\right) p_{i}}=\mathrm{e}^{\left(\mathrm{e}^{\lambda}-1\right) \mu} \\
& \mathbb{E}\left[\mathrm{e}^{\lambda X_{i}}\right]=p_{i} \cdot \mathrm{e}^{\lambda \cdot 1}+\left(1-p_{i}\right) \mathrm{e}^{\lambda \cdot 0}=1+\left(\mathrm{e}^{\lambda}-1\right) p_{i} \leq \mathrm{e}^{\left(\mathrm{e}^{\lambda}-1\right) p_{i}} \\
& \quad\left(\text { where } p_{i}=\operatorname{Pr}\left[X_{i}=1\right]\right)
\end{aligned}
$$

- Independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

- Markov for MGF: (for any $\lambda>0$)

- Optimization:
$\left(\mathrm{e}^{\lambda}-1-\lambda(1+\delta)\right)$ achieves Min at stationary point $\lambda=\ln (1+\delta)$
- Independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

- Markov for MGF: (for any $\lambda>0$)

$$
\begin{array}{r}
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq \frac{\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]}{\mathrm{e}^{\lambda(1+\delta) \mu}} \leq \mathrm{e}^{\left(\mathrm{e}^{\lambda}-1-\lambda(1+\delta)\right) \mu=\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}} \\
\quad \text { (when } \lambda=\ln (1+\delta))
\end{array}
$$

- Bound MGF:

$$
\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]=\mathbb{E}\left[\prod_{i=1}^{n} \mathrm{e}^{\lambda X_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[\mathrm{e}^{\lambda X_{i}}\right] \leq \mathrm{e}^{\left(\mathrm{e}^{\lambda}-1\right) \mu}
$$

- Optimization:
$\left(\mathrm{e}^{\lambda}-1-\lambda(1+\delta)\right)$ achieves Min at stationary point $\lambda=\ln (1+\delta)$

Chernoff Bound

Chernoff Bound:

For independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

Chernoff Bound

Chernoff Bound:

For independent $X_{1}, \ldots, X_{n} \in\{0,1\}$ with

$$
X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

$$
\begin{gathered}
\text { (for any } \lambda<0) \\
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq \operatorname{Pr}\left[\mathrm{e}^{\lambda X} \geq \mathrm{e}^{\lambda(1-\delta) \mu}\right] \leq \frac{\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]}{\mathrm{e}^{\lambda(1-\delta) \mu}} \leq \mathrm{e}^{\left(\mathrm{e}^{\lambda}-1-\lambda(1-\delta)\right) \mu} \\
\quad(\text { for } \lambda=\ln (1-\delta))=\left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
\end{gathered}
$$

Chernoff Bound:

For independent or negatively associated $X_{1}, \ldots, X_{n} \in\{0,1\}$

$$
\text { with } X=\sum_{i=1}^{n} X_{i} \text { and } \mu=\mathbb{E}[X]
$$

For any $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

For any $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}
$$

For negatively associated $X_{1}, \ldots, X_{n} \in\{0,1\}$:

$$
\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]=\mathbb{E}\left[\prod_{i=1}^{n} \mathrm{e}^{\lambda X_{i}}\right] \leq \prod_{i=1}^{n} \mathbb{E}\left[\mathrm{e}^{\lambda X_{i}}\right]
$$

Chernoff-Hoeffding Bound

Chernoff Bound:

For $X=\sum_{i=1}^{n} X_{i}$, where $X_{1}, \ldots, X_{n} \in\{0,1\}$ are independent (or negatively associated), for any $t>0$:

$$
\begin{aligned}
& \operatorname{Pr}[X \geq \mathbb{E}[X]+t] \leq \exp \left(-\frac{2 t^{2}}{n}\right) \\
& \operatorname{Pr}[X \leq \mathbb{E}[X]-t] \leq \exp \left(-\frac{2 t^{2}}{n}\right)
\end{aligned}
$$

A party of $O(\sqrt{n \log n})$ can manipulate a vote w.h.p. against n voters who neither care (uniform) nor communicate (independent).

Chernoff-Hoeffding Bound

Hoeffding Bound:

For $X=\sum_{i=1}^{n} X_{i}$, where $X_{i} \in\left[a_{i}, b_{i}\right], 1 \leq i \leq n$, are independent
(or negatively associated),
for any $t>0$:

$$
\begin{aligned}
& \operatorname{Pr}[X \geq \mathbb{E}[X]+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \\
& \operatorname{Pr}[X \leq \mathbb{E}[X]-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
\end{aligned}
$$

$$
\begin{gathered}
X=\sum_{i=1}^{n} X_{i} \text {, where } X_{i} \in\left[a_{i}, b_{i}\right] \text { for every } 1 \leq i \leq n \\
\text { let } \begin{array}{l}
Y=X-\mathbb{E}[X] \\
Y_{i}=X_{i}-\mathbb{E}\left[X_{i}\right]
\end{array} \Longrightarrow\left\{\begin{array}{l}
\mathbb{E}[Y]=\mathbb{E}\left[Y_{i}\right]=0 \\
Y=\sum_{i=1}^{n} Y_{i}
\end{array}\right. \\
\quad(\text { for } \lambda>0) \quad \begin{array}{c}
\text { (neg. assoc.) } n \\
\operatorname{Pr}[X-\mathbb{E}[X] \geq t]=\operatorname{Pr}[Y \geq t] \leq \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\lambda Y}\right] \leq \mathrm{e}^{-\lambda t} \prod_{i=1} \mathbb{E}\left[\mathrm{e}^{\lambda Y_{i}}\right]
\end{array}
\end{gathered}
$$

Hoeffding's Lemma: For any $Y \in[a, b]$ with $\mathbb{E}[Y]=0$,

$$
\mathbb{E}\left[\mathrm{e}^{\lambda Y}\right] \leq \mathrm{e}^{\lambda^{2}(b-a)^{2} / 8}
$$

$$
\leq \exp \left(-\lambda t+\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

$$
\text { when } \lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

$$
\left.\begin{array}{c}
X=\sum_{i=1}^{n} X_{i} \text {, where } X_{i} \in\left[a_{i}, b_{i}\right] \text { for every } 1 \leq i \leq n \\
\text { let } \begin{array}{l}
Y=X-\mathbb{E}[X] \\
Y_{i}=X_{i}-\mathbb{E}\left[X_{i}\right]
\end{array} \Longrightarrow\left\{\begin{array}{l}
\mathbb{E}[Y]=\mathbb{E}\left[Y_{i}\right]=0 \\
Y=\sum_{i=1}^{n} Y_{i}
\end{array}\right. \\
\operatorname{Pr}[X-\mathbb{E}[X] \leq-t]=\operatorname{Pr}[Y \leq-t] \leq \mathrm{e}^{\lambda t \mathbb{E}}\left[\mathrm{e}^{\lambda Y}\right] \leq \mathrm{e}^{\lambda t} \prod_{i=1} \mathbb{E}\left[\mathrm{e}^{\lambda Y_{i}}\right]
\end{array}\right] \begin{gathered}
\text { Hoeffding's Lemma: For any } Y \in[a, b] \text { with } \mathbb{E}[Y]=0, \\
\mathbb{E}\left[\mathrm{e}^{\lambda Y}\right] \leq \mathrm{e}^{\lambda^{2}(b-a)^{2} / 8}
\end{gathered}
$$

Chernoff-Hoeffding Bound

Hoeffding Bound:

For $X=\sum_{i=1}^{n} X_{i}$, where $X_{i} \in\left[a_{i}, b_{i}\right], 1 \leq i \leq n$, are independent
(or negatively associated),
for any $t>0$:

$$
\begin{aligned}
& \operatorname{Pr}[X \geq \mathbb{E}[X]+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \\
& \operatorname{Pr}[X \leq \mathbb{E}[X]-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
\end{aligned}
$$

Sub-Gaussian Random Variables

A centered $(\mathbb{E}[Y]=0)$ random variable Y is said to be sub-Gaussian with variance factor ν (denoted $Y \in \mathscr{G}(\nu)$) if

$$
\mathbb{E}\left[\mathrm{e}^{\lambda Y}\right] \leq \exp \left(\frac{\lambda^{2} \nu}{2}\right)
$$

Hoeffding's Lemma:

Any centered bounded random variable $Y \in[a, b]$ is sub-Gaussian with variance factor $(b-a)^{2} / 4$.

Sub-Gaussian Random Variables

Sub-Gaussian Random Variables

Chernoff-Hoeffding:

For $Y=\sum_{i=1}^{n} Y_{i}$, where $Y_{i} \in \mathscr{G}\left(\nu_{i}\right), 1 \leq i \leq n$, are independent
(or negatively associated) and centered (i.e. $\mathbb{E}\left[Y_{i}\right]=0$) for any $t>0$:

$$
\begin{gathered}
\operatorname{Pr}[Y \geq t] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \nu_{i}}\right) \\
\operatorname{Pr}[Y \leq-t] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \nu_{i}}\right)
\end{gathered}
$$

The Method of Bounded Differences

The Method of Bounded Differences

McDiarmid's Inequality:

For independent $X_{1}, X_{2} \ldots, X_{n}$, if n-variate function f satisfies the Lipschitz condition: for every $1 \leq i \leq n$,

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for any possible x_{1}, \ldots, x_{n} and y_{i}, then for any $t>0$:

$$
\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- Chernoff: sum of Boolean variables, 1-Lipschitz
- Hoeffding: sum of $\left[a_{i}, b_{i}\right]$-bounded variables, $\left(b_{i}-a_{i}\right)$-Lipschitz

Balls into Bins

m balls are thrown into n bins
Y : number of empty bins

$$
Y=\sum_{i=1}^{n} Y_{i} \quad \mathbb{E}\left[Y_{i}\right]=\operatorname{Pr}[\text { bin } i \text { is empty }]=\left(1-\frac{1}{n}\right)^{m}
$$

linearity of expectation:

$$
\begin{gathered}
\mathbb{E}[Y]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=n\left(1-\frac{1}{n}\right)^{m} \\
\operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq t]<? \quad Y_{i}^{\prime} \text { s are dependent }
\end{gathered}
$$

Balls into Bins

m balls are thrown into n bins
Y : number of empty bins

$$
\mathbb{E}[Y]=n\left(1-\frac{1}{n}\right)^{m}
$$

$X_{j}:$ the index of the bin into which the j-th ball is thrown

$X_{1}, \ldots, X_{m} \in[n]$ are uniform and independent

$Y=f\left(X_{1}, \ldots, X_{m}\right)=n-\left|\left\{X_{1}, \ldots, X_{m}\right\}\right| \quad$ is 1 -Lipschitz

$$
\operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq t]=\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{m}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{m}\right)\right]\right| \geq t\right]
$$

(McDiarmid's inequality)

$$
\leq 2 \exp \left(-\frac{t^{2}}{2 m}\right)
$$

Pattern Matching

uniform random string $X \in \Sigma^{n}$ with alphabet size $|\Sigma|=m$ fixed pattern $\pi \in \Sigma^{k}$
Y : number of substrings of X matching the pattern π

$$
\begin{gathered}
Y_{i}=\left\{\begin{array}{ll}
1 & \text { if } X_{i} X_{i+1} \cdots X_{i+k-1}=\pi \\
0 & \text { otherwise }
\end{array} \quad Y=\sum_{i=1}^{n-k+1} Y_{i}\right. \\
\mathbb{E}\left[Y_{i}\right]=\operatorname{Pr}\left[X_{i} X_{i+1} \cdots X_{i+k-1}=\pi\right]=\frac{1}{m^{k}}
\end{gathered}
$$

linearity of expectation:

$$
\mathbb{E}[Y]=\sum_{i=1}^{n-k+1} \mathbb{E}\left[Y_{i}\right]=\frac{n-k+1}{m^{k}}
$$

Pattern Matching

uniform random string $X \in \Sigma^{n}$ with alphabet size $|\Sigma|=m$ fixed pattern $\pi \in \Sigma^{k}$
Y : number of substrings of X matching the pattern π
$\mathbb{E}[Y]=\frac{n-k+1}{m^{k}} \quad X_{1}, \ldots, X_{n} \in \Sigma$ are independent
$Y=f_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n-k+1} I\left[X_{i} X_{i+1} \cdots X_{i+k-1}=\pi\right]$ is k-Lipschitz
$\operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq t]=\operatorname{Pr}\left[\left|f_{\pi}\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f_{\pi}\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right]$
$\underset{\text { (McDiarmid's }}{\text { inequality) }} \quad \leq 2 \exp \left(-\frac{t^{2}}{2 n k^{2}}\right)$

Sprinkling Points on Hypercube

uniform random point $X \in\{0,1\}^{n}$ in hypercube fixed subset $S \subseteq\{0,1\}^{n}$
Y : shortest Hamming distance from X to S
Hamming distance: $H(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$ for $x, y \in\{0,1\}^{n}$

$$
\begin{aligned}
& Y=\min _{y \in S} H(X, y)=f_{S}\left(X_{1}, \ldots, X_{n}\right) \quad \text { is 1-Lipschitz } \\
& \operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq t]=\operatorname{Pr}\left[\left|f_{S}\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f_{S}\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right] \\
& \text { (McDiarmid's } \\
& \text { inequality) }
\end{aligned}
$$

Sprinkling Points on Hypercube

uniform random point $X \in\{0,1\}^{n}$ in hypercube fixed subset $S \subseteq\{0,1\}^{n}$
Y : shortest Hamming distance from X to S
Hamming distance: $H(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$ for $x, y \in\{0,1\}^{n}$

$$
\operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq \sqrt{2 c n \ln n}] \leq 2 n^{-c}
$$

the distance to S is pretty much the same from pretty much everywhere (unless S is very big)

The Method of Bounded Differences

McDiarmid's Inequality:

For independent $X_{1}, X_{2} \ldots, X_{n}$, if n-variate function f satisfies the Lipschitz condition: for every $1 \leq i \leq n$,

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for any possible x_{1}, \ldots, x_{n} and y_{i}, then for any $t>0$:

$$
\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Every Lipschitz function is well approximated by a constant function under product measures.

Martingale

Martingale:

A sequence of random variables X_{0}, X_{1}, \ldots is a martingale if for all $t>0$,

$$
\mathbb{E}\left[X_{t} \mid X_{0}, X_{1}, \ldots, X_{t-1}\right]=X_{t-1}
$$

- For random variable X and event A : (discrete probability)

$$
\mathbb{E}[X \mid A]=\sum_{x} x \operatorname{Pr}[X=x \mid A]
$$

- For random variables X and Y (not necessarily independent):

$$
\begin{aligned}
& f(y)=\mathbb{E}[X \mid Y=y] \text { is well-defined } \\
& \mathbb{E}[X \mid Y]=f(Y) \text { is a random variable }
\end{aligned}
$$

Martingale:

A sequence of random variables X_{0}, X_{1}, \ldots is a martingale if for all $t>0$,

$$
\mathbb{E}\left[X_{t} \mid X_{0}, X_{1}, \ldots, X_{t-1}\right]=X_{t-1}
$$

- Fair gambling game: Given the capitals up until time $t-1$, the expected change to the capital after the t-th bet is 0 .

A sequence of random variables X_{0}, X_{1}, \ldots is:
a super-martingale if for all $t>0$,

$$
\mathbb{E}\left[X_{t} \mid X_{0}, X_{1}, \ldots, X_{t-1}\right] \leq X_{t-1}
$$

a sub-martingale if for all $t>0$,

$$
\mathbb{E}\left[X_{t} \mid X_{0}, X_{1}, \ldots, X_{t-1}\right] \geq X_{t-1}
$$

Martingale (Generalized)

Martingale (Generalized Version):

A sequence of random variables Y_{0}, Y_{1}, \ldots is a martingale with respect to X_{0}, X_{1}, \ldots if for all $t \geq 0$,

- Y_{t} is a function of X_{0}, \ldots, X_{t}
- $\mathbb{E}\left[Y_{t+1} \mid X_{0}, X_{1}, \ldots, X_{t}\right]=Y_{t}$
- A fair gambling game:
- X_{i} : outcome (win/loss) of the i-th betting
- Y_{i} : capital after the i-th betting

Martingale (Generalized)

Martingale (Generalized Version):

A sequence of random variables Y_{0}, Y_{1}, \ldots is a martingale with respect to X_{0}, X_{1}, \ldots if for all $t \geq 0$,

- Y_{t} is a function of X_{0}, \ldots, X_{t}
- $\mathbb{E}\left[Y_{t+1} \mid X_{0}, X_{1}, \ldots, X_{t}\right]=Y_{t}$
- A probability space: $(\Omega, \mathscr{F}, \operatorname{Pr})$
- A filtration of σ-algebras $\mathscr{F}_{0} \subseteq \mathscr{F}_{1} \subseteq \cdots$ s.t. for all $t \geq 0$:
- Y_{t} is \mathscr{F}_{t}-measurable
- $\mathbb{E}\left[Y_{t+1} \mid \mathscr{F}_{t}\right]=Y_{t}$

Azuma's Inequality

Azuma's Inequality:

For martingale Y_{0}, Y_{1}, \ldots (with respect to X_{0}, X_{1}, \ldots) satisfying:

$$
\forall i \geq 0,\left|Y_{i}-Y_{i-1}\right| \leq c_{i}
$$

for any $n \geq 1$ and $t>0$:

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- Your capital does not change too fast if:
- the game is fair (martingale)
- payoff for each gambling is bounded

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

$$
Y_{0}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]-\cdots \quad f\left(X_{1}, \ldots, X_{n}\right)=Y_{n}
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

$\mathrm{E}[f]={ }_{Y_{0},}$,

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

randomized by

$$
\mathbf{E}[f]=Y_{0}, \quad Y_{1},
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

randomized by

averaged over

$$
\mathbf{E}[f]=Y_{0}, \quad Y_{1}, \quad Y_{2},
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

randomized by

averaged over

$$
\mathbf{E}[f]=Y_{0}, \quad Y_{1}, \quad Y_{2}, \quad Y_{3}
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

$$
\mathbf{E}[f]=Y_{0}, \quad Y_{1}, \quad Y_{2}, \quad Y_{3}, \quad Y_{4}, \quad \text { averaged over }
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

randomized by

$\mathbf{E}[f]=Y_{0}, \quad Y_{1}, \quad Y_{2}, \quad Y_{3}, \quad Y_{4}, \quad Y_{5}$,

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

randomized by

no information

full information

$$
\mathbf{E}[f]=Y_{0}, \quad Y_{1}, \quad Y_{2}, \quad Y_{3}, \quad Y_{4}, \quad Y_{5}, \quad Y_{6}=f
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

Doob Martingale

A Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ of an n-variate function f with respect to a random vector $\left(X_{1}, \ldots, X_{n}\right)$ is:

$$
\forall 0 \leq i \leq n, \quad Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]
$$

Theorem:

The Doob sequence $Y_{0}, Y_{1}, \ldots, Y_{n}$ is a martingale w.r.t. X_{1}, \ldots, X_{n}.

- $\forall 0 \leq i \leq n, Y_{i}$ is a function of X_{1}, \ldots, X_{i}
- $\mathbb{E}\left[Y_{i} \mid X_{1}, \ldots, X_{i-1}\right]$
$=\mathbb{E}\left[\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right] \mid X_{1}, \ldots, X_{i-1}\right]$
$=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i-1}\right]=Y_{i-1}$

The Method of Bounded Differences

The Method of Bounded Differences:

For n-variate function f on random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ satisfying the Lipschitz condition: for every $1 \leq i \leq n$

$$
\left|\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i}\right]-\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i-1}\right]\right| \leq c_{i}
$$

for any $t>0$:

$$
\operatorname{Pr}[|f(\boldsymbol{X})-\mathbb{E}[f(\boldsymbol{X})]| \geq t] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

The Method of Bounded Differences

The Method of Bounded Differences:

For n-variate function f on random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ satisfying the Lipschitz condition: for every $1 \leq i \leq n$

$$
\begin{aligned}
& \mid \underset{\text { any } t>0: Y_{i}}{\mid \mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i}\right]}-\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i-1}\right] \\
& Y_{i-1}
\end{aligned} \leq c_{i} .
$$

Doob martingale: $Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]$

Azuma's Inequality

Azuma's Inequality:

For martingale Y_{0}, Y_{1}, \ldots (with respect to X_{0}, X_{1}, \ldots) satisfying:

$$
\forall i \geq 0,\left|Y_{i}-Y_{i-1}\right| \leq c_{i}
$$

for any $n \geq 1$ and $t>0$:

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

The Method of Bounded Differences

The Method of Bounded Differences:

For n-variate function f on random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ satisfying the Lipschitz condition: for every $1 \leq i \leq n$

$$
\begin{aligned}
& |\underbrace{\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i}\right]}_{\text {rany } t>0: Y_{i}}-\frac{\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i-1}\right]}{Y_{i-1}}| \leq c_{i} \\
& \text { uma }) \operatorname{Pr}[\left\lvert\, f(\underbrace{Y_{n}}_{\left.\boldsymbol{X}_{n}\right)} \frac{\mathbb{E}\left[\left(\overline{f(\boldsymbol{X})]} \frac{Y_{0}}{Y_{0}}\right.\right.}{t} \geq t] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)\right.
\end{aligned}
$$

Doob martingale: $Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]$

The Method of Bounded Differences

The Method of Bounded Differences:

For n-variate function f on random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ satisfying the \wedge_{\wedge} ipschitz condition: for every $1 \leq i \leq n$

$$
\left|\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i}\right]-\mathbb{E}\left[f(\boldsymbol{X}) \mid X_{1}, \ldots, X_{i-1}\right]\right| \leq c_{i}
$$

for any $t>0$:
usually difficult to verify

$$
\operatorname{Pr}[|f(\boldsymbol{X})-\mathbb{E}[f(\boldsymbol{X})]| \geq t] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

worst-case Lipschitz: for every $1 \leq i \leq n$,

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for any possible x_{1}, \ldots, x_{n} and y_{i}

The Method of Bounded Differences

McDiarmid's Inequality:

For independent $X_{1}, X_{2} \ldots, X_{n}$, if n-variate function f satisfies the Lipschitz condition: for every $1 \leq i \leq n$,

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for any possible x_{1}, \ldots, x_{n} and y_{i},
then for any $t>0$:
$\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)$
worst-case Lipschitz condition
independent X_{1}, \ldots, X_{n}
average-case Lipschitz condition

Martingale Concentration

Azuma's Inequality:

For martingale Y_{0}, Y_{1}, \ldots (with respect to X_{0}, X_{1}, \ldots) satisfying:

$$
\forall i \geq 0,\left|Y_{i}-Y_{i-1}\right| \leq c_{i}
$$

for any $n \geq 1$ and $t>0$:

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Difference: $D_{i}=Y_{i}-Y_{i-1}$

$$
S_{n}=\sum_{i=1}^{n} D_{i}=Y_{n}-Y_{0}
$$

Martingale difference: D_{i} is a function of X_{0}, \ldots, X_{i}

$$
\begin{aligned}
\mathbb{E}\left[D_{i} \mid X_{0}, \ldots, X_{i-1}\right] & =\mathbb{E}\left[Y_{i}-Y_{i-1} \mid X_{0}, \ldots, X_{i-1}\right] \\
& =\mathbb{E}\left[Y_{i} \mid X_{0}, \ldots, X_{i-1}\right]-\mathbb{E}\left[Y_{i-1} \mid X_{0}, \ldots, X_{i-1}\right] \\
& =Y_{i-1}-Y_{i-1}=0
\end{aligned}
$$

- Martingale property:
- D_{i} is a function of X_{0}, \ldots, X_{i} and $\mathbb{E}\left[D_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$
- Bounded differences: $\forall i \geq 1,\left|D_{i}\right| \leq c_{i}$

$$
S_{n}=\sum_{i=1}^{n} D_{i}
$$

$$
\text { Azuma: } \operatorname{Pr}\left[\left|S_{n}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

(for $\lambda>0) \operatorname{Pr}\left[S_{n} \geq t\right]=\operatorname{Pr}\left[\mathrm{e}^{\lambda S_{n}} \geq \mathrm{e}^{\lambda t}\right] \leq \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right]$

$$
\begin{aligned}
& \mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\lambda S_{n}} \mid X_{0}, \ldots, X_{n-1}\right]\right]=\mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\lambda\left(S_{n-1}+D_{n}\right)} \mid X_{0}, \ldots, X_{n-1}\right]\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}} \cdot \mathrm{e}^{\lambda D_{n}} \mid X_{0}, \ldots, X_{n-1}\right]\right]=\mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}} \cdot \mathbb{E}\left[\mathrm{e}^{\lambda D_{n}} \mid X_{0}, \ldots, X_{n-1}\right]\right]
\end{aligned}
$$

- Martingale property:
- D_{i} is a function of X_{0}, \ldots, X_{i} and $\mathbb{E}\left[D_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$
- Bounded differences: $\forall i \geq 1,\left|D_{i}\right| \leq c_{i}$

$$
S_{n}=\sum_{i=1}^{n} D_{i}
$$

$$
\mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right]=\mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}} \cdot \mathbb{E}\left[\mathrm{e}^{\lambda D_{n}} \mid X_{0}, \ldots, X_{n-1}\right]\right] \leq \mathrm{e}^{\lambda^{2} c_{n}^{2} / 2} \cdot \mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}}\right]
$$

Hoeffding's Lemma: For any $Z \in[a, b]$ with $\mathbb{E}[Z]=0$,

$$
\mathbb{E}\left[\mathrm{e}^{\lambda Z}\right] \leq \mathrm{e}^{\lambda^{2}(b-a)^{2} / 8}
$$

$Z=\left(D_{n} \mid X_{0}, \ldots, X_{n-1}\right) \quad \Longrightarrow \mathbb{E}\left[\mathrm{e}^{\lambda D_{n}} \mid X_{0}, \ldots, X_{n-1}\right] \leq \mathrm{e}^{\lambda^{2} c_{n}^{2} / 2}$

- Martingale property:
- D_{i} is a function of X_{0}, \ldots, X_{i} and $\mathbb{E}\left[D_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$
- Bounded differences: $\forall i \geq 1,\left|D_{i}\right| \leq c_{i}$

$$
\begin{gathered}
S_{n}=\sum_{i=1}^{n} D_{i} \\
\mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right] \leq \mathrm{e}^{\lambda^{2} c_{n}^{2} / 2} \cdot \mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}}\right] \leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} c_{i}^{2}\right) \\
\quad \begin{array}{l}
(\text { for } \lambda>0) \\
\operatorname{Pr}\left[S_{n} \geq t\right] \leq \mathrm{e}^{-\lambda t} \mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right] \leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} c_{i}^{2}-\lambda t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right) \\
\text { Azuma: } \operatorname{Pr}\left[S_{n} \geq t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
\end{array} \sum_{i=1}^{n} c_{i}^{2}
\end{gathered}
$$

- Martingale property:
- D_{i} is a function of X_{0}, \ldots, X_{i} and $\mathbb{E}\left[D_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$
- Bounded differences: $\forall i \geq 1,\left|D_{i}\right| \leq c_{i}$

$$
S_{n}=\sum_{i=1}^{n} D_{i}
$$

$$
\text { Azuma: } \operatorname{Pr}\left[S_{n} \leq-t\right] \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

(for $\lambda<0) \operatorname{Pr}\left[S_{n} \leq-t\right]=\operatorname{Pr}\left[\mathrm{e}^{\lambda S_{n}} \geq \mathrm{e}^{-\lambda t}\right] \leq \mathrm{e}^{\lambda t} \mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right]$

$$
\begin{gathered}
\leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} c_{i}^{2}+\lambda t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right) \quad \text { when } \lambda=\frac{-t}{\sum_{i=1}^{n} c_{i}^{2}} \\
\mathbb{E}\left[\mathrm{e}^{\lambda S_{n}}\right] \leq \mathrm{e}^{\lambda^{2} c_{n}^{2} / 2} \cdot \mathbb{E}\left[\mathrm{e}^{\lambda S_{n-1}}\right] \leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} c_{i}^{2}\right)
\end{gathered}
$$

