Advanced Algorithms

 Fingerprinting尹一通 Nanjing University， 2022 Fall

Checking Matrix Multiplication

- three $n \times n$ matrices A, B, C :

Matrix Multiplication Algorithms

Checking Matrix Multiplication

- three $n \times n$ matrices A, B, C :

Freivald's Algorithm: pick a uniform random $r \in\{0,1\}^{n}$; check whether $A(B r)=C r$;
time: $O\left(n^{2}\right)$
if $A B=C$: always correct if $A B \neq C$:

Freivald's Algorithm:

pick a uniform random $r \in\{0,1\}^{n}$; check whether $A(B r)=C r$;
if $A B \neq C$: \quad let $D=A B-C \neq \mathbf{0}_{n \times n}$
suppose $D_{i j} \neq 0$
$\operatorname{Pr}[A B r=C r]=\operatorname{Pr}[D r=0] \leq \frac{2^{n-1}}{2^{n}}=\frac{1}{2}$

$$
\begin{aligned}
& (D r)_{i}=\sum_{k=1}^{n} D_{i k} r_{k}=0 \\
& \Rightarrow r_{j}=-\frac{1}{D_{i j}} \sum_{k \neq j} D_{i k} r_{k}
\end{aligned}
$$

Freivald's Algorithm:

pick a uniform random $r \in\{0,1\}^{n}$; check whether $A(B r)=C r$;

if $A B=C$: always correct

Theorem (Feivald 1979).

For $n \times n$ matrices A, B, C, if $A B \neq C$, for uniform random $r \in\{0,1\}^{n}$,

$$
\operatorname{Pr}[A B r=C r] \leq \frac{1}{2}
$$

repeat independently for $O(\log n)$ times
Total running time: $O\left(n^{2} \log n\right)$
Correct with high probability (w.h.p.).

Polynomial Identity Testing (PIT)

Input: two polynomials $f, g \in \mathbb{F}[x]$ of degree d.
Output: $f \equiv g$?
$\mathbb{F}[x]$: polynomial ring in x over field \mathbb{F}
$f \in \mathbb{F}[x]$ of degree $d: \quad f(x)=\sum_{i=0}^{d} a_{i} x^{i}$ where $a_{i} \in \underbrace{\mathbb{F}}_{\text {field }}$
Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.
Output: $f \equiv 0$?
f is given as black-box

Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.
 Output: $f \equiv 0$?

- Deterministic algorithm (polynomial interpolation):

$$
\begin{aligned}
& \text { pick arbitrary distinct } x_{0}, x_{1}, \ldots, x_{d} \in \mathbb{F} \text {; } \\
& \text { check if } f\left(x_{i}\right)=0 \text { for all } 0 \leq i \leq d \text {; }
\end{aligned}
$$

Fundamental Theorem of Algebra.

Any non-zero d-degree polynomial $f \in \mathbb{F}[x]$ has at most d roots.

- Randomized algorithm (fingerprinting):
pick a uniform random $r \in S$; check if $f(r)=0$;
let $S \subseteq \mathbb{F}$ be arbitrary (whose size to be fixed later)

Input: a polynomial $f \in \mathbb{F}[x]$ of degree d.
 Output: $f \equiv 0$?

pick a uniform random $r \in S$; check if $f(r)=0$;
if $f \equiv 0$: always correct if $f \not \equiv 0$:

$$
\operatorname{Pr}[f(r)=0] \leq \frac{d}{|S|}=\frac{1}{2}
$$

Fundamental Theorem of Algebra.

Any non-zero d-degree polynomial $f \in \mathbb{F}[x]$ has at most d roots.

Checking Identity

北京

database 1

南京 database 2

Communication Complexity

Communication Complexity

$$
f(a, b)
$$

Han Meimei Li Lei
EQ : $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$

Theorem (Yao 1979).

Every deterministic communication protocol solving $E Q$ communicates n bits in the worst-case.

Communication Complexity

$$
\begin{array}{lll}
f=\sum_{i=0}^{n-1} a_{i} x^{i} & f(r)=g(r) ? \\
a \in\{0,1\}^{n} & \\
& \\
& \text { by PIT: } \\
& \text { one-sided error } \leq \frac{1}{2} & \begin{array}{l}
\text { pick uniform } \\
\text { random } r \in[2 n]
\end{array}
\end{array}
$$

\# of bit communicated: too large!

Communication Complexity

$$
\begin{aligned}
& f=\sum_{i=0}^{n-1} a_{i} x^{i} \quad f(r)=g(r) ? \quad g=\sum_{i=0}^{n-1} b_{i} x^{i} \\
& a \in\{0,1\}^{n} \stackrel{r, g(r)}{\stackrel{\sim}{*}}
\end{aligned}
$$

pick uniform
random $r \in[p]$

- choose a prime $p \in\left[n^{2}, 2 n^{2}\right]$
- let $f, g \in \mathbb{Z}_{p}[x]$
- by PIT: one-sided error is $\frac{n}{p}=O\left(\frac{1}{n}\right)$
(correct w.h.p.)

Polynomial Identity Testing (PIT)

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d. Output: $f \equiv 0$?
$\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$: ring of n-variate polynomials in x_{1}, \ldots, x_{n} over field \mathbb{F} $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]:$

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}, \ldots, i_{n} \geq 0} a_{i_{1}, i_{2}, \ldots, i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}
$$

Degree of f : maximum $i_{1}+i_{2}+\cdots+i_{n}$ with $a_{i_{1}, i_{2}, \ldots, i_{n}} \neq 0$

Polynomial Identity Testing (PIT)

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d.
Output: $f \equiv 0$?

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{i_{1}, \ldots, i_{n} \geq 0 \\ i_{1}+\ldots+i_{n} \leq d}} a_{i_{1}, i_{2}, \ldots, i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2} \ldots} x_{n}^{i_{n}}
$$

f is given as black-box: given any $\vec{x} \in \mathbb{F}^{n}$, return $f(\vec{x})$ or as product form: e.g. Vandermonde determinant

$$
M=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right] \quad f(\vec{x})=\operatorname{det}(M)=\prod_{j<i}\left(x_{i}-x_{j}\right)
$$

Polynomial Identity Testing (PIT)

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d.
Output: $f \equiv 0$?
f is given as product form
if \exists a poly-time deterministic algorithm for PIT:

either: NEXP $\neq \mathbf{P} /$ poly or: \#P $=\mathbf{F P}$

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d. Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:
pick $r_{1}, \ldots, r_{n} \in S$ uniformly and independently at random; check if $f\left(r_{1}, \ldots, r_{n}\right)=0$;

$$
f \equiv 0 \Longrightarrow f\left(r_{1}, \ldots, r_{n}\right)=0
$$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

\# of roots for any $f \not \equiv 0$ in any cube S^{n} is $\leq d \cdot|S|^{n-1}$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geq 0 \\ i_{1}+i_{2}+\cdots+i_{n} \leq d}} a_{i_{1}, i_{2}, \ldots, i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}
$$

f can be treated as a single-variate polynomial of x_{n} :

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{i=0}^{d} x_{n}^{i} f_{i}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
& =g_{x_{1}, x_{2}, \ldots, x_{n-1}}\left(x_{n}\right)
\end{aligned}
$$

$$
\operatorname{Pr}\left[f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right]=\operatorname{Pr}\left[g_{r_{1}, r_{2}, \ldots, r_{n-1}}\left(r_{n}\right)=0\right]
$$

$$
g_{r_{1}, r_{2}, \ldots, r_{n-1}} \not \equiv 0 ?
$$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

induction on n :

basis: $n=1 \quad$ single-variate case, proved by the fundamental Theorem of algebra
I.H.: Schwartz-Zippel Thm is true for all smaller n

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

induction step:
k : highest power of x_{n} in $f \quad \neg\left\{\begin{array}{l}f_{k} \neq 0 \\ \text { degree of } f_{k} \leq d-k\end{array}\right.$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{n}^{i} f_{i}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
& \quad=x_{n}^{k} f_{k}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+\bar{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

where $\bar{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=0}^{k-1} x_{n}^{i} f_{i}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$
highest power of x_{n} in $\bar{f}<k$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n}^{k} f_{k}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+\bar{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\left\{\begin{array}{l}
f_{k} \not \equiv 0 \\
\text { degree of } f_{k} \leq d-k
\end{array}\right.
$$

highest power of x_{n} in $\bar{f}<k$

law of total probability:

$$
\begin{aligned}
& \operatorname{Pr}\left[f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \quad \text { I.H. } \\
& =\operatorname{Pr}\left[f(\vec{r})=0 \mid f_{k}\left(r_{1}, \ldots, r_{n-1}\right)=0\right] \cdot \operatorname{Pr}\left[f_{k}\left(r_{1}, \ldots, r_{n-1}\right)=0\right] \\
& +\operatorname{Pr}\left[f(\vec{r})=0 \mid f_{k}\left(r_{1}, \ldots, r_{n-1}\right) \neq 0\right] \cdot \operatorname{Pr}\left[f_{k}\left(r_{1}, \ldots, r_{n-1}\right) \neq 0\right] \\
& \quad=\operatorname{Pr}\left[g_{r_{1}, \ldots, r_{n-1}}\left(r_{n}\right)=0 \mid f_{k}\left(r_{1}, \ldots, r_{n-1}\right) \neq 0\right] \leq \frac{k}{|S|} \\
& \quad \text { where } g_{x_{1}, \ldots, x_{n-1}}\left(x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

$$
\operatorname{Pr}\left[f\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \leq \frac{d-k}{|S|}+\frac{k}{|S|}=\frac{d}{|S|}
$$

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d. Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:
pick $r_{1}, \ldots, r_{n} \in S$ uniformly and independently at random; check if $f\left(r_{1}, \ldots, r_{n}\right)=0$;

$$
f \equiv 0 \Longrightarrow f\left(r_{1}, \ldots, r_{n}\right)=0
$$

Schwartz-Zippel Theorem.

$$
f \not \equiv 0 \Longrightarrow \operatorname{Pr}\left[f\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

\# of roots for any $f \not \equiv 0$ in any cube S^{n} is $\leq d \cdot|S|^{n-1}$

Applications of Schwartz-Zippel

- test whether a graph has perfect matching;
- test isomorphism of rooted trees;
- distance property of Reed-Muller codes;
- proof of hardness vs randomness tradeoff;
- algebraic construction of probabilistically checkable proofs (PCP);

Bipartite Perfect Matching

bipartite graph
perfect matchings

$G([n],[n], E)$

- determine whether G has a perfect matching:
- Hall's theorem: enumerates all subset of [n]
- Hungarian method: $O\left(n^{3}\right)$
- Hopcroft-Karp algorithm: $O(m \sqrt{n})$
$10 \quad 01$
$20 \quad 02$
$30 \quad \mathrm{O}_{3}$
$G([n],[n], E)$

$$
A=\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & 0 \\
0 & x_{32} & x_{33}
\end{array}\right] \quad \operatorname{det}(A)=\begin{aligned}
& x_{11} x_{22} x_{33} \\
& +x_{13} x_{21} x_{32} \\
& -x_{12} x_{21} x_{33}
\end{aligned}
$$

Edmonds matrix: an $n \times n$ matrix A defined as

$$
\forall i, j \in[n], \quad A(i, j)= \begin{cases}x_{i, j} & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

Theorem: $\operatorname{det}(A) \not \equiv 0 \Longleftrightarrow \exists$ a perfect matching in G

$$
\operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i \in[n]} A(i, \pi(i))=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \begin{cases}\prod_{i \in[n]} x_{i, \pi(i)} & \pi \text { is a P.M. } \\ 0 & \text { otherwise }\end{cases}
$$

$10 \quad 01$ $20-102$ $30 \quad \mathrm{O}_{3}$ $G([n],[n], E)$

$$
A=\left[\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & 0 \\
0 & x_{32} & x_{33}
\end{array}\right] \quad \operatorname{det}(A)=x_{11} x_{22} x_{33}, \begin{aligned}
& +x_{13} x_{21} x_{32} \\
& -x_{12} x_{21} x_{33}
\end{aligned}
$$

Edmonds matrix: an $n \times n$ matrix A defined as

$$
\forall i, j \in[n], \quad A(i, j)= \begin{cases}x_{i, j} & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

Theorem: $\operatorname{det}(A) \not \equiv 0 \Longleftrightarrow \exists$ a perfect matching in G

- $\operatorname{det}(A)$ is an m-variate degree- n polynomial:
- Use Schwartz-Zippel to check whether $\operatorname{det}(A) \not \equiv 0$
- Computing determinants is generic and can be done in parallel (Chistov's algorithm)

Fingerprinting

$$
\begin{array}{ccc}
X & = & Y \\
\downarrow & & \downarrow \\
\operatorname{FING}(X) & = & \operatorname{FING}(Y) \quad ?
\end{array}
$$

- $\operatorname{FING}()$ is a function: $X=Y \Longrightarrow \operatorname{FING}(X)=\operatorname{FING}(Y)$
- if $X \neq Y, \operatorname{Pr}[\operatorname{FING}(X)=\operatorname{FING}(Y)]$ is small.
- Fingerprints are easy to compute and compare.

Checking Matrix Multiplication

- three $n \times n$ matrices A, B, C :

Freivald's Algorithm: pick a uniform random $r \in\{0,1\}^{n}$; check whether $A(B r)=C r$;

For an $n \times n$ matrix M :
$\operatorname{FING}(M)=M r$ for uniform random $r \in\{0,1\}^{n}$

Polynomial Identity Testing (PIT)

Input: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree d.
Output: $f \equiv 0$?

Fix an arbitrary $S \subseteq \mathbb{F}$:
pick $r_{1}, \ldots, r_{n} \in S$ uniformly and independently at random; check if $f\left(r_{1}, \ldots, r_{n}\right)=0$;

For a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$:
FING $(f)=f\left(r_{1}, \ldots, r_{n}\right)$ for uniform independent $r_{1}, \ldots, r_{n} \in S$

Communication Complexity

$$
\begin{gathered}
\mathrm{EQ}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\} \\
\mathrm{EQ}(a, b)= \begin{cases}1 & a=b \\
0 & a \neq b\end{cases}
\end{gathered}
$$

Fingerprinting

$\operatorname{FING}(a)=\operatorname{FING}(b) ?$

pick a random FING()

- $\operatorname{FING}()$ is a function: $a=b \Longrightarrow \operatorname{FING}(a)=\operatorname{FING}(b)$
- if $a \neq b, \operatorname{Pr}[\operatorname{FING}(a)=\operatorname{FING}(b)]$ is small.
- Fingerprints are short.

$$
\begin{aligned}
& f=\sum_{i=0}^{n-1} a_{i} x^{i} \begin{array}{c}
f(r)=g(r) ? \\
\uparrow
\end{array} \quad g=\sum_{i=0}^{n-1} b_{i} x^{i} \\
& a \in\{0,1\}^{n} \stackrel{r, g(r)}{\longleftrightarrow} \\
& \text { S: } b \in\{0,1\}^{n} \\
& \text { pick uniform } \\
& \text { random } r \in[p]
\end{aligned}
$$

$$
f, g \in \mathbb{Z}_{p}[x] \quad \text { for a prime } p \in\left[n^{2}, 2 n^{2}\right]
$$

$\operatorname{FING}(b)=\sum_{i=0}^{n-1} b_{i} r^{i}$ for random r

$\operatorname{FING}(x)=x \bmod p$ for uniform random prime $p \in[k]$ communication complexity: $\mathrm{O}(\log k)$

\[

\]

uniform random prime $p \in[k]$
for a $z=|a-b| \neq 0: \operatorname{Pr}[z \bmod p=0] \leq$?
$\in\left[2^{n}\right]$
each prime divisor ≥ 2
\# of prime divisors of $z \leq n$
$\operatorname{Pr}[z \bmod p=0]=\frac{\# \text { of prime divisors of } z}{\# \text { of primes in }[k]=n}=\pi(k)$
$\pi(N)$: \# of primes in [$N]$

$$
\begin{aligned}
& \text { Prime Number Theorem (PNT): } \\
& \qquad \pi(N) \sim \frac{N}{\ln N} \text { as } N \rightarrow \infty
\end{aligned}
$$

for a $z=|a-b| \neq 0: \operatorname{Pr}[z \bmod p=0] \leq$?
$\operatorname{Pr}[z \bmod p=0]=\frac{\# \text { of prime divisors of } z}{\# \text { of primes in }[k]=\pi(k)}$
choose $k=n^{3} \quad \leq \frac{n \ln k}{k} \quad=\frac{3 \ln n}{n^{2}}=O\left(\frac{1}{n}\right)$

$\operatorname{FING}(b)=b \bmod p$ for uniform random prime $p \in\left[n^{3}\right]$
communication complexity: $\mathrm{O}(\log n)$

$$
\begin{aligned}
& \text { if } a=b \quad \neg a \equiv b(\bmod p) \\
& \text { if } a \neq b \quad \operatorname{Pr}[a \equiv b(\bmod p)]=O\left(\frac{1}{n}\right)
\end{aligned}
$$

Pattern Matching

Input: string $x \in\{0,1\}^{n}$, pattern $y \in\{0,1\}^{m}$
 Check whether y is a substring of x.

- naive algorithm: $O(m n)$ time
- Knuth-Morris-Prat (KMP) algorithm: $O(m+n)$ time
- finite state automaton

Pattern Matching via Fingerprinting

$$
x[i, i+m-1]=y ?
$$

pick a random FING(); for $i=1,2, \ldots, n-m+1$ do:
if $\operatorname{FING}(x[i, i+m-1])=\operatorname{FING}(y)$ then return i; return "no match";

Karp-Rabin Algorithm

$$
\begin{aligned}
& x[i, i+m-1]=y ?
\end{aligned}
$$

Karp-Rabin Algorithm: $\operatorname{FING}(a)=a \bmod p$ pick a uniform random prime $p \in\left[m n^{3}\right]$; for $i=1,2, \ldots, n-m+1$ do:
if $x[i, i+m-1] \equiv y(\bmod p)$ then return i; return "no match";

$y:$| y_{1} | y_{2} | \cdots | y_{m} |
| :--- | :--- | :--- | :--- |
| $\in\{0,1\}^{m}$ | | | |

x :

x_{1}	\ldots	x_{i}	x_{i+1}	\ldots	x_{i+m-1}	\ldots	x_{n}

Karp-Rabin Algorithm: $\operatorname{FING}(a)=a \bmod p$

pick a uniform random prime $p \in\left[m n^{3}\right]$;
for $i=1,2, \ldots, n-m+1$ do:
if $x[i, i+m-1] \equiv y(\bmod p)$ then return i; return "no match";

For each i, if $x[i, i+m-1] \neq y$:

$$
\operatorname{Pr}[x[i, i+m-1] \equiv y(\bmod p)] \leq m \ln \left(m n^{3}\right) / m n^{3}=o\left(1 / n^{2}\right)
$$

By union bound: when y is not a substring of x
$\operatorname{Pr}[$ the algorithm ever makes a mistake]

$$
\leq \operatorname{Pr}[\exists i, x[i, i+m-1] \equiv y(\bmod p)]=o(1 / n)
$$

Karp-Rabin Algorithm: $\quad \operatorname{FING}(a)=a \bmod p$

 pick a uniform random prime $p \in\left[m n^{3}\right]$; for $i=1,2, \ldots, n-m+1$ do: if $\{[i, i+m-1] \equiv y(\bmod p)$ then return i; return "no match"; Testable in O(1) timeObserve: $x[i+1, i+m]=x_{i+m}+2\left(x[i, i+m-1]-2^{m-1} x_{i}\right)$
$\operatorname{FING}(x[i+1, i+m])=\left(x_{i+m}+2\left(\operatorname{FING}(x[i, i+m-1])-2^{m-1} x_{i}\right)\right) \bmod p$

Checking Distinctness

Input: n numbers $x_{1}, x_{2}, \ldots, x_{n} \in\{1,2, \ldots, n\}$
Determine whether every number appears exactly once.

$$
\widehat{\square} \begin{gathered}
A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
B=\{1,2, \ldots, n\}
\end{gathered}
$$

Input: two multisets $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in\{1, \ldots, n\}$

Output: $A=B$ (as multisets)?

$$
A=B>\forall \quad \begin{array}{r}
\quad \text { \# of times } x \text { appearing in } A \\
=\# \text { of times } x \text { appearing in } B
\end{array}
$$

Input: two multisets $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in\{1, \ldots, n\}$
Output: $A=B$ (as multisets)?

- naive algorithm: use $\mathrm{O}(n)$ time and $\mathrm{O}(n)$ space
- fingerprinting: random fingerprint function FING()
- check $\operatorname{FING}(A)=\operatorname{FING}(B)$?
- time cost: time to compute and check fingerprints $\mathrm{O}(n)$
- space cost: space to store fingerprints $\mathrm{O}(\log p)$
multisets $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \square f_{A}(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$
$f_{A} \in \mathbb{Z}_{p}[x]$ for prime p (to be specified)
$\operatorname{FING}(A)=f_{A}(r) \quad$ for uniform random $r \in \mathbb{Z}_{p}$
$\left.\begin{array}{r}\text { multisets } A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\ B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \\ \text { where } a_{i}, b_{i} \in\{1,2, \ldots, n\}\end{array}\right\rangle\left\{\begin{array}{l}f_{A}(x)=\prod_{i=1}^{n}\left(x-a_{i}\right) \\ f_{B}(x)=\prod_{i=1}^{n}\left(x-b_{i}\right)\end{array}\right.$
$f_{A}, f_{B} \in \mathbb{Z}_{p}[x]$ for prime p (to be specified)
$\left.\begin{array}{l}\operatorname{FING}(A)=f_{A}(r) \\ \operatorname{FING}(B)=f_{B}(r)\end{array}\right\}$ for uniform random $r \in \mathbb{Z}_{p}$

$$
A \neq B \Longrightarrow f_{A} \not \equiv f_{B} \text { on reals } \mathbb{R}
$$

(but possibly $f_{A} \equiv f_{B}$ on finite field \mathbb{Z}_{p})
if $A=B: \operatorname{FING}(A)=\operatorname{FING}(B)$
if $A \neq B: \operatorname{FING}(A)=\operatorname{FING}(B)$
$\checkmark\left\{\begin{array}{l}\bullet f_{A} \equiv f_{B} \text { on finite field } \mathbb{Z}_{p} \\ \bullet f_{A} \neq f_{B} \text { on } \mathbb{Z}_{p} \text { but } f_{A}(r)=f_{B}(r)\end{array}\right.$
in $f_{A}-f_{B}$ on \mathbb{R} :
\exists coefficient $c \neq 0$
$c \bmod p=0$

$$
\begin{aligned}
& \begin{array}{r}
\text { multisets } A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \\
\text { where } a_{i}, b_{i} \in\{1,2, \ldots, n\}
\end{array} \checkmark\left\{\begin{array}{l}
f_{A}(x)=\prod_{i=1}^{n}\left(x-a_{i}\right) \\
f_{B}(x)=\prod_{i=1}^{n}\left(x-b_{i}\right)
\end{array}\right. \\
& f_{A}, f_{B} \in \mathbb{Z}_{p}[x] \text { for uniform random prime } p \in[L, U] \\
& \left.\begin{array}{l}
\operatorname{FING}(A)=f_{A}(r) \\
\operatorname{FING}(B)=f_{B}(r)
\end{array}\right\} \text { for uniform random } r \in \mathbb{Z}_{p} \\
& \text { if } A \neq B: \operatorname{FING}(A)=\operatorname{FING}(B)
\end{aligned}
$$

$\left.\begin{array}{r}\text { multisets } A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\ B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \\ \text { where } a_{i}, b_{i} \in\{1,2, \ldots, n\}\end{array}\right\rangle\left\{\begin{array}{l}f_{A}(x)=\prod_{i=1}^{n}\left(x-a_{i}\right) \\ f_{B}(x)=\prod_{i=1}^{n}\left(x-b_{i}\right)\end{array}\right.$
$f_{A}, f_{B} \in \mathbb{Z}_{p}[x]$ for uniform random prime $p \in[L, U]$
$\left.\operatorname{FING}(A)=f_{A}(r)\right\} \quad$ with $U=2 L=(n \log n)^{2}$
$\left.\operatorname{FING}(B)=f_{B}(r)\right\}$ for uniform random $r \in \mathbb{Z}_{p}$
if $A \neq B: \quad \operatorname{FING}(A)=\operatorname{FING}(B)$

Input: two multisets $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in\{1, \ldots, n\}$
Output: $A=B$ (as multisets)?

Lipton's Algorithm (1989):

$\left.\operatorname{FING}(A)=\prod_{i=1}^{n}\left(r-a_{i}\right) \bmod p\right)$ for uniform random prime $p \in\left[(n \log n)^{2 / 2},(n \log n)^{2}\right]$
$\operatorname{FING}(B)=\prod_{i=1}^{n}\left(r-b_{i}\right) \bmod p\left\{\right.$ and uniform random $r \in \mathbb{Z}_{p}$
if $A \neq B$ as multisets:

$$
f_{A}(x)=\prod_{i=1}^{n}\left(x-a_{i}\right) \bmod p \quad f_{B}(x)=\prod_{i=1}^{n}\left(x-b_{i}\right) \bmod p
$$

$\operatorname{Pr}[\operatorname{FING}(A)=\operatorname{FING}(B)]$

$$
\leq \operatorname{Pr}\left[f_{A} \equiv f_{B}\right]+\operatorname{Pr}\left[f_{A}(r)=f_{B}(r) \mid f_{A} \not \equiv f_{B}\right]=\mathrm{O}(1 / n)
$$

Input: n numbers $x_{1}, x_{2}, \ldots, x_{n} \in\{1,2, \ldots, n\}$
Determine whether every number appears exactly once.

Lipton's Algorithm (1989):
$\left.\begin{array}{l}\operatorname{FING}(A)=\prod_{i=1}^{n}\left(r-a_{i}\right) \bmod p \\ \text { check if: } \\ \operatorname{FING}(A)=\prod_{i=1}^{n}(r-i) \bmod p ?\end{array}\right\} \begin{aligned} & \text { for uniform random prime } \\ & p \in\left[(n \log n)^{2} / 2,(n \log n)^{2}\right] \\ & \text { and uniform random } r \in \mathbb{Z}_{p}\end{aligned}$

- time cost: $\mathrm{O}(n)$
- space cost: $\mathrm{O}(\log n)$
- error probability (false positive): $\mathrm{O}(1 / n)$
- data stream: input comes one at a time

