Advanced Algorithms LP Duality

尹一通 Nanjing University， 2022 Fall

Flow Network

- Digraph: $D(V, E)$
- source: $s \in V \quad$ sink: $t \in V$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$

Network Flow

- Digraph: $D(V, E)$
- source: $s \in V \quad$ sink: $t \in V$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Flow $f: E \rightarrow \mathbb{R}_{\geq 0}$

- Capacity: $\forall(u, v) \in E, \quad f_{u v} \leq c_{u v}$
- Conservation: $\forall u \in V \backslash\{s, t\}, \quad \sum_{(w, u) \in E} f_{w u}=\sum_{(u, v) \in E} f_{u v}$

Network Flow

- Capacity: $\forall(u, v) \in E, \quad f_{u v} \leq c_{u v}$
- Conservation: $\forall u \in V \backslash\{s, t\}, \quad \sum_{(w, u) \in E} f_{w u}=\sum_{(u, v) \in E} f_{u v}$
- Value of flow:

$$
\sum_{((, n) \in E} f_{E u}=\sum_{(v, y \in E} f_{w_{u}}
$$

Maximum Flow

- Capacity: $\forall(u, v) \in E, \quad f_{u v} \leq c_{u v}$
- Conservation: $\forall u \in V \backslash\{s, t\}, \quad \sum_{(w, u) \in E} f_{w u}=\sum_{(u, v) \in E} f_{u v}$
- Value of flow:

$$
\sum_{(s, u) \in E} f_{s u}=\sum_{(v, t) \in E} f_{v t}
$$

Cut

- Digraph: $D(V, E)$
- source: $s \in V \quad$ sink: $t \in V$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Cut $S \subset V, s \in S, t \notin S$

- Value of cut:

$$
\sum_{u \in S, v \notin S,(u, v) \in E} c_{u v}
$$

Minimum Cut

- Digraph: $D(V, E)$
- source: $s \in V \quad$ sink: $t \in V$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Cut $S \subset V, s \in S, t \notin S$

- Value of cut:

$$
\sum_{u \in S, v \notin S,(u, v) \in E} c_{u v}
$$

Fundamental Theorem of Flow

- Flow network: $D(V, E), s, t \in V$, and $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Max-flow = min-cut
- With integral capacity $c: E \rightarrow \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \rightarrow \mathbb{Z}_{\geq 0}$.

Fundamental Theorem of Flow

- Flow network: $D(V, E), s, t \in V$, and $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Max-flow = min-cut
- With integral capacity $c: E \rightarrow \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \rightarrow \mathbb{Z}_{\geq 0}$.

Fundamental Theorem of Flow

- Flow network: $D(V, E), s, t \in V$, and $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Max-flow = min-cut
- With integral capacity $c: E \rightarrow \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \rightarrow \mathbb{Z}_{\geq 0}$.

Fundamental Theorem of Flow

- Flow network: $D(V, E), s, t \in V$, and $c: E \rightarrow \mathbb{R}_{\geq 0}$
- Max-flow = min-cut
- With integral capacity $c: E \rightarrow \mathbb{Z}_{\geq 0}$, the maximum flow is achieved by an integer flow $f: E \rightarrow \mathbb{Z}_{\geq 0}$.
- An elementary proof by augmenting path.
- An advanced proof by LP duality and integrality.

Estimate the Optima

$16 \leq$ OPT \leq any feasible solution

Estimate the Optima

 minimize
for any $y_{1}+5 y_{2} \leq 7$

$$
\begin{aligned}
-y_{1}+2 y_{2} & \leq 1 \\
3 y_{1}-y_{2} & \leq 5
\end{aligned} \quad y_{1}, y_{2} \geq 0
$$

Primal-Dual

Primal:
$\min 7 x_{1}+x_{2}+5 x_{3}$
$\begin{array}{lrr}\text { s.t. } & x_{1}-x_{2}+3 x_{3} \geq 10 \\ & 5 x_{1}+2 x_{2}-x_{3} \geq\end{array}$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Dual:
$\max 10 y_{1}+6 y_{2}$
st.

$$
\begin{aligned}
y_{1}+5 y_{2} & \leq 7 \\
-y_{1}+2 y_{2} & \leq 1 \\
3 y_{1}- & y_{2}
\end{aligned} \leq 5
$$

\forall dual feasible s primal OPT

Diet Problem

minimize the calories while keeping healthy

Surviving Problem

price	c_{1}	c_{2}	c_{n}	$\begin{gathered} \text { Thealthy } \\ \geq b_{1} \end{gathered}$
vitamin 1	a_{11}	a_{12}	$a_{1 n}$	
		!			
vitamin m	$a_{m 1}$	$a_{m 2}$		$a_{m n}$	$\geq b_{m}$
solution:	x_{1}	x_{2}		x_{n}	

Surviving Problem

$\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } & A x
\end{aligned} \quad \geq b
$$

price	c_{1}	c_{2}	c_{n}	healthy
vitamin 1	a_{11}	a_{12}	$a_{1 n}$	
		\vdots		:	
vitamin m	$a_{m 1}$	$a_{m 2}$	$a_{m n}$	$\geq b_{m}$
solution:	x_{1}	x_{2}		x_{n}	

LP Duality

Primal:

Dual:

$\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
$\boldsymbol{x} \geq \mathbf{0}$
$\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$

$$
y \geq 0
$$

dual
solution: price

y_{1}	vitamin 1
\vdots	\vdots

$y_{m} \quad$ vitamin m

c_{1}	c_{2}	$\cdots \cdots$	c_{n}
healthy			
a_{11}	a_{12}	$\cdots \cdots$	$a_{1 n}$
\vdots	\vdots		\vdots
$a_{m 1}$	$a_{m 2}$	$\cdots \cdots$	$a_{m n}$
$\geq b_{1}$			
\vdots			
$\geq b_{m}$			

m types of vitamin pills, design a pricing system competitive to n natural foods, max the total price

LP Duality

Primal:
 $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
 s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
 $$
\boldsymbol{x} \geq \mathbf{0}
$$

Dual: $\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
 s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$
 $y \geq 0$

- Monogamy: dual(dual(LP)) = LP
- Weak duality:
- \forall feasible primal solution x and \forall feasible dual solution y

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \leq \boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

LP Duality

Primal:
 $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
 s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
 $$
\boldsymbol{x} \geq \mathbf{0}
$$

Dual: $\max b^{\mathrm{T}} \boldsymbol{y}$
 s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$
 $y \geq 0$

Weak Duality Theorem:

\forall feasible primal solution \boldsymbol{x} and \forall feasible dual solution \boldsymbol{y} :

$$
\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

LP Duality

Primal:
 $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
 s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
 $$
x \geq \mathbf{0}
$$

Dual: $\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
 s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$ $y \geq 0$

Strong Duality Theorem:

Primal LP has an optimal solution \boldsymbol{x}^{*}
\Longleftrightarrow Dual LP has an optimal solution y^{*}

$$
\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{*}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{*}
$$

Maximum Flow

- Digraph: $D(V, E)$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$

$$
\max \sum_{u:(s, u) \in E} f_{s u}
$$

- source: $s \in V \quad$ sink: $t \in V$

s.t. $f_{u v} \leq c_{u v}$

$$
f_{u v} \geq 0 \quad \forall(u, v) \in E
$$

Maximum Flow

- Digraph: $D(V, E)$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
- source: $s \in V \quad$ sink: $t \in V$

$d_{u v} \quad$ s.t. $\quad f_{u v} \leq c_{u v}$
$\forall(u, v) \in E$
p_{u}

$$
\sum_{w:(w, u) \in E^{\prime}} f_{w u}-\sum_{v:(u, v) \in E^{\prime}} f_{u v} \leq 0 \quad \forall u \in V
$$

$$
f_{u v} \geq 0
$$

$$
\forall(u, v) \in E^{\prime}=E \cup\{(t, s)\}
$$

Dual LP

- Digraph: $D(V, E)$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
min

$$
\sum_{(u, v) \in E} c_{u v} d_{u v}
$$

- source: $s \in V \quad$ sink: $t \in V$

s.t. $\quad d_{u v}-p_{u}+p_{v} \geq 0$
$p_{s}-p_{t} \geq 1$
$d_{u v} \geq 0 \quad p_{u} \geq 0$
$\forall(u, v) \in E$
$\forall u \in V$

Minimum Cut

- Digraph: $D(V, E)$
- Capacity $c: E \rightarrow \mathbb{R}_{\geq 0}$
min

$$
\sum_{(u, v) \in E} c_{u v} d_{u v}
$$

- source: $s \in V \quad$ sink: $t \in V$

s.t. $\quad d_{u v}-p_{u}+p_{v} \geq 0$

$$
p_{s}-p_{t} \geq 1
$$

$$
d_{u v}, p_{u} \in\{0,1\}
$$

$\forall(u, v) \in E$
$\forall u \in V$

Primal-Dual Schema

LP-based Algorithms

- LP relaxation and rounding:
- Relax the Integer Linear Program to an LP.
- Round the optimal LP solution to a feasible integral solution.
- Primal-dual schema:
- Find a pair of feasible solutions to the primal and dual programs which are close to each other.
close to dual feasible solution \Longrightarrow closer to OPT

Vertex Cover

Instance: An undirected graph $G(V, E)$.
Find the smallest $C \subseteq V$ that intersects all edges.

Vertex Cover

Instance: An undirected graph $G(V, E)$.
Find the smallest $C \subseteq V$ that intersects all edges.

Find a maximal matching $M \subseteq E$; return $C=\{v \mid\{u, v\} \in M\} ;$

- Matching $\Longrightarrow|M| \leq O P T_{V C}$ (weak duality)
- Maximality $\Longrightarrow C$ is a vertex cover

$$
|C| \leq 2|M| \leq 2 O P T_{V C}
$$

Duality

vertex cover: constraints variables

$$
\sum_{v \in e} x_{v} \geq 1 \quad x_{v} \in\{0,1\}
$$

matching: variables constraints

$$
y_{e} \in\{0,1\} \quad \sum_{\text {eэv }} y_{e} \leq 1
$$

Duality

Instance: \quad graph $G(V, E)$
primal: minimize
(vertex cover) $\sum_{v \in V} x_{v}$

$$
\begin{array}{ll}
\text { subject to } & \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E \\
& x_{v} \in\{0,1\}, \quad \forall v \in V
\end{array}
$$

dual: maximize $\sum_{e \in E} y_{e}$

$$
\begin{array}{ll}
\text { subject to } & \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V \\
& y_{e} \in\{0,1\}, \quad \forall e \in E
\end{array}
$$

Duality for LP-Relaxations

Instance: \quad graph $G(V, E)$
primal: minimize $\sum_{v \in V} x_{v}$
subject to $\sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \geq 0, \quad \forall v \in V
$$

dual: maximize $\sum_{e \in E} y_{e}$
$\begin{aligned} & \text { subject to } \sum_{e \ni v} y_{e} \leq 1, \\ & y_{e} \geq 0, \forall v \in V \\ &\end{aligned}$

LP Duality

Primal:
 $\min \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
 s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$
 $$
\boldsymbol{x} \geq \mathbf{0}
$$

Dual: $\max \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
 s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$ $y \geq 0$

Strong Duality Theorem:

Primal LP has an optimal solution \boldsymbol{x}^{*}
\Longleftrightarrow Dual LP has an optimal solution \boldsymbol{y}^{*}

$$
\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{*}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{*}
$$

Complementary Slackness

Primal: min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } A x & \geq b \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } A^{\mathrm{T}} y & \leq c \\
y & \geq \mathbf{0}
\end{aligned}
$$

Theorem (Complementary Slackness Condition):
For feasible primal solution \boldsymbol{x} and feasible dual solution \boldsymbol{y}, \boldsymbol{x} and \boldsymbol{y} are both optimal iff:

$$
\begin{array}{ll}
\text { - } \boldsymbol{y}^{\mathrm{T}}(A \boldsymbol{x}-\boldsymbol{b})=0 ; & \forall i: y_{i}>0 \Longrightarrow A_{i} \boldsymbol{x}=b_{i} \\
\text { - } \boldsymbol{x}^{\mathrm{T}}\left(\boldsymbol{c}-A^{T} \boldsymbol{y}\right)=0 ; & \forall j: x_{j}>0 \Longrightarrow A_{j}^{\mathrm{T}} \boldsymbol{y}=c_{j}
\end{array}
$$

Complementary Slackness

Primal: min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } A x & \geq b \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } A^{\mathrm{T}} y & \leq c \\
y & \geq \mathbf{0}
\end{aligned}
$$

\forall feasible primal solution \boldsymbol{x} and feasible dual solution \boldsymbol{y} :

$$
\boldsymbol{y}^{\mathrm{T}} b \leq \boldsymbol{y}^{\mathrm{T}} A x \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

\boldsymbol{x} and \boldsymbol{y} are both optimal $\Longleftrightarrow \boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ \Uparrow

$$
\begin{aligned}
& \forall i: y_{i}>0 \Longrightarrow A_{i} \cdot \boldsymbol{x}=b_{i} \\
& \forall j: x_{j}>0 \Longrightarrow A_{\cdot j}^{\mathrm{T}} \boldsymbol{y}=c_{j}
\end{aligned} \qquad \begin{aligned}
& \cdot \boldsymbol{y}^{\mathrm{T}}(A \boldsymbol{x}-\boldsymbol{b})=0 \\
& \cdot \boldsymbol{x}^{\mathrm{T}}\left(\boldsymbol{c}-A^{T} \boldsymbol{y}\right)=0
\end{aligned}
$$

Complementary Slackness

Primal: min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } A x & \geq b \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } A^{\mathrm{T}} y & \leq c \\
y & \geq \mathbf{0}
\end{aligned}
$$

Theorem (Complementary Slackness Condition):
For feasible primal solution \boldsymbol{x} and feasible dual solution \boldsymbol{y}, \boldsymbol{x} and \boldsymbol{y} are both optimal iff:

$$
\begin{array}{ll}
\text { - } \boldsymbol{y}^{\mathrm{T}}(A \boldsymbol{x}-\boldsymbol{b})=0 ; & \forall i: y_{i}>0 \Longrightarrow A_{i} \boldsymbol{x}=b_{i} \\
\text { - } \boldsymbol{x}^{\mathrm{T}}\left(\boldsymbol{c}-A^{T} \boldsymbol{y}\right)=0 ; & \forall j: x_{j}>0 \Longrightarrow A_{j}^{\mathrm{T}} \boldsymbol{y}=c_{j}
\end{array}
$$

Complementary Slackness

Primal: min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

$$
\begin{aligned}
\text { s.t. } A x & \geq b \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

Dual: max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

$$
\begin{aligned}
\text { s.t. } A^{\mathrm{T}} y & \leq c \\
y & \geq 0
\end{aligned}
$$

Theorem:

\forall feasible primal solution \boldsymbol{x} and feasible dual solution \boldsymbol{y},

$$
\begin{aligned}
& \text { if for } \alpha, \beta \geq 1: \quad \begin{array}{l}
\forall i: y_{i}>0 \Longrightarrow A_{i} \cdot \boldsymbol{x} \leq \alpha b_{i} \\
\forall j: x_{j}>0 \Longrightarrow A_{\cdot j}^{\mathrm{T}} \boldsymbol{y} \geq c_{j} / \beta
\end{array} \\
& \Longrightarrow \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \beta \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \alpha \beta O P T_{L P}
\end{aligned}
$$

$$
\sum_{j=1}^{n} c_{i} x_{j} \leq \sum_{j=1}^{n}\left(\beta \sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\beta \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i}
$$

Primal-Dual Schema

Primal min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ IP:

$$
\begin{aligned}
& \text { s.t. } A \boldsymbol{x} \geq \boldsymbol{b} \\
& \qquad \boldsymbol{x} \in \mathbb{Z}_{\geq 0}^{n} \\
& \hline
\end{aligned}
$$

Dual max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

LP-Relax: s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$

$$
y \geq 0
$$

Primal-Dual Schema:

Find a pair $(\boldsymbol{x}, \boldsymbol{y})$ of feasible primal integral solution \boldsymbol{x} and feasible dual solution \boldsymbol{y} such that for some $\alpha, \beta \geq 1$:

$$
\begin{aligned}
& \forall i: y_{i}>0 \Longrightarrow A_{i} \cdot \boldsymbol{x} \leq \alpha b_{i} \\
& \forall j: x_{j}>0 \Longrightarrow A_{\cdot j}^{\mathrm{T}} \boldsymbol{y} \geq c_{j} / \beta
\end{aligned}
$$

$\Longrightarrow \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \beta \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \alpha \beta O P T_{L P} \leq \alpha \beta O P T_{I P}$

Primal-Dual Schema

Primal min $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$

 IP:$$
\begin{aligned}
& \text { s.t. } A \boldsymbol{x} \geq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathbb{Z}_{\geq 0}^{n}
\end{aligned}
$$

Dual max $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$
LP-Relax: s.t. $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$

$$
y \geq 0
$$

Primal-Dual Schema:

Raise a pair $(\boldsymbol{x}, \boldsymbol{y})$ of infeasible primal integral solution \boldsymbol{x} and feasible dual solution \boldsymbol{y} continuously, satisfying:

$$
\begin{array}{l|r}
\forall i: y_{i}>0 \Longrightarrow A_{i .} \boldsymbol{x} \leq \alpha b_{i} & \text { for som } \\
\forall j: x_{j}>0 \Longrightarrow A_{\cdot j}^{\mathrm{T}} \boldsymbol{y}=c_{j} & \alpha \geq 1
\end{array}
$$

until \boldsymbol{x} becomes feasible.

$$
\Longrightarrow \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \alpha O P T_{L P} \leq \alpha O P T_{I P}
$$

vertex cover:
primal: $\min \sum_{v \in V} x_{v}$
s.t. $\quad \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$ $x_{v} \in\{0,1\}, \quad \forall v \in V$
dual-relax: $\max \sum_{e \in E} y_{e}$
s.t. $\quad \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V$

$$
y_{e} \geq 0, \quad \forall e \in E
$$

Find feasible $(\boldsymbol{x}, \boldsymbol{y})$ such that:

$$
\begin{aligned}
& \forall e: y_{e}>0 \Longrightarrow \sum_{v \in e} x_{v} \leq \alpha \\
& \forall v: x_{v}>0 \Longrightarrow \sum_{e \ni v} y_{e}=1
\end{aligned}
$$

primal:
$\min \sum_{v \in V} x_{v}$
s.t. $\quad \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

dual-relax:

$$
\begin{aligned}
\max & \sum_{e \in E} y_{e} \\
\text { s.t. } & \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V \\
& y_{e} \geq 0, \quad \forall e \in E
\end{aligned}
$$

initially $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}$;
while $E \neq \varnothing$: (constraints currently violated by \boldsymbol{x})
pick an $e \in E$ and raise $y_{e} \sum_{e \ni v} y_{e}=\frac{1}{}$ forsomev, to 1 set $x_{v}=1$ for all such $v \in e$ and remove all $e^{\prime} \ni v$ from E;

$$
\begin{aligned}
& \forall e: y_{e}>0 \Longrightarrow \sum_{v \in e} x_{v} \leq \alpha=2 \\
& \forall v: x_{v}>0 \Longrightarrow \sum_{e \ni v} y_{e}=1
\end{aligned} \Longrightarrow \quad \begin{aligned}
& \text { slackness: } \\
& \sum_{v \in V} x_{v} \leq 2 \sum_{e \in E} y_{e} \leq 2 O P T
\end{aligned}
$$

Complementary
primal:
$\min \sum_{v \in V} x_{v}$
s.t. $\quad \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E$

$$
x_{v} \in\{0,1\}, \quad \forall v \in V
$$

dual-relax:

$$
\begin{aligned}
\max & \sum_{e \in E} y_{e} \\
\text { s.t. } & \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V \\
& y_{e} \geq 0, \quad \forall e \in E
\end{aligned}
$$

initially $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}$;
while $E \neq \varnothing$: (constraints violated by current \boldsymbol{x})
pick an $e \in E$ and raise $y_{e} \sum_{e \ni \nu} y_{e}=\frac{1}{}$ forsomov, to 1
set $x_{v}=1$ for all such $v \in e$ and remove all $e^{\prime} \ni v$ from E; (constraints satisfied by current \boldsymbol{x})

Complementary slackness:
$\forall e: y_{e}>0 \Longrightarrow \sum_{v \in e} x_{v} \leq \alpha=2$
$\forall v: x_{v}>0 \Longrightarrow \sum_{e \ni v} y_{e}=1$
$\Longrightarrow \sum_{v \in V} x_{v} \leq 2 \sum_{e \in E} y_{e} \leq 2 O P T$

primal:

$$
\begin{array}{ll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & \sum_{v \in e} x_{v} \geq 1, \quad \forall e \in E \\
& x_{v} \in\{0,1\}, \quad \forall v \in V
\end{array}
$$

dual-relax:

$$
\begin{aligned}
\max & \sum_{e \in E} y_{e} \\
\text { s.t. } & \sum_{e \ni v} y_{e} \leq 1, \quad \forall v \in V \\
& y_{e} \geq 0, \quad \forall e \in E
\end{aligned}
$$

initially $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}$;
while $E \neq \varnothing$: (constraints currently violated by \boldsymbol{x})
pick an $e \in E$ and raise $y_{e} \sum_{e \ni v} y_{e}=\frac{1}{}$ forsomev, to 1
set $x_{v}=1$ for all such $v \in e$ and remove all $e^{\prime} \ni v$ from E;

Find a maximal matching $M \subseteq E$; return $C=\{v \mid\{u, v\} \in M\} ;$

Primal-Dual Schema

- Modeling: Express the optimization problem as an Integer Linear Program (ILP) and write its dual relaxed program.

$$
\begin{array}{ll}
\min & c^{\mathrm{T} x} \\
\text { s.t. } & A x \geq \boldsymbol{b} \\
& x \in \mathbb{Z}_{\geq 0}
\end{array}
$$

$$
\begin{aligned}
& \max \quad \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
& \text { s.t. } \quad \boldsymbol{y}^{\mathrm{T}} A \leq \boldsymbol{c}^{\mathrm{T}} \\
& \boldsymbol{y} \geq \mathbf{0}
\end{aligned}
$$

- Initialization: Start from a primal infeasible solution \boldsymbol{x} and a dual feasible solution \boldsymbol{y} (usually $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\mathbf{0}$).
- Raise \boldsymbol{x} and \boldsymbol{y} until \boldsymbol{x} becomes feasible:
- raise \boldsymbol{y} continuously until dual constraints getting tight $A_{-j}^{\mathrm{T}} \boldsymbol{y}=c_{j}$;
- raise corresponding x_{j} integrally so that $x_{j}>0 \Longrightarrow A_{\cdot j}^{\mathrm{T}} \boldsymbol{y}=c_{j}$.
- Verify complementary slackness condition:

$$
y_{i}>0 \Longrightarrow A_{i} \cdot \boldsymbol{x} \leq \alpha b_{i} \Longrightarrow \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \alpha \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \leq \alpha O P T
$$

Integrality Gap

- minimum vertex cover of $G(V, E)$:

$$
\begin{array}{rlr}
\text { minimize } & \sum_{v \in V} x_{v} \\
\text { subject to } & \sum_{v \in e} x_{v} \geq 1, & e \in E \\
& x_{v} \in\{0,1\}, \quad v \in V
\end{array}
$$

$$
\text { integrality gap }=\sup _{G} \frac{\mathrm{OPT}(G)}{\mathrm{OPT}_{\mathrm{LP}}(G)}
$$

- For LP relaxation of vertex cover: integrality gap $=2$

Facility Location

Facility Location

> hospitals in Nanjing

Facility Location

facilities:
clients:

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$; connection costs $c: F \times C \rightarrow[0, \infty)$;
Find a subset $I \subseteq F$ of opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum_{j \in C} c_{\phi(j), j}+\sum_{i \in I} f_{i}$ is minimized.

- uncapacitated facility location;
- NP-hard; AP(Approximation Preserving)-reduction from Set Cover;
- [Dinur, Steuer 2014] no poly-time (1-o(1))ln n-approx. algorithm unless NP = \mathbf{P}.

Metric Facility Location

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$; connection metric $d: F \times C \rightarrow[0, \infty)$;
Find a subset $I \subseteq F$ of opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$ is minimized.
triangle inequality: $\forall i_{1}, i_{2} \in F, \forall j_{1}, j_{2} \in C$

$$
d_{i_{1} j_{1}}+d_{i_{2} j_{1}}+d_{i_{2} j_{2}} \geq d_{i_{1} j_{2}}
$$

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$;
connection metric $d: F \times C \rightarrow[0, \infty)$;
Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$

LP-relaxation: $\quad \min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$

$$
\begin{array}{rrl}
\text { s.t. } & y_{i} \geq x_{i j}, & \forall i \in F, j \in C \\
& \sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \geq 0, & \forall i \in F, j \in C
\end{array}
$$

Primal:

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
\sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \in\{0,1\}, & \forall i \in F, j \in C
\end{aligned}
$$

Dual-relax:

$$
\begin{array}{ll}
\max & \sum_{j \in C} \alpha_{j} \\
\text { s.t. } & \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C \\
& \sum_{j \in C} \beta_{i j} \leq f_{i}, \quad \forall i \in F \\
& \alpha_{j}, \beta_{i j} \geq 0, \quad \forall i \in F, j \in C
\end{array}
$$

α_{j} : amount of value paid by client j to all facilities $\beta_{i j} \geq \alpha_{j}-d_{i j}$: payment to facility i by client j (after deduction)
complimentary
slackness conditions: (if ideally held)

$$
x_{i j}=1 \Rightarrow \alpha_{j}-\beta_{i j}=d_{i j}
$$

$$
\alpha_{j}>0 \Rightarrow \sum_{i \in F} x_{i j}=1
$$

$$
y_{i}=1 \Rightarrow \sum_{j \in C} \beta_{i j}=f_{i}
$$

$$
\beta_{i j}>0 \Rightarrow y_{i}=x_{i j}
$$

facilities:
clients:
$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
& \sum_{i \in F} x_{i j} \geq 1, \forall j \in C \\
& x_{i j}, y_{i} \in\{0,1\}, \quad \forall i \in F, j \in C
\end{aligned}
$$

$\max \sum_{j \in C} \alpha_{j}$
s.t. $\quad \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
& \sum_{j \in C} \beta_{i j} \leq f_{i}, \quad \forall i \in F \\
& \alpha_{j}, \beta_{i j} \geq 0, \quad \forall i \in F, j \in C
\end{aligned}
$$

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is connected; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for an unconnected client j and tentatively open facility i : client j is declared connected to facility i : and stop raising α_{j};

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is connected; raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for an unconnected client j and tentatively open facility i : client j is declared connected to facility i : and stop raising α_{j};
- The events that occur at the same time are processed in arbitrary order.
- Fully paid facilities are tentatively open: $\sum_{j \in C} \beta_{i j}=f_{i}$
- Each client is connected through a tight edge $\left(\alpha_{j}-\beta_{i j}=d_{i j}\right)$ to an open facility.
- Eventually all clients connect to tentatively opening facilities.

A client may have tight edges to more than one facilities:
We might have opened more facilities than necessary!
facilities:

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is connected;
raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for an unconnected client j and tentatively open facility i : client j is declared connected to facility i and stop raising α_{j};

Phase II:

 " i is j 's connecting witness" construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$ and $\left\{i_{1}, i_{2}\right\} \in E$ if \exists client j s.t. both $\beta_{i_{1}, j}>0$ and $\beta_{i_{2} j}>0$ in Phase \mathbf{I}; find a maximal independent set I of G and permanently open facilities in I;
For each client j : if the facility i with $\beta_{i j}>0$ has $i \in I$ or j 's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i^{\prime} \in I$ that is adjacent (in G) to j 's connecting witness i (indirectly connected);

Primal:

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$
s.t. $\quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C$

$$
\begin{aligned}
\sum_{i \in F} x_{i j} \geq 1, & \forall j \in C \\
x_{i j}, y_{i} \in\{0,1\}, & \forall i \in F, j \in C
\end{aligned}
$$

Dual-relax:

$$
\begin{array}{ll}
\max & \sum_{j \in C} \alpha_{j} \\
\text { s.t. } & \alpha_{j}-\beta_{i j} \leq d_{i j}, \quad \forall i \in F, j \in C \\
& \sum_{j \in C} \beta_{i j} \leq f_{i}, \quad \forall i \in F \\
& \alpha_{j}, \beta_{i j} \geq 0, \quad \forall i \in F, j \in C
\end{array}
$$

α_{j} : amount of value paid by client j to all facilities $\beta_{i j} \geq \alpha_{j}-d_{i j}$: payment to facility i by client j (after deduction)
complimentary
slackness conditions: (if ideally held)

$$
x_{i j}=1 \Rightarrow \alpha_{j}-\beta_{i j}=d_{i j}
$$

$$
\alpha_{j}>0 \Rightarrow \sum_{i \in F} x_{i j}=1
$$

$$
y_{i}=1 \Rightarrow \sum_{j \in C} \beta_{i j}=f_{i}
$$

$$
\beta_{i j}>0 \Rightarrow y_{i}=x_{i j}
$$

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is connected;
raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for an unconnected client j and tentatively open facility i : client j is declared connected to facility, and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$
 and $\left\{i_{1}, i_{2}\right\} \in E$ if \exists client j s.t. both $\beta_{i_{1} j}>0$ and $\beta_{i_{2} j}>0$ in Phase \mathbf{I};
find a maximal independent set I of G and permanently open facilities in I;
For each client j : if the facility i with $\beta_{i j}>0$ has $i \in I$ or j 's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i^{\prime} \in I$ that is adjacent (in G) to j 's connecting witness i (indirectly connected);

Denote by ϕ the output mapping from clients to facilities.

Phase I:

Initially $\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\beta}=\mathbf{0}$, no facility is open, no client is connected;
raise α_{j} for all client j simultaneously at a uniform continuous rate:

- upon $\alpha_{j}=d_{i j}$ for a closed facility i : edge (i, j) is paid; fix $\beta_{i j}=\alpha_{j}-d_{i j}$ as α_{j} being raised;
- upon $\sum_{j \in C} \beta_{i j}=f_{i}$: tentatively open facility i; all unconnected clients j with paid edge (i, j) to facility i are declared connected to facility i and stop raising α_{j};
- upon $\alpha_{j}=d_{i j}$ for an unconnected client j and tentatively open facility i : client j is declared connected to facility i : and stop raising α_{j};

Phase II:

construct graph $G(V, E)$ where $V=\{$ tentatively open facilities $\}$
 and $\left\{i_{1}, i_{2}\right\} \in E$ if \exists client j s.t. both $\beta_{i_{1} j}>0$ and $\beta_{i_{2} j}>0$ in Phase \mathbf{I}; find a maximal independent set I of G and permanently open facilities in I;
For each client j : if the facility i with $\beta_{i j}>0$ has $i \in I$ or j 's connecting witness i has $i \in I$, then j is connected to i (directly connected); otherwise, client j is connected to an arbitrary $i^{\prime} \in I$ that is adjacent (in G) to j 's connecting witness i (indirectly connected);

$$
S O L \leq 3 O P T
$$

can be implemented discretely: in $\mathrm{O}(m \log m)$ time, $m=|F||C|$

- sort all edges $(i, j) \in F \times C$ by non-decreasing $d_{i j}$
- dynamically maintain the time of next event by heap

Instance: set F of facilities; set C of clients; facility opening costs $f: F \rightarrow[0, \infty)$;
connection metric $d: F \times C \rightarrow[0, \infty)$;
Find $\phi: C \rightarrow I \subseteq F$ to minimize $\sum_{j \in C} d_{\phi(j), j}+\sum_{i \in I} f_{i}$

$\min \sum_{i \in F, j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}$

$$
\text { s.t. } \quad y_{i}-x_{i j} \geq 0, \quad \forall i \in F, j \in C
$$

$$
\begin{aligned}
& \sum_{i \in F} x_{i j} \geq 1, \quad \forall j \in C \\
& x_{i j}, y_{i} \in\{0,1\}, \quad \forall i \in F, j \in C
\end{aligned}
$$

- Integrality gap = 3
- no poly-time <1.463-approx. algorithm unless $\mathbf{N P}=\mathbf{P}$
- [Li 2011] 1.488-approx. algorithm

k-Median

Instance: set F of facilities; set C of clients; connection metric $d: F \times C \rightarrow[0, \infty)$;

Find a subset $I \subseteq F$ of $\leq k$ opening facilities and a way $\phi: C \rightarrow I$ of connecting all clients to them such that the total cost $\sum_{j \in C} d_{\phi(j), j}$ is minimized.

