Advanced Algorithms

 Introduction：Min，Max，and Sparsest Cuts尹一通 Nanjing University， 2023 Fall

Course Info

- Instructors（授课时间顺序）：
- 尹一通，刘景铖，栗师
－\｛yinyt，liu，shili\}@nju.edu.cn
－Office hour：
－ 804 Thursday 2－4pm（尹一通）
－QQ group： 876680440
－Course webpage：http：／／tcs．nju．edu．cn／wiki／

Textbooks

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

Vijay Vazirani Approximation Algorithms. Spinger-Verlag, 2001.

References

Mitzenmacher and Upfal.
Probability and Computing,
2nd Ed.

Williamson and Shmoys
The Design of
Approximation Algorithms
Korte and Vygen

References

Nisheeth Vishnoi
$L \boldsymbol{x}=\boldsymbol{b}$

Lap Chi Lau
 Eigenvalues and Polynomials

Crblyoxithms
DPV
Algorithms

Minimum Cut (Randomized Algorithms)

Min-Cut

- Undirected graph $G(V, E)$
- Bi-partition of V into nonempty S and T
- Find a cut $E(S, T)$ of smallest size (global min-cut)
- Deterministic algorithms:
- max-flow min-cut (duality)

$$
E(S, T):=\{u v \in E \mid u \in S, v \in T\}
$$

- best upper bound (2021): $m^{1+o(1)}$

Min-Cut

- Undirected graph $G(V, E)$
- Too many cuts:
- there are $2^{\Omega(n)}$ bi-partitions
- (will see later) only at most $O\left(n^{2}\right)$ min-cuts
- Generate a random cut that is a min-cut with large enough probability?

$$
E(S, T):=\{u v \in E \mid u \in S, v \in T\}
$$

Contraction

- Undirected multigraph $G(V, E)$
- multigraph:
- allow parallel edges
- but no self-loop
- contract(e): $e=u v$ is an edge
- merges two endpoints u and v

Contraction

- Undirected multigraph $G(V, E)$
- multigraph:
- allow parallel edges
- but no self-loop
- contract(e): $e=u v$ is an edge

- merges two endpoints u and v

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;
random: uniformly and independently at random

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Karger's Min-Cut Algorithm

- multigraph $G(V, E)$

Karger's Algorithm:
while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

edges returned

Karger's Algorithm:

 while $|V|>2$ do:pick random $e \in E$;
contract(e);
return remaining edges;

Theorem (Karger 1993).

$\operatorname{Pr}[$ a min-cut is returned $] \geq \frac{2}{n(n-1)}$
repeat independently for $\frac{1}{2} n(n-1) \ln n$ times and return the smallest cut

$\operatorname{Pr}[$ fail to output a min-cut at last]

$=\operatorname{Pr}[\text { fail to output a min-cut in one trial }]^{\frac{n(n-1)}{2} \ln n}$

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{\frac{n(n-1)}{2} \ln n}<\left(\frac{1}{\mathrm{e}}\right)^{\ln n}=\frac{1}{n}
$$

Succeed with high probability (w.h.p.)!

Karger's Algorithm: while $|V|>2$ do:
pick random $e \in E$; contract(e);
return remaining edges;

Sequence of contracted edges:

$$
e_{1}, e_{2}, \ldots, e_{n-2}
$$

Initially: $G_{0}=G$ input multigraph i-th iteration:

$$
G_{i}=\operatorname{contract}\left(G_{i-1}, e_{i}\right)
$$

Contraction does not create new edges or cuts:
$C \subseteq E_{i}$ is a cut in $G_{i} \Longrightarrow C \subseteq E_{i-1}$ and C is a cut in G_{i-1}
Non-contracted cut persists: $C \subseteq E_{i-1}$ is a cut in G_{i-1} $e_{i} \notin C \Longrightarrow C \subseteq E_{i}$ and C is a cut in G_{i}

Observation: Suppose $C \subseteq E_{i-1}$ is a min-cut in G_{i-1}. $e_{i} \notin C \Longrightarrow C$ is a min-cut in G_{i}

Karger's Algorithm:

while $|V|>2$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

Sequence of contracted edges:

$$
e_{1}, e_{2}, \ldots, e_{n-2}
$$

Initially: $G_{0}=G$ input multigraph i-th iteration:

$$
G_{i}=\operatorname{contract}\left(G_{i-1}, e_{i}\right)
$$

Observation: Suppose $C \subseteq E_{i-1}$ is a min-cut in G_{i-1}.

$$
e_{i} \notin C \Longrightarrow C \text { is a min-cut in } G_{i}
$$

Fix an arbitrary min-cut C in G.

$$
\operatorname{Pr}[C \text { is returned }] \geq \operatorname{Pr}\left[e_{1}, e_{2}, \ldots, e_{n-2} \notin C\right]
$$

chain rule: $\quad=\prod_{i=1}^{n-2} \operatorname{Pr}\left[e_{i} \notin C \mid e_{1}, e_{2}, \ldots, e_{i-1} \notin C\right]$

Sequence of contracted edges: $e_{1}, e_{2}, \ldots, e_{n-2}$
Initially: $G_{0}=G \quad i$-th iteration: $G_{i}=\operatorname{contract}\left(G_{i-1}, e_{i}\right)$
Observation: Suppose $C \subseteq E_{i-1}$ is a min-cut in G_{i-1}. $e_{i} \notin C \Longrightarrow C$ is a min-cut in G_{i}

Fix an arbitrary min-cut C in G.
$\operatorname{Pr}[C$ is returned $] \geq \prod_{i=1}^{n-2} \operatorname{Pr}[e_{i} \notin C \mid \underbrace{}_{\left.e_{1}, e_{2}, \ldots, e_{i-1} \notin C\right]}$

Observation:
C is a min-cut in $G(V, E)$ $\Longrightarrow|E| \geq \frac{1}{2}|C||V|$
Proof:
min-degree of $G \geq|C|$
C is a min-cut in G_{i-1}

$$
\begin{aligned}
& \geq \prod_{i=1}^{n-2}\left(1-\frac{2}{n-i+1}\right) \\
& =\prod_{i=1}^{n-2} \frac{n-i-1}{n-i+1}=\frac{2}{n(n-1)}
\end{aligned}
$$

Theorem (Karger 1993).

For any min-cut C in an input graph $G(V, E)$,

$$
\operatorname{Pr}[C \text { is returned }] \geq \frac{2}{n(n-1)}
$$

repeat independently for $\frac{1}{2} n(n-1) \ln n$ times and return the smallest cut

Find a min-cut with high probability (w.h.p.) in $\tilde{O}\left(n^{4}\right)$ time. $\tilde{O}(\cdot)$: ignore poly-logarithmic factors

Number of Min-Cuts

Theorem (Karger 1993).

For any min-cut C in an input graph $G(V, E)$,

$$
\operatorname{Pr}[C \text { is returned }] \geq \frac{2}{n(n-1)}
$$

Corollary (Karger 1993).

The number of distinct min-cuts in any graph of n vertices is at most $n(n-1) / 2$.

Suppose there are M distinct min-cuts: $C_{1}, C_{2}, \ldots, C_{M}$
$1 \geq \operatorname{Pr}[$ a min-cut is returned $]=\sum_{i=1}^{M} \operatorname{Pr}\left[C_{i}\right.$ is returned $]$

$$
\geq M \cdot \frac{2}{n(n-1)}
$$

An Observation

Contract (G, t) :
while $|V|>t$ do:
pick random $e \in E$; contract(e);
return remaining edges;

- multigraph $G(V, E)$
- sequence of contracted edges:

$$
e_{1}, e_{2}, \ldots, e_{n-t}
$$

C : a min-cut in G.
\mathscr{E} : no edge in C is contracted in Contract (G, t).

$$
\begin{aligned}
\operatorname{Pr}[\mathscr{E}] & \geq \prod_{i=1}^{n-t} \operatorname{Pr}\left[e_{i} \notin C \mid e_{1}, e_{2}, \ldots, e_{i-1} \notin C\right] \\
& \geq \prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1}=\frac{t(t-1)}{n(n-1)} \quad \begin{array}{c}
\text { only getting bad } \\
\text { when } t \text { is small }
\end{array}
\end{aligned}
$$

Faster Min-Cut

Contract(G, t):
while $|V|>t$ do:
pick random $e \in E$; contract(e);
return remaining edges;
C : a min-cut in G.
\mathscr{E} : no edge in C is contracted in $\operatorname{Contract}(G, t)$.

$$
\operatorname{Pr}[\mathscr{E}] \geq \frac{t(t-1)}{n(n-1)}
$$

Contract($G, t)$:

while $|V|>t$ do:
pick random $e \in E$; contract(e); return remaining edges;
C : a min-cut in G.

FastCut(G):

if $|V| \leq 6$ then return a min-cut by brute force; else: set $t=n / \sqrt{2}+1$

$$
\left.\begin{array}{l}
G_{1}=\operatorname{Contract}(G, t) ; \\
G_{2}=\operatorname{Contract}(G, t) ;
\end{array}\right\} \text { (independently) }
$$

return $\min \left\{\operatorname{FastCut}\left(G_{1}\right), \operatorname{FastCut}\left(G_{2}\right)\right\}$;
\mathscr{E} : no edge in C is contracted in Contract (G, t).

$$
\begin{gathered}
\operatorname{Pr}[\mathscr{E}] \geq \frac{t(t-1)}{n(n-1)} \geq \frac{1}{2} \\
p(n)=\min _{G:|V|=n} \operatorname{Pr}[\operatorname{FastCut}(G) \text { succeeds }] \quad \text { returns a } \\
\geq 1-\left(1-\operatorname{Pr}[\mathscr{E}] \operatorname{Pr}\left[\operatorname{FastCut}\left(G_{1}\right) \text { succeeds } \mid \mathscr{E}\right]\right)^{2} \\
\geq 1-\left(1-\frac{t(t-1)}{n(n-1)} p(t)\right)^{2} \geq p\left(\frac{n}{\sqrt{2}}+1\right)-\frac{1}{4} p\left(\frac{n}{\sqrt{2}}+1\right)^{2}
\end{gathered}
$$

Contract (G, t) :

while $|V|>t$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

FastCut(G):

if $|V| \leq 6$ then return a min-cut by brute force; else: set $t=n / \sqrt{2}+1$

$$
\left.\begin{array}{l}
G_{1}=\operatorname{Contract}(G, t) ; \\
G_{2}=\operatorname{Contract}(G, t) ;
\end{array}\right\} \text { (independently) }
$$

return $\min \left\{\operatorname{FastCut}\left(G_{1}\right)\right.$, FastCut $\left.\left(G_{2}\right)\right\}$;

$$
p(n)=\min _{G:|V|=n} \operatorname{Pr}[\text { FastCut }(G) \text { succeeds }]
$$

$$
\geq p\left(\frac{n}{\sqrt{2}}+1\right)-\frac{1}{4} p\left(\frac{n}{\sqrt{2}}+1\right)^{2}
$$

- Verified by induction: $p(n)=\Omega\left(\frac{1}{\log n}\right)$
- Recursion for time cost: $T(n) \leq 2 T(n / \sqrt{2}+1)+O\left(n^{2}\right)$
- Verified by induction: $T(n)=O\left(n^{2} \log n\right)$

Contract(G, t):

while $|V|>t$ do:
pick random $e \in E$;
contract(e);
return remaining edges;

$$
\begin{aligned}
& \text { FastCut }(G) \text { : } \\
& \text { if }|V| \leq 6 \text { then return a min-cut by brute force; } \\
& \text { else: set } t=n / \sqrt{2}+1 \\
& \left.\qquad \begin{array}{r}
G_{1}=\operatorname{Contract}(G, t) ; \\
G_{2}=\operatorname{Contract}(G, t) ;
\end{array}\right\} \text { (independently) } \\
& \text { return } \min \left\{\operatorname{FastCut}\left(G_{1}\right), \text { FastCut }\left(G_{2}\right)\right\} ;
\end{aligned}
$$

Theorem (Karger and Stein 1996).

On any graph G of n vertices, FastCut (G) runs in $O\left(n^{2} \log n\right)$ time and returns a min-cut in G with probability $\Omega(1 / \log n)$.

repeat independently for $O\left(\log ^{2} n\right)$ times and return the smallest cut

Find a min-cut with high probability (w.h.p.) in $\tilde{O}\left(n^{2}\right)$ time.

Min-Cut

- Randomized (Monte Carlo) algorithms: (correct w.h.p.)
- Karger's Contraction algorithm (1993): $\tilde{O}\left(n^{4}\right)$
- Karger-Stein Algorithm (1996): $\tilde{O}\left(n^{2}\right)$
- Karger's Tree-packing Algorithm (2000): $\tilde{O}(m)$
- Deterministic algorithms:
- max-flow min-cut (duality): $n \times$ max-flow computation
- Stoer-Wagner Algorithm (1997): $\tilde{O}(m n)$
- (only for single graphs) Kawarabayashi-Thorup (2015): $\tilde{O}(m)$
- Jason Li (2021): $m^{1+o(1)}$

Maximum Cut (Approximation Algorithms)

Max-Cut

- Undirected graph $G(V, E)$
- Bi-partition of V into nonempty S and T
- Find a cut $E(S, T)$ of largest size
- NP-hard:
- one of Karp's 21 NP-complete problems
- Approximation algorithms?
$E(S, T):=\{u v \in E \mid u \in S, v \in T\}$

Greedy Heuristics

Greedy Cut:

initially, $S=T=\varnothing$; for $i=1,2, \ldots, n$:
v_{i} joins one of S, T
to maximize current $E(S, T)$;

Greedy Heuristics

Greedy Cut:

initially, $S=T=\varnothing$; for $i=1,2, \ldots, n$:
v_{i} joins one of S, T
to maximize current $E(S, T)$;

$$
E(S, T)=\{u v \in E \mid u \in S, v \in T\}
$$

Approximation Ratio

Algorithm \mathscr{A} :

> Greedy Cut:
> initially, $S=T=\varnothing$
> for $i=1,2, \ldots, n$:
> $\quad v_{i}$ joins one of S, T
> \quad to maximize current $E(S, T)$;
$O P T_{G}$: value of max-cut in G $S O L_{G}:$ value of the cut returned by \mathscr{A} on G

Algorithm \mathscr{A} has approximation ratio α if

$$
\forall \text { instance } G, \quad \frac{S O L_{G}}{O P T_{G}} \geq \alpha
$$

Approximation Algorithm

Greedy Cut:

initially, $S=T=\varnothing$;
for $i=1,2, \ldots, n$:
v_{i} joins one of S, T
to maximize current $E(S, T)$;

$E(S, T)=\{u v \in E \mid u \in S, v \in T\}$

$$
\begin{aligned}
& \frac{S O L_{G}}{O P T_{G}} \geq \frac{S O L_{G}}{|E|} \geq \frac{1}{2} \\
& \forall v_{i}, \geq 1 / 2 \text { of }\left|E\left(S_{i}, v_{i}\right)\right|+\left|E\left(T_{i}, v_{i}\right)\right| \\
& \text { contributes to } S O L_{G} \\
&|E|= \sum_{i=1}^{n}\left(\left|E\left(S_{i}, v_{i}\right)\right|+\left|E\left(T_{i}, v_{i}\right)\right|\right)
\end{aligned}
$$

Approximation Algorithm

- Approximation ratio: $1 / 2$
- Time cost: $O(m)$

Max-Cut

- Find a cut $E(S, T)$ of largest size
- NP-hard:
- one of Karp's 21 NP-complete problems
- Greedy algorithm:
0.5-approximation

$$
E(S, T)=\{u v \in E \mid u \in S, v \in T\}
$$

Random Cut

Theorem: For uniform random cut $E(S, T)$ in graph $G(V, E)$,

$$
\mathbf{E}[|E(S, T)|]=\frac{|E|}{2}
$$

- $\forall v \in V$: let $X_{v} \in\{0,1\}$ be uniform \& independent

$$
\begin{gathered}
X_{v}=0 \Longrightarrow v \text { joins } S \\
X_{v}=1 \Longrightarrow v \text { joins } T \\
|E(S, T)|=\sum_{u v \in E}\left[\left[X_{u} \neq X_{v}\right] \quad \begin{array}{c}
\text { indicator of } \\
X_{u} \neq X_{v}
\end{array}\right.
\end{gathered}
$$

- Linearity of expectation:

$$
\mathbf{E}[|E(S, T)|]=\sum_{u v \in E} \operatorname{Pr}\left[X_{u} \neq X_{v}\right]=\frac{|E|}{2} \geq \frac{O P T}{2}
$$

De-randomization ${ }_{\text {(sy Conditional Expectation) }}$

All 2^{n} possible bi-partitions (S, T) of V.

De-randomization (By Condtitional Expectation)

Greedy Cut:
initially, $S=T=\varnothing$;

$$
\text { for } i=1,2, \ldots, n \text { : }
$$

v_{i} joins one of S, T
to maximize current $E(S, T)$;
with bigger expected cut conditional on current (S, T)

Random Cut

Theorem: For uniform random cut $E(S, T)$ in graph $G(V, E)$,

$$
\mathbf{E}[|E(S, T)|]=\frac{|E|}{2}
$$

- $\forall v \in V$: let $X_{v} \in\{0,1\}$ be uniform \& independent

$$
\begin{gathered}
X_{v}=0 \Longrightarrow v \text { joins } S \\
X_{v}=1 \Longrightarrow v \text { joins } T \\
|E(S, T)|=\sum_{u v \in E}\left[\left[X_{u} \neq X_{v}\right] \quad \begin{array}{c}
\text { indicator of } \\
X_{u} \neq X_{v}
\end{array}\right.
\end{gathered}
$$

- Linearity of expectation:

$$
\mathbf{E}[|E(S, T)|]=\sum_{u v \in E \quad \operatorname{Pr}\left[X_{u} \neq X_{v}\right]=\frac{|E|}{2} \geq \frac{O P T}{2}}^{\text {Holds for pairwise independent } X_{v} \text { 's! }}
$$

Mutual Independence

Definition (mutual independence):
Events $\mathscr{E}_{1}, \mathscr{E}_{2}, \ldots, \mathscr{E}_{n}$ are mutually independent if for any subset $I \subseteq\{1, \ldots, n\}$,

$$
\operatorname{Pr}\left[\bigwedge_{i \in I} \mathscr{E}_{i}\right]=\prod_{i \in I} \operatorname{Pr}\left[\mathscr{E}_{i}\right]
$$

Definition (mutual independence of random variables):
Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if for any subset $I \subseteq\{1, \ldots, n\}$ and any values x_{i}, where $i \in I$,

$$
\operatorname{Pr}\left[\bigwedge_{i \in I}\left(X_{i}=x_{i}\right)\right]=\prod_{i \in I} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

k-wise Independence

Definition (k-wise independence):
Events $\mathscr{E}_{1}, \mathscr{E}_{2}, \ldots, \mathscr{E}_{n}$ are mutually independent if for any subset $I \subseteq\{1, \ldots, n\}$ of size at most k,

$$
\operatorname{Pr}\left[\bigwedge_{i \in I} \mathscr{E}_{i}\right]=\prod_{i \in I} \operatorname{Pr}\left[\mathscr{E}_{i}\right]
$$

Definition (k-wise independence of random variables): Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if for any subset $I \subseteq\{1, \ldots, n\}$ of size at most k, and any values x_{i}, where $i \in I$,

$$
\operatorname{Pr}\left[\bigwedge_{i \in I}\left(X_{i}=x_{i}\right)\right]=\prod_{i \in I} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

Pairwise: 2-wise

Pairwise Independent Bits

- Mutually independent uniform random bits: (random source)

$$
b_{1}, \ldots, b_{l} \in\{0,1\}
$$

\mathbf{a}	\mathbf{b}	$\mathbf{a} \oplus \mathbf{b}$
0	0	0
0	1	1
1	0	1
1	1	0

Enumerate all nonempty subsets:

$$
S_{1}, \ldots, S_{2^{l}-1} \subseteq\{1, \ldots, l\}
$$

Parity Construction:

$$
X_{j}=\bigoplus_{i \in S_{j}} b_{i}
$$

Theorem:

$X_{1}, \ldots, X_{2^{l}-1}$ are pairwise independent uniform random bits.

- Pairwise independent uniform random bits: (for $n \gg l$)

$$
X_{1}, \ldots, X_{n} \in\{0,1\}
$$

De-randomization (By Paiwise indepenendence)

- Pairwise independent uniform $X_{v} \in\{0,1\}$ for all $v \in V$

$$
\begin{gathered}
X_{v}=0 \Longrightarrow v \text { joins } S \\
X_{v}=1 \Longrightarrow v \text { joins } T \\
|E(S, T)|=\sum_{u v \in E} I\left[X_{u} \neq X_{v}\right] \quad \begin{array}{c}
\text { indicator of } \\
X_{u} \neq X_{v}
\end{array}
\end{gathered}
$$

- Linearity of expectation:

$$
\mathbf{E}[|E(S, T)|]=\sum_{u v \in E} \operatorname{Pr}\left[X_{u} \neq X_{v}\right]=\frac{|E|}{2} \geq \frac{O P T}{2}
$$

Theorem: For (S, T) generated from pairwise independent uniform random bits, $\mathbf{E}[|E(S, T)|]=\frac{|E|}{2}$.

De-randomization (By Pairwise Independence)

- Let $b_{1}, \ldots, b_{\left\lceil\log _{2}(n+1)\right\rceil} \in\{0,1\}$ be mutually independent uniform bits.

- Pairwise independent uniform $X_{v} \in\{0,1\}$ for all $v \in V$

$$
\begin{aligned}
& X_{v}=0 \Longrightarrow v \text { joins } S \\
& X_{v}=1 \Longrightarrow v \text { joins } T
\end{aligned}
$$

Theorem: For (S, T) generated from pairwise independent uniform random bits, $\mathbf{E}[|E(S, T)|]=\frac{|E|}{2}$.

- Enumerate all $b_{1}, \ldots, b_{\left\lceil\log _{2}(n+1)\right\rceil} \in\{0,1\}: \quad$ (only $O(n)$ in total)
- There must exist an assignment of $b_{1}, \ldots, b_{\left[\log _{2}(n+1)\right]} \in\{0,1\}$ which corresponds to a cut with $|E(S, T)| \geq \frac{|E|}{2}$.

De-randomization (By Paimisee indepenendence)

$$
\begin{aligned}
& \text { Parity Search: } \\
& \text { for all } \boldsymbol{b} \in\{0,1\}\}^{\left[\log _{2}(n+1)\right]} \text { : } \\
& \text { initialize } S_{\boldsymbol{b}}=T_{\boldsymbol{b}}=\varnothing \text {; } \\
& \text { for } i=1,2, \ldots, n \text { : } \\
& \text { if } \bigoplus_{j:\left\lfloor i / 2^{j}\right\rfloor \bmod 2=1} b_{j}=1 \text { then } v_{i} \text { joins } S_{\boldsymbol{b}} \text {; } \\
& \text { else } v_{i} \text { joins } T_{\boldsymbol{b}} \text {; } \\
& \text { return the }\left(S_{\boldsymbol{b}}, T_{\boldsymbol{b}}\right) \text { with the largest }\left|E\left(S_{\boldsymbol{b}}, T_{\boldsymbol{b}}\right)\right|
\end{aligned}
$$

- Approximation ratio: $1 / 2$
- Time cost: $O\left(n^{2} \log n\right)$

Max-Cut

- Find a cut $E(S, T)$ of largest size
- NP-hard:
- one of Karp's 21 NP-complete problems
- Greedy algorithm:
0.5-approximation
- Best known approx. ratio for poly-time algorithm: 0.878~
- Unique games conjecture \Longrightarrow computationally hard to do better

$$
E(S, T)=\{u v \in E \mid u \in S, v \in T\}
$$

Sparsest Cut (Spectral Algorithms)

Sparsest Cut

- Undirected graph $G(V, E)$
- Find an $S \subseteq V$ with smallest

$$
\frac{|E(S, \bar{S})|}{\min \{|S|,|\bar{S}|\}}
$$

- Edge expansion:

$$
h(G):=\min _{\substack{S \subseteq V \\|S| \leq|V| / 2}} \frac{|E(S, \bar{S})|}{|S|}
$$

- NP-hard (and remains NP-hard for constant approximation assuming Unique Games Conjecture)

$$
E(S, T):=\{u v \in E \mid u \in S, v \in T\}
$$

- Applications: community detection in social network, robust network design, data clustering, image segmentation, VLSI design, rapidly mixing random walks, ...

Graphs as Matrices

- Undirected graph $G(V, E)$ has adjacency matrix $A \in\{0,1\}^{V \times V}$:

$$
A_{u, v}=1 \text { iff } u v \in E
$$

- A is a real symmetric matrix:
- it has real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$
- the eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ form orthonormal basis

$$
\begin{gathered}
A v_{i}=\lambda_{i} v_{i}, \forall i, \\
v_{i}^{\top} v_{j}=\left\{\begin{array}{l}
1, \text { if } i=j, \\
0, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Spectral Partitioning

- Undirected d-regular graph $G(V, E)$
- Conductance (normalized expansion):

$$
\varphi(G):=\frac{h(G)}{d}=\min _{\substack{S \subseteq V \\|S| \leq|V| / 2}} \frac{|E(S, \bar{S})|}{d|S|}
$$

$$
\varphi(S):=\frac{|E(S, \bar{S})|}{d|S|}
$$

Spectral partitioning algorithm:

- Compute the second largest eigenvalue λ_{2} of the adjacency matrix A and its corresponding eigenvector $\boldsymbol{x} \in \mathbb{R}^{n}$
- Sort the vertices $V=\left\{u_{1}, u_{2} \ldots, u_{n}\right\}$ so that $x\left(u_{1}\right) \geq x\left(u_{2}\right) \geq \ldots \geq x\left(u_{n}\right)$
- Let $S_{i}:=\left\{\begin{array}{ll}\left\{u_{1}, \ldots, u_{i}\right\} & \text { if } i \leq n / 2 \\ V \backslash\left\{u_{1}, \ldots, u_{i}\right\} & \text { otherwise }\end{array}\right.$, and output $S_{i}=\arg \min _{1 \leq i \leq n}\left\{\varphi\left(S_{i}\right)\right\}$

Theorem: $\exists i, \varphi\left(S_{i}\right) \leq 2 \sqrt{\varphi(G)}$
Generalizable to irregular graphs

Spectral Graph Theory

- Undirected d-regular graph $G(V, E)$
- Eigenvalues of adjacency matrix: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$
. Conductance: $\varphi(G):=\min _{\substack{S \subseteq V \\|S| \leq|V| / 2}} \frac{|E(S, \bar{S})|}{d|S|}$
Theorem: • $\left|\lambda_{i}\right| \leq d$
- $\lambda_{1}=d$ and has eigenvector $\overrightarrow{1}$
- $\lambda_{1}>\lambda_{2}$ iff G is connected

Theorem (Cheeger's Inequality):

$$
\frac{1}{2}\left(1-\lambda_{2} / d\right) \leq \varphi(G) \leq \sqrt{2\left(1-\lambda_{2} / d\right)}
$$

Application: Image Segmentation

One often wants to partition an image into consecutive regions

- Pixels within a region are fairly similar to each other
- Neighboring regions are fairly different from each other

Source: https://cs.brown.edu/people/pfelzens/segment/
Sparsest cut based image segmentation: see Shi-Malik 2000

Application: Graph Visualization

How to visualize or plot a graph?

- The second eigenvector may sparsely partition the graph.
- Goal: "communities" are clustered together, and different "communities" are farther apart

Spectral visualization algorithm:

- Compute the second and third eigenvectors $v_{2}, v_{3} \in \mathbb{R}^{n}$ of the adjacency matrix A
- Plot the graph on a 2D plane, where vertex i is drawn at coordinate $\left(v_{2}(i), v_{3}(i)\right)$

Application: Graph Visualization

Spectral visualization algorithm:

- Compute the second and third eigenvectors $v_{2}, v_{3} \in \mathbb{R}^{n}$ of the adjacency matrix A
- Plot the graph on a 2D plane, where vertex i is drawn at coordinate $\left(v_{2}(i), v_{3}(i)\right)$

In Mathematica:
GraphPlot[CycleGraph[10], GraphLayout -> "SpectralEmbedding"]

Application: Graph Visualization

ColorNegate // ImageMesh // DiscretizeRegion // MeshCoordinates // DelaunayMesh //

MeshConnectivityGraph

Out[1]=

SpectralPlot[g_]:=
AdjacencyGraph[g // AdjacencyMatrix, VertexCoordinates \rightarrow
(Transpose[
Take [
SortBy [
Eigensystem[
DiagonalMatrix[Total[g // AdjacencyMatrix]] (g // AdjacencyMatrix // Normal // N)] //
Transpose, \#【1】\&],
$\{2,3\}]][2 \rrbracket / / T r a n s p o s e)$,
VertexSize \rightarrow Tiny]
SpectralPlot [\%1]

