Advanced Algorithms（Fall 2023）
 Rounding Data and Dynamic Programming

Lecturers：尹一通，刘景铖，栗师
Nanjing University

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Knapsack Problem

Input: an integer bound $W>0$
a set of n items, each with an integer weight $w_{i}>0$ a value $v_{i}>0$ for each item i
Output: a subset S of items that

$$
\text { maximizes } \sum_{i \in S} v_{i} \quad \text { s.t. } \sum_{i \in S} w_{i} \leq W \text {. }
$$

- Motivation: you have budget W, and want to buy a subset of items of maximum total value

Greedy Algorithm

1: sort items according to non-increasing order of v_{i} / w_{i}
2: for each item in the ordering do
3: take the item if we have enough budget

- Bad example: $W=100, n=2, w=(1,100), v=(1.1,100)$.
- Optimum takes item 2 and greedy takes item 1.

Fractional Knapsack Problem

Input: integer bound $W>0$,
a set of n items, each with an integer weight $w_{i}>0$
a value $v_{i}>0$ for each item i
Output: a vector $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \in[0,1]^{n}$ that

$$
\text { maximizes } \sum_{i=1}^{n} \alpha_{i} v_{i} \quad \text { s.t. } \sum_{i=1}^{n} \alpha_{i} w_{i} \leq W \text {. }
$$

Greedy Algorithm for Fractional Knapsack
1: sort items according to non-increasing order of v_{i} / w_{i},
2: for each item according to the ordering, take as much fraction of the item as possible.

Theorem Greedy algorithm gives the optimum solution for fractional knapsack.

DP for Knapsack Problem

- opt $\left[i, W^{\prime}\right]$: the optimum value when budget is W^{\prime} and items are $\{1,2,3, \cdots, i\}$.

$$
\operatorname{opt}\left[i, W^{\prime}\right]= \begin{cases}0 & i=0 \\
\operatorname{opt}\left[i-1, W^{\prime}\right] & i>0, w_{i}>W^{\prime} \\
\max \left\{\begin{array}{c}
\operatorname{opt}\left[i-1, W^{\prime}\right] \\
o p t\left[i-1, W^{\prime}-w_{i}\right]+v_{i}
\end{array}\right\} & i>0, w_{i} \leq W^{\prime}\end{cases}
$$

- Running time of the algorithm is $O(n W)$.

Q: Is this a polynomial time?

A: No.

- The input size is polynomial in n and $\log W$; running time is polynomial in n and W.
- The running time is pseudo-polynomial.
- n : number of integers
W : maximum value of all integers
- pseudo-polynomial time: $\operatorname{poly}(n, W)$ (e.g., DP for Knapsack)
- weakly polynomial time: $\operatorname{poly}(n, \log W)$ (e.g., Euclidean Algorithm for Greatest Common Divisor)
- strongly polynomial time: poly (n) time, assuming basic operations on integers taking $O(1)$ time (e.g., Kruskal's)
- weakly NP-hard: NP-hard to solve in time poly $(n, \log W)$
- strongly NP-hard: NP-hard even if $W=\operatorname{poly}(n)$

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Idea for improving the running time to polynomial

- If we make weights upper bounded by $\operatorname{poly}(n)$, then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w_{i}^{\prime}=\left\lfloor\frac{w_{i}}{A}\right\rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.
- $\frac{\text { weight budget constraint }}{\text { maximum value requirement }}:$ hard
- We coarsen the values instead
- In the DP, we use values as parameters
- Let A be some integer to be defined later
- $v_{i}^{\prime}:=\left\lfloor\frac{v_{i}}{A}\right\rfloor$ be the scaled value of item i
- Definition of DP cells: $f\left[i, V^{\prime}\right]=\min _{S \subseteq[i]: v^{\prime}(S) \geq V^{\prime}} w(S)$

$$
f\left[i, V^{\prime}\right]= \begin{cases}0 & \begin{array}{l}
V^{\prime} \leq 0 \\
\infty \\
\min \left\{\begin{array}{c}
f\left[i-1, V^{\prime}\right] \\
f\left[i-1, V^{\prime}-v_{i}^{\prime}\right]+w_{i}
\end{array}\right\} \\
i=0, V^{\prime}>0 \\
i>0, V^{\prime}>0
\end{array}\end{cases}
$$

- Output A times the largest V^{\prime} such that $f\left[n, V^{\prime}\right] \leq W$.
- Instance $\mathcal{I}:\left(v_{1}, v_{2}, \cdots, v_{n}\right)$
- Instance $\mathcal{I}^{\prime}:\left(A v_{1}^{\prime}, \cdots, A V_{n}^{\prime}\right)$
opt: optimum value of \mathcal{I}
opt': optimum value of \mathcal{I}^{\prime}

$$
\begin{array}{rlr}
v_{i}-A & <A v_{i}^{\prime} \leq v_{i}, & \forall i \in[n] \\
\Longrightarrow \quad \mathrm{opt}-n A & <\mathrm{opt}^{\prime} \leq \mathrm{opt} &
\end{array}
$$

- opt $\geq v_{\max }:=\max _{i \in[n]} v_{i}$ (assuming $\left.w_{i} \leq W, \forall i\right)$
- setting $A:=\left\lfloor\frac{\epsilon \cdot v_{\max }}{n}\right\rfloor:(1-\epsilon)$ opt $\leq \mathrm{opt}^{\prime} \leq \mathrm{opt}$
- $\forall i, v_{i}^{\prime}=O\left(\frac{n}{\epsilon}\right) \quad \Longrightarrow \quad$ running time $=O\left(\frac{n^{3}}{\epsilon}\right)$

Theorem There is a $(1+\epsilon)$-approximation for the knapsack problem in time $O\left(\frac{n^{3}}{\epsilon}\right)$.

Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_{ϵ}, where A_{ϵ} for every $\epsilon>0$ is a (polynomial-time) ($1 \pm \epsilon$)-approximation algorithm.

- Remark: the approximation ratio is $1+\epsilon$ or $1-\epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_{ϵ} such that the running time of A_{ϵ} is $\operatorname{poly}\left(n, \frac{1}{\epsilon}\right)$ for input instances of n.

- So, Knapsack admits an FPTAS.

Q: Assume $P \neq$ NP. What is a neccesary condition for a NP-hard problem to admit an FPTAS?

- Vertex cover? Maximum independent set?

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Makespan Minimization on Identical Machines
Input: n jobs index as $[n]$
each job $j \in[n]$ has a processing time $p_{j} \in \mathbb{Z}_{>0}$ m machines

Output: schedule of jobs on machines with minimum makespan $\sigma:[n] \rightarrow[m]$ with minimum $\max _{i \in[m]} \sum_{j \in \sigma^{-1}(i)} p_{j}$

4 machines

Greedy Algorithm

1: start from an empty schedule
2: for $j=1$ to n do
3: put job j on the machine with the smallest load
Analysis of $\left(2-\frac{1}{m}\right)$-Approximation for Greedy Algorithm

$$
\begin{aligned}
& p_{\max }:=\max _{j \in[n]} p_{j} \\
& \operatorname{alg} \leq p_{\max }+\frac{1}{m} \cdot\left(\sum_{j \in[n]} p_{j}-p_{\max }\right)=\left(1-\frac{1}{m}\right) p_{\max }+\frac{1}{m} \sum_{j \in[n]} p_{j} \\
& \left.\quad \begin{array}{l}
\text { opt } \geq p_{\max } \\
\quad \text { opt } \geq \frac{1}{m} \sum_{j \in[n]} p_{j}
\end{array}\right\} \Longrightarrow \quad \operatorname{alg} \leq\left(2-\frac{1}{m}\right) \mathrm{opt}
\end{aligned}
$$

Q: What happens if all items have size at most $\epsilon \cdot$ opt?
A: alg $\leq \frac{1}{m} \sum_{j \in[n]} p_{j}+p_{\max } \leq \mathrm{opt}+\epsilon \cdot \mathrm{opt}=(1+\epsilon) \mathrm{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot$ opt?

A: We can round the sizes, so that \#(distinct sizes) is small

Overview of Algorithm

1: declare j small if $p_{j}<\epsilon \cdot p_{\text {max }}$ and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance $\left(p_{j}^{\prime}\right)_{j}$ big to schedule big jobs
4: add small jobs to schedule greedily

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Dynamic Programming for Big Jobs

- $B:=\left\{j \in[n]: p_{j} \geq \epsilon p_{\max }\right\}$: set of big jobs
- $p_{j}^{\prime}:=\max \left\{p_{\max }(1+\epsilon)^{t} \leq p_{j}: t \in \mathbb{Z}\right\}, \forall j \in B$ p_{j}^{\prime} is the rounded size of j
- $k:=\left|\left\{p_{j}^{\prime}: j \in B\right\}\right|: \#($ distinct rounded sizes)

$$
k \leq 1+\log _{1+\epsilon} \frac{p_{\max }}{\epsilon p_{\max }}=O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)
$$

- $\left\{q_{1}, q_{2}, \cdots, q_{k}\right\}:=\left\{p_{j}^{\prime}: j \in B\right\}$: the k distinct rounded sizes
- n_{1}, \cdots, n_{k} : $\#$ (big jobs) with rounded sizes being q_{1}, \cdots, q_{k}

Constructing a Directed Acyclic Graph $G=(V, E)$

- a vertex $\left(a_{1}, \cdots, a_{k}\right), a_{i} \in\left[0, n_{i}\right], \forall i \in[k]$
- denotes the instance with a_{1} jobs of size q_{1}, a_{2} jobs of size q_{2}, \cdots, a_{k} jobs of size q_{k}
- an arc $\left(a_{1}, \cdots, a_{k}\right) \rightarrow\left(b_{1}, \cdots b_{k}\right)$ of weight $\sum_{i=1}^{k}\left(b_{i}-a_{i}\right) q_{i}$, if $a_{i} \leq b_{i}, \forall i \in[k]$, and $a_{i}<b_{i}$ for some $i \in[k]$
- reducing instance $\left(b_{1}, \cdots b_{k}\right)$ to (a_{1}, \cdots, a_{k}) requires 1 machine of load $\sum_{i=1}^{k}\left(b_{i}-a_{i}\right) q_{i}$
- Goal: find a path from $(0, \cdots, 0)$ to $\left(n_{1}, \cdots, n_{k}\right)$ of at most m edges, so as to minimize the maximum weight on the path.
- problem can be solved in $O(m \cdot|E|)$ time using DP
- $O(m \cdot|E|)=O\left(m \cdot n^{2 k}\right)=n^{O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)}$.

Analysis of Algorithm for Big Jobs

- \mathcal{I}_{B} : instance $\left(p_{j}\right)_{j \in B} \quad$ opt $_{B}$: its optimum makespan
- \mathcal{I}_{B}^{\prime} : instance $\left(p_{j}^{\prime}\right)_{j \in B} \quad$ opt $_{B}^{\prime}$: its optimum makespan
- opt $_{B}^{\prime} \leq$ opt $_{B}$
- schedule for $\mathcal{I}_{B}^{\prime} \Rightarrow$ schedule for \mathcal{I}_{B} :

$$
(1+\epsilon) \text {-blowup in makespan }
$$

Theorem The dynamic programming algorithm gives a schedule of makespan at most $(1+\epsilon)$ opt $_{B}$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: \quad add j to the machine with the smallest load

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Analysis of the Final Algorithm

case 1

case 2

- Case 1: makespan is not increased by small jobs

$$
\operatorname{alg} \leq(1+\epsilon) \mathrm{opt}_{B} \leq(1+\epsilon) \mathrm{opt}
$$

- Case 2: makespan is increased by small jobs
- loads between any two machines differ by at most size of a small job, which is at most $\epsilon \cdot p_{\text {max }}$

$$
\operatorname{alg} \leq \epsilon \cdot p_{\max }+\frac{1}{m} \sum_{j \in[n]} p_{j} \leq \epsilon \cdot \mathrm{opt}+\mathrm{opt}=(1+\epsilon) \cdot \text { opt. }
$$

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Bin Packing

Input: n items indexed by $[n]$, with sizes $s_{1}, s_{2}, \cdots, s_{n} \in(0,1]$ Output: a packing of items into smallest number of bins of capacity 1 .

	\#containers	container capacity
bin packing	objective	fixed
scheduling	fixed	objective

First-Fit

1: initially there are 0 bins
2: for $i \leftarrow 1$ to n do
3: \quad if item i fits into an existing bin then put i into the bin 4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1 / 2$.

- If our algorithm uses t bins, then opt $>\frac{t-1}{2}$ and opt $\in \mathbb{Z}_{>0}$
- t is even: opt $\geq \frac{t}{2} \quad t$ is odd: opt $\geq \frac{t+1}{2}$.

Lemma The greedy algorithm gives a 2-approximation.

Theorem Unless $\mathrm{P}=\mathrm{NP}$, there is no poly-time approximation algorithm for bin packing with approximation ratio $<3 / 2$.

Proof.

- It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers $x_{1}, x_{2}, \cdots, x_{n} \in \mathbb{Z}_{>0}$
Output: decide if there is a partition of $[n]$ into A and B such that $\sum_{i \in A} x_{i}=\sum_{i \in B} x_{i}$

Theorem Equal Partition is (weakly) NP-hard.

- The approximation ratio is bad only when opt is small
- NP-hard to decide between opt ≤ 2 and opt ≥ 3.
- Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102 ?
- The conjecture has not been disproved (assuming $P \neq N P$):

Conjecture: There is an efficient algorithm that outputs a solution with opt +1 bins.

- asymptotic α-approximation: an efficient algorithm that finds solution with $\alpha \cdot$ opt $+c$ bins, with $c=O(1)$.

Theorem First-Fit-Decreasing algorithm outputs a solution using at most $(11 / 9) \cdot$ opt +4 bins. That is, it is an asymptotic 11/9-approximation.

Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms A_{ϵ} along with a constant $c \geq 0$, where algorithm A_{ϵ} for every $\epsilon>0$ returns a solution of value at most $(1+\epsilon) \mathrm{opt}+c$ in polynomial time.

Theorem For any fixed $\epsilon>0$, there is a polynomial time algorithm that, given a bin-packing instance \mathcal{I}, outputs a solution with at most $(1+\epsilon)$ opt +1 bins.

- That is, there is an APTAS for bin-packing.
- $\gamma>0$ a small constant: item i is $\begin{cases}\text { small } & \text { if } s_{i}<\gamma \\ \text { big } & \text { if } s_{i} \geq \gamma\end{cases}$

What to do if all items are small?

- First-Fit: all but at most 1 bin has total size $\leq 1-\gamma$
- alg $\leq\left\lceil\frac{\mathrm{opt}}{1-\gamma}\right\rceil<\frac{1}{1-\gamma} \cdot$ opt $+1, \quad \gamma:=\epsilon / 2 \quad \Rightarrow \quad \frac{1}{1-\gamma}<1+\epsilon$

What to do if all items are big?

- truncate item sizes to obtain \mathcal{I}^{\prime}, using DP to solve \mathcal{I}^{\prime}
- two essential properties:

$$
\operatorname{opt}\left(\mathcal{I}^{\prime}\right) \approx \operatorname{opt}(\mathcal{I}) \quad \#\left(\text { item sizes in } \mathcal{I}^{\prime}\right) \text { is small }
$$

- general instance: pack big items using truncation + DP, then use First-Fit to pack small items

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Construction of Instance \mathcal{I}^{\prime}

1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

- every group in \mathcal{I}^{\prime} has the same size.
- $k:=$ the number of distinct sizes in $\mathcal{I}^{\prime}, k \leq\left\lfloor\frac{n}{g}\right\rfloor$
- \mathcal{I}^{\prime} can be solved exactly by DP in $O\left(n^{2 k}\right)$-time

Dynamic Programming for \mathcal{I}^{\prime} in $O\left(n^{2 k}\right)$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let $n_{1}, n_{2}, \cdots, n_{k}$ be the number of items of each size
- vertex $\left(a_{1}, a_{2}, \cdots, a_{k}\right)$: the instance with a_{1} items of size $s^{(1)}$, a_{2} items of size $s^{(2)}, \cdots$, and a_{k} items of size $s^{(k)}$
- an arc $\left(a_{1}, a_{2}, \cdots, a_{k}\right) \rightarrow\left(b_{1}, b_{2}, \cdots, b_{k}\right)$ if
- $a_{i} \geq b_{i}$ for every $i \in[k]$ and,
- $s^{(1)}\left(b_{1}-a_{1}\right)+s^{(2)}\left(b_{2}-a_{2}\right)+\cdots+s^{(k)}\left(b_{k}-a_{k}\right) \leq 1$
- DP: computing the shortest path from $(0,0, \cdots, 0)$ to $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$

$$
\operatorname{opt}(\mathcal{I})-g \leq \operatorname{opt}\left(\mathcal{I}^{\prime}\right) \leq \operatorname{opt}(\mathcal{I})
$$

- solving $\mathcal{I}^{\prime} \Rightarrow$ packing for \mathcal{I} with $\leq \operatorname{opt}(\mathcal{I})+g$ bins
- $s_{i} \geq \gamma, \forall i \in[n] \quad \Longrightarrow \quad \operatorname{opt}(\mathcal{I}) \geq \gamma n$.
- setting $g:=\epsilon \gamma n \quad \Longrightarrow \quad g \leq \epsilon \cdot \operatorname{opt}(\mathcal{I})$ and $k \leq \frac{n}{g} \leq \frac{1}{\epsilon \gamma}$

Theorem There is an $O\left(n^{2 /(\epsilon \gamma)}\right)$-time $(1+\epsilon)$-approximation algorithm for the bin-packing problem when all items have size at least γ,

Outline

(1) Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem
(2) PTAS for Makespan Minimization on Identical Machines
- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm
(3) An asymptotical PTAS for Bin Packing
- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution \mathcal{S} for big items
2: Starting from \mathcal{S}, use First-Fit to pack small items

Analysis of the Combined Algorithm

case 1

case 2

- Case 1: no new bins are used to pack small items

$$
\#(\text { bins used }) \leq(1+\epsilon) \cdot \operatorname{opt}\left(\mathcal{I}_{\text {big }}\right) \leq(1+\epsilon) \cdot \operatorname{opt}(\mathcal{I})
$$

- Case 2: new bins are used at most one bin has total size $\leq 1-\gamma$

$$
\#(\text { bins used })<\frac{\operatorname{opt}(\mathcal{I})}{1-\gamma}+1
$$

- Setting $\gamma=\epsilon / 2$ $\#($ bins used $)<\frac{\text { opt }(\mathcal{I})}{1-\epsilon / 2}+1 \leq(1+\epsilon) \operatorname{opt}(\mathcal{I})+1$

Theorem There is an $O\left(n^{2 /\left(\epsilon^{2}\right)}\right)$-time algorithm that outputs a solution with at most $(1+\epsilon) \operatorname{opt}(\mathcal{I})+1$ bins.

Theorem There is an APTAS for bin-packing.

