Advanced Algorithms (Fall 2023)

Rounding Data and Dynamic Programming

Lecturers: 尹一通, 刘景铖, 栗师

Nanjing University
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Knapsack Problem

Input: an integer bound $W > 0$

an set of n items, each with an integer weight $w_i > 0$

a value $v_i > 0$ for each item i

Output: a subset S of items that

maximizes $\sum_{i \in S} v_i$ s.t. $\sum_{i \in S} w_i \leq W$.

- **Motivation:** you have budget W, and want to buy a subset of items of maximum total value
Greedy Algorithm

1: sort items according to non-increasing order of \(\frac{v_i}{w_i} \)
2: **for** each item in the ordering **do**
3: take the item if we have enough budget

- Bad example: \(W = 100, n = 2, w = (1, 100), v = (1.1, 100) \).
- Optimum takes item 2 and greedy takes item 1.
Fractional Knapsack Problem

Input: integer bound $W > 0$,
a set of n items, each with an integer weight $w_i > 0$
a value $v_i > 0$ for each item i

Output: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that maximizes

$$\sum_{i=1}^{n} \alpha_i v_i \quad \text{s.t.} \quad \sum_{i=1}^{n} \alpha_i w_i \leq W.$$

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of v_i/w_i,
2: for each item according to the ordering, take as much fraction of the item as possible.

Theorem Greedy algorithm gives the optimum solution for fractional knapsack.
DP for Knapsack Problem

- \(opt[i, W'] \): the optimum value when budget is \(W' \) and items are \(\{1, 2, 3, \cdots , i\} \).

\[
\begin{align*}
opt[i, W'] &= \begin{cases}
0 & i = 0 \\
opt[i - 1, W'] & i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
\quad opt[i - 1, W'] \\
\quad opt[i - 1, W' - w_i] + v_i
\end{array} \right\} & i > 0, w_i \leq W'
\end{cases}
\end{align*}
\]

- Running time of the algorithm is \(O(nW) \).

Q: Is this a polynomial time?

A: No.

- The input size is polynomial in \(n \) and \(\log W \); running time is polynomial in \(n \) and \(W \).
- The running time is pseudo-polynomial.
- \(n \): number of integers \quad \(W \): maximum value of all integers

- **pseudo-polynomial time**: \(\text{poly}(n, W) \) (e.g., DP for Knapsack)

- **weakly polynomial time**: \(\text{poly}(n, \log W) \) (e.g., Euclidean Algorithm for Greatest Common Divisor)

- **strongly polynomial time**: \(\text{poly}(n) \) time, assuming basic operations on integers taking \(O(1) \) time (e.g., Kruskal’s)

- **weakly NP-hard**: NP-hard to solve in time \(\text{poly}(n, \log W) \)

- **strongly NP-hard**: NP-hard even if \(W = \text{poly}(n) \)
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Idea for improving the running time to polynomial

- If we make weights upper bounded by \(\text{poly}(n) \), then pseudo-polynomial time becomes polynomial time.
- Coarsening the weights: \(w'_i = \left\lfloor \frac{w_i}{A} \right\rfloor \) for some appropriately defined integer \(A \).
- However, coarsening weights will change the problem.
 - Weight budget constraint: hard
 - Maximum value requirement: soft
- We coarsen the values instead.
- In the DP, we use values as parameters.
- Let A be some integer to be defined later
- $v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \geq V'} w(S)$

\[
f[i, V'] = \begin{cases}
0 & \text{if } V' \leq 0 \\
\infty & \text{if } i = 0, V' > 0 \\
\min \left\{ \begin{array}{l}
f[i - 1, V'] \\
f[i - 1, V' - v'_i] + w_i \end{array} \right\} & \text{if } i > 0, V' > 0
\end{cases}
\]

- Output A times the largest V' such that $f[n, V'] \leq W$.
Instance \mathcal{I}: (v_1, v_2, \ldots, v_n) \hspace{1cm} opt: optimum value of \mathcal{I}

Instance \mathcal{I}': $(A v'_1, \ldots, A v'_n)$ \hspace{1cm} opt': optimum value of \mathcal{I}'

\[v_i - A < A v'_i \leq v_i, \quad \forall i \in [n] \]

\[\implies \text{opt} - nA < \text{opt}' \leq \text{opt} \]

\[\text{opt} \geq v_{\text{max}} := \max_{i \in [n]} v_i \quad \text{(assuming } w_i \leq W, \forall i) \]

setting $A := \left\lfloor \frac{\epsilon \cdot v_{\text{max}}}{n} \right\rfloor$: $(1 - \epsilon)\text{opt} \leq \text{opt}' \leq \text{opt}$

\[\forall i, v'_i = O\left(\frac{n}{\epsilon}\right) \quad \implies \quad \text{running time} = O\left(\frac{n^3}{\epsilon}\right) \]

Theorem There is a $(1 + \epsilon)$-approximation for the knapsack problem in time $O\left(\frac{n^3}{\epsilon}\right)$.
Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem.

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n, \frac{1}{\epsilon})$ for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P \neq NP. What is a necessary condition for a NP-hard problem to admit an FPTAS?

Vertex cover? Maximum independent set?
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Makespan Minimization on Identical Machines

Input: n jobs index as $[n]$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$

m machines

Output: schedule of jobs on machines with minimum makespan

$\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

4 machines

makespan
Greedy Algorithm

1: start from an empty schedule
2: for $j = 1$ to n do
3: put job j on the machine with the smallest load

Analysis of $\left(2 - \frac{1}{m}\right)$-Approximation for Greedy Algorithm

\[
p_{\text{max}} := \max_{j \in [n]} p_j
\]

\[
alg \leq p_{\text{max}} + \frac{1}{m} \cdot \left(\sum_{j \in [n]} p_j - p_{\text{max}} \right) = \left(1 - \frac{1}{m}\right)p_{\text{max}} + \frac{1}{m} \sum_{j \in [n]} p_j
\]

\[
\text{opt} \geq p_{\text{max}}
\]

\[
\text{opt} \geq \frac{1}{m} \sum_{j \in [n]} p_j
\]

\[
\implies \quad \text{alg} \leq \left(2 - \frac{1}{m}\right)\text{opt}
\]
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #$($distinct sizes$)$ is small.

Overview of Algorithm

1. declare j small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise
2. use truncation + DP to solve the instance defined by big jobs
3. use DP for instance $(p'_j)_j$ big to schedule big jobs
4. add small jobs to schedule greedily
Outline

1 Knapsack Problem
 • Introduction
 • FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
 • Introduction
 • Dynamic Programming to Schedule Big Jobs
 • Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
 • Introduction
 • Algorithm for Big Items
 • Combination of Algorithms for Big and Small Items
Dynamic Programming for Big Jobs

- \(B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \} \): set of big jobs
- \(p'_j := \max\{ p_{\text{max}}(1 + \epsilon)^t \leq p_j : t \in \mathbb{Z} \}, \forall j \in B \)
 - \(p'_j \) is the rounded size of \(j \)
- \(k := |\{ p'_j : j \in B \}| \): \#(distinct rounded sizes)
 - \(k \leq 1 + \log_{1+\epsilon} \frac{p_{\text{max}}}{\epsilon p_{\text{max}}} = O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right) \)
- \(\{ q_1, q_2, \cdots, q_k \} := \{ p'_j : j \in B \} \): the \(k \) distinct rounded sizes
- \(n_1, \cdots, n_k \): \#(big jobs) with rounded sizes being \(q_1, \cdots, q_k \)
Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex (a_1, \cdots, a_k), $a_i \in [0, n_i], \forall i \in [k]$ denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \ldots, a_k jobs of size q_k

- an arc $(a_1, \cdots, a_k) \rightarrow (b_1, \cdots b_k)$ of weight $\sum_{i=1}^{k} (b_i - a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$

- reducing instance $(b_1, \cdots b_k)$ to (a_1, \cdots, a_k) requires 1 machine of load $\sum_{i=1}^{k} (b_i - a_i)q_i$

- Goal: find a path from $(0, \cdots, 0)$ to (n_1, \cdots, n_k) of at most m edges, so as to minimize the maximum weight on the path.

- problem can be solved in $O(m \cdot |E|)$ time using DP

- $O(m \cdot |E|) = O(m \cdot n^{2k}) = n^{O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)}$.
\[
\text{cost} = \max \{ 2q_3, q_1 + q_2 + q_4, q_1 + q_2 + q_3, 2q_2 \}
\]
Analysis of Algorithm for Big Jobs

- I_B: instance $(p_j)_{j \in B}$
- \mathcal{I}_B: its optimum makespan
- I'_B: instance $(p'_j)_{j \in B}$
- \mathcal{I}'_B: its optimum makespan
- $\text{opt}'_B \leq \text{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B:

 \begin{align*}
 (1 + \epsilon)\text{-blowup in makespan}
 \end{align*}

\textbf{Theorem}

The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon)\text{opt}_B$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.

Adding small jobs to schedule

1. starting from the schedule for big jobs
2. \textbf{for} every small job j \textbf{do}
3. add j to the machine with the smallest load
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Case 1: makespan is not increased by small jobs

$$\text{alg} \leq (1 + \epsilon) \text{opt}_B \leq (1 + \epsilon) \text{opt}.$$

Case 2: makespan is increased by small jobs

- loads between any two machines differ by at most size of a small job, which is at most $\epsilon \cdot p_{\text{max}}$

$$\text{alg} \leq \epsilon \cdot p_{\text{max}} + \frac{1}{m} \sum_{j \in [n]} p_j \leq \epsilon \cdot \text{opt} + \text{opt} = (1 + \epsilon) \cdot \text{opt}.$$
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Bin Packing

Input: \(n \) items indexed by \([n]\), with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \)

Output: a packing of items into smallest number of bins of capacity 1.

<table>
<thead>
<tr>
<th>bin packing</th>
<th>objective</th>
<th>container capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>scheduling</td>
<td>fixed</td>
<td>fixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First-Fit

1. initially there are 0 bins
2. for $i \leftarrow 1$ to n do
3. if item i fits into an existing bin then put i into the bin
4. else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- If our algorithm uses t bins, then $\text{opt} > \frac{t-1}{2}$ and $\text{opt} \in \mathbb{Z}_{>0}$
- t is even: $\text{opt} \geq \frac{t}{2}$
 t is odd: $\text{opt} \geq \frac{t+1}{2}$.

Lemma The greedy algorithm gives a 2-approximation.
Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio < 3/2.

Proof.

- It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition. □

Equal Partition

Input: \(n \) numbers \(x_1, x_2, \cdots, x_n \in \mathbb{Z}_{>0} \)

Output: decide if there is a partition of \([n]\) into \(A \) and \(B \) such that \(\sum_{i \in A} x_i = \sum_{i \in B} x_i \)

Theorem Equal Partition is (weakly) NP-hard.
The approximation ratio is bad only when opt is small.

NP-hard to decide between $\text{opt} \leq 2$ and $\text{opt} \geq 3$.

Open: NP-hard to decide between $\text{opt} \leq 100$ and $\text{opt} \geq 102$?

The conjecture has not been disproved (assuming $P \neq \text{NP}$):

Conjecture: There is an efficient algorithm that outputs a solution with $\text{opt} + 1$ bins.

- **asymptotic α-approximation:** an efficient algorithm that finds solution with $\alpha \cdot \text{opt} + c$ bins, with $c = O(1)$.

Theorem First-Fit-Decreasing algorithm outputs a solution using at most $(11/9) \cdot \text{opt} + 4$ bins. That is, it is an asymptotic $11/9$-approximation.
Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms \(A_\epsilon \) along with a constant \(c \geq 0 \), where algorithm \(A_\epsilon \) for every \(\epsilon > 0 \) returns a solution of value at most \((1 + \epsilon)opt + c\) in polynomial time.

Theorem For any fixed \(\epsilon > 0 \), there is a polynomial time algorithm that, given a bin-packing instance \(\mathcal{I} \), outputs a solution with at most \((1 + \epsilon)opt + 1\) bins.

That is, there is an APTAS for bin-packing.
\(\gamma > 0 \) a small constant: item \(i \) is

\[
\begin{cases}
\text{small} & \text{if } s_i < \gamma \\
\text{big} & \text{if } s_i \geq \gamma
\end{cases}
\]

What to do if all items are small?

- **First-Fit:** all but at most 1 bin has total size \(\leq 1 - \gamma \)

\[
\text{alg} \leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1, \quad \gamma := \epsilon/2 \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1 + \epsilon
\]

What to do if all items are big?

- truncate item sizes to obtain \(\mathcal{I}' \), using DP to solve \(\mathcal{I}' \)
- two essential properties:
 \(\text{opt}(\mathcal{I}') \approx \text{opt}(\mathcal{I}) \) \quad \#(item sizes in \(\mathcal{I}' \)) is small
- general instance: pack big items using truncation + DP, then use First-Fit to pack small items
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Construction of Instance \mathcal{I}'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group

opt(\mathcal{I}) − g ≤ opt(\mathcal{I}') ≤ opt(\mathcal{I})
every group in \mathcal{I}' has the same size.

$k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

\mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for \mathcal{I}' in $O(n^{2k})$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k): the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots, and a_k items of size $s^{(k)}$
- an arc $(a_1, a_2, \cdots, a_k) \to (b_1, b_2, \cdots, b_k)$ if
 - $a_i \geq b_i$ for every $i \in [k]$ and,
 - $s^{(1)}(b_1 - a_1) + s^{(2)}(b_2 - a_2) + \cdots + s^{(k)}(b_k - a_k) \leq 1$
- DP: computing the shortest path from $(0,0,\cdots,0)$ to (n_1, n_2, \cdots, n_k)
opt(\mathcal{I}) - g \leq opt(\mathcal{I}') \leq opt(\mathcal{I}).

- solving \mathcal{I}' \Rightarrow packing for \mathcal{I} with \leq opt(\mathcal{I}) + g bins
- \quad s_i \geq \gamma, \forall i \in [n] \quad \Rightarrow \quad opt(\mathcal{I}) \geq \gamma n.
- setting \quad g := \epsilon \gamma n \quad \Rightarrow \quad g \leq \epsilon \cdot opt(\mathcal{I}) \quad and \quad k \leq \frac{n}{g} \leq \frac{1}{\epsilon \gamma}

Theorem There is an \(O(n^2/(\epsilon \gamma)) \)-time \((1 + \epsilon)\)-approximation algorithm for the bin-packing problem when all items have size at least \(\gamma \),
Outline

1 Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Combining Algorithms for Small and Big Items

1. Use truncation + DP to obtain solution S for big items
2. Starting from S, use First-Fit to pack small items
Analysis of the Combined Algorithm

Case 1: no new bins are used to pack small items

\[\#(\text{bins used}) \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I) \]

Case 2: new bins are used

at most one bin has total size \(\leq 1 - \gamma \)

\[\#(\text{bins used}) < \frac{\text{opt}(I)}{1 - \gamma} + 1 \]
Setting $\gamma = \epsilon/2 \implies \#(\text{bins used}) < \frac{\text{opt}(I)}{1-\epsilon/2} + 1 \leq (1 + \epsilon)\text{opt}(I) + 1$

Theorem There is an $O(n^2/(\epsilon^2))$-time algorithm that outputs a solution with at most $(1 + \epsilon)\text{opt}(I) + 1$ bins.

Theorem There is an APTAS for bin-packing.