Advanced Algorithms (Fall 2023) Rounding Data and Dynamic Programming

Lecturers: 尹一通, 刘景铖, 栗师 Nanjing University

Outline

Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Knapsack Problem

Input: an integer bound W > 0a set of n items, each with an integer weight $w_i > 0$ a value $v_i > 0$ for each item iOutput: a subset S of items that

maximizes
$$\sum_{i \in S} v_i$$
 s.t. $\sum_{i \in S} w_i \le W_i$

Knapsack Problem

Input: an integer bound W > 0a set of n items, each with an integer weight $w_i > 0$ a value $v_i > 0$ for each item iOutput: a subset S of items that

maximizes
$$\sum_{i \in S} v_i$$
 s.t. $\sum_{i \in S} w_i \le W$.

• Motivation: you have budget W, and want to buy a subset of items of maximum total value

Greedy Algorithm

- 1: sort items according to non-increasing order of v_i/w_i
- 2: for each item in the ordering do
- 3: take the item if we have enough budget

Greedy Algorithm

- 1: sort items according to non-increasing order of v_i/w_i
- 2: for each item in the ordering do
- 3: take the item if we have enough budget
- Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Greedy Algorithm

- 1: sort items according to non-increasing order of v_i/w_i
- 2: for each item in the ordering do
- 3: take the item if we have enough budget
- Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).
- Optimum takes item 2 and greedy takes item 1.

Fractional Knapsack Problem

Input: integer bound W > 0, a set of n items, each with an integer weight $w_i > 0$ a value $v_i > 0$ for each item iOutput: a vector $(\alpha_1, \alpha_2, \dots, \alpha_n) \in [0, 1]^n$ that maximizes $\sum_{i=1}^n \alpha_i v_i$ s.t. $\sum_{i=1}^n \alpha_i w_i \le W$.

Fractional Knapsack Problem

Input: integer bound W > 0, a set of n items, each with an integer weight $w_i > 0$ a value $v_i > 0$ for each item iOutput: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that maximizes $\sum_{i=1}^n \alpha_i v_i$ s.t. $\sum_{i=1}^n \alpha_i w_i \le W$.

Greedy Algorithm for Fractional Knapsack

- 1: sort items according to non-increasing order of v_i/w_i ,
- 2: for each item according to the ordering, take as much fraction of the item as possible.

Fractional Knapsack Problem

Input: integer bound W > 0, a set of n items, each with an integer weight $w_i > 0$ a value $v_i > 0$ for each item iOutput: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that maximizes $\sum_{i=1}^n \alpha_i v_i$ s.t. $\sum_{i=1}^n \alpha_i w_i \le W$.

Greedy Algorithm for Fractional Knapsack

- 1: sort items according to non-increasing order of v_i/w_i ,
- 2: for each item according to the ordering, take as much fraction of the item as possible.

Theorem Greedy algorithm gives the optimum solution for fractional knapsack.

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \begin{cases} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{cases} & i > 0, w_i \le W' \end{cases}$$

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \begin{cases} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{cases} & i > 0, w_i \le W' \end{cases}$$

• Running time of the algorithm is O(nW).

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \begin{cases} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{cases} \end{cases} \quad i > 0, w_i \le W'$$

• Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \begin{cases} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{cases} & i > 0, w_i \le W' \end{cases}$$

- Running time of the algorithm is O(nW).
- Q: Is this a polynomial time?

A: No.

• opt[i, W']: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \begin{cases} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + v_i \end{cases} \end{cases} \quad i > 0, w_i \le W'$$

- Running time of the algorithm is O(nW).
- Q: Is this a polynomial time?

A: No.

- The input size is polynomial in n and $\log W$; running time is polynomial in n and W.
- The running time is pseudo-polynomial.

- n: number of integers W: maximum value of all integers
- pseudo-polynomial time: poly(n, W) (e.g., DP for Knapsack)
- weakly polynomial time: $poly(n, \log W)$ (e.g., Euclidean Algorithm for Greatest Common Divisor)
- strongly polynomial time: poly(n) time, assuming basic operations on integers taking O(1) time (e.g., Kruskal's)
- weakly NP-hard: NP-hard to solve in time $poly(n, \log W)$
- strongly NP-hard: NP-hard even if W = poly(n)

Outline

Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

- If we make weights upper bounded by poly(n), then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w'_i = \lfloor \frac{w_i}{A} \rfloor$ for some appropriately defined integer A.

- If we make weights upper bounded by poly(n), then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w'_i = \lfloor \frac{w_i}{A} \rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.

- If we make weights upper bounded by poly(n), then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w'_i = \lfloor \frac{w_i}{A} \rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.

weight budget constraint : hard

maximum value requirement : soft

- If we make weights upper bounded by poly(n), then pseudo-polynomial time becomes polynomial time
- Coarsening the weights: $w'_i = \lfloor \frac{w_i}{A} \rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.

weight budget constraint : hard maximum value requirement : soft

- We coarsen the values instead
- In the DP, we use values as parameters

 $\bullet \ \mbox{Let} \ A$ be some integer to be defined later

- $\bullet \ {\rm Let} \ A$ be some integer to be defined later
- $v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i

- $\bullet \ {\rm Let} \ A$ be some integer to be defined later
- $v'_i := \lfloor \frac{v_i}{A} \rfloor$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \ge V'} w(S)$

- $\bullet \ {\rm Let} \ A$ be some integer to be defined later
- $v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \ge V'} w(S)$

$$f[i, V'] = \begin{cases} 0 & V' \le 0\\ \infty & i = 0, V' > 0\\ \min \left\{ \begin{array}{l} f[i-1, V'] \\ f[i-1, V' - v'_i] + w_i \end{array} \right\} & i > 0, V' > 0 \end{cases}$$

- $\bullet \ {\rm Let} \ A$ be some integer to be defined later
- $v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i
- Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \ge V'} w(S)$

$$f[i, V'] = \begin{cases} 0 & V' \le 0\\ \infty & i = 0, V' > 0\\ \min \left\{ \begin{array}{c} f[i-1, V']\\ f[i-1, V'-v'_i] + w_i \end{array} \right\} & i > 0, V' > 0 \end{cases}$$

• Output A times the largest V' such that $f[n, V'] \leq W$.

- Instance \mathcal{I} : (v_1, v_2, \cdots, v_n)
- Instance \mathcal{I}' : (Av'_1, \cdots, AV'_n)

opt: optimum value of \mathcal{I} opt': optimum value of \mathcal{I}'

$$v_i - A < Av'_i \le v_i, \qquad \forall i \in [n]$$

 $\implies \text{opt} - nA < \text{opt}' \le \text{opt}$

• opt
$$\geq v_{\max} := \max_{i \in [n]} v_i$$
 (assuming $w_i \leq W, \forall i$)

$$v_i - A < Av'_i \le v_i, \qquad \forall i \in [n]$$

 $\implies \text{ opt} - nA < \text{opt}' \le \text{ opt}$

• opt
$$\geq v_{\max} := \max_{i \in [n]} v_i$$
 (assuming $w_i \leq W, \forall i$)

• setting $A := \lfloor \frac{\epsilon \cdot v_{\max}}{n} \rfloor$: $(1 - \epsilon)$ opt \leq opt' \leq opt

$$v_i - A < Av'_i \le v_i, \qquad \forall i \in [n]$$

 $\implies \text{opt} - nA < \text{opt}' \le \text{opt}$

• opt
$$\geq v_{\max} := \max_{i \in [n]} v_i$$
 (assuming $w_i \leq W, \forall i$)
• setting $A := \lfloor \frac{\epsilon \cdot v_{\max}}{n} \rfloor$: $(1 - \epsilon)$ opt \leq opt' \leq opt

•
$$\forall i, v'_i = O(\frac{n}{\epsilon}) \implies \text{running time} = O(\frac{n^3}{\epsilon})$$

$$v_i - A < Av'_i \le v_i, \qquad \forall i \in [n]$$

 $\implies \text{opt} - nA < \text{opt}' \le \text{opt}$

• opt
$$\geq v_{\max} := \max_{i \in [n]} v_i$$
 (assuming $w_i \leq W, \forall i$)
• setting $A := \lfloor \frac{\epsilon \cdot v_{\max}}{n} \rfloor$: $(1 - \epsilon)$ opt \leq opt' \leq opt

•
$$\forall i, v'_i = O(\frac{n}{\epsilon}) \implies \text{running time} = O(\frac{n^3}{\epsilon})$$

Theorem There is a $(1 + \epsilon)$ -approximation for the knapsack problem in time $O(\frac{n^3}{\epsilon})$.

• Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

• Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_{ϵ} such that the running time of A_{ϵ} is $poly(n, \frac{1}{\epsilon})$ for input instances of n.

• Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_{ϵ} such that the running time of A_{ϵ} is $poly(n, \frac{1}{\epsilon})$ for input instances of n.

• So, Knapsack admits an FPTAS.

• Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_{ϵ} such that the running time of A_{ϵ} is $poly(n, \frac{1}{\epsilon})$ for input instances of n.

• So, Knapsack admits an FPTAS.

Q: Assume $P \neq NP$. What is a neccesary condition for a NP-hard problem to admit an FPTAS?

Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_{ϵ} , where A_{ϵ} for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$ -approximation algorithm.

• Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_{ϵ} such that the running time of A_{ϵ} is $poly(n, \frac{1}{\epsilon})$ for input instances of n.

• So, Knapsack admits an FPTAS.

Q: Assume $P \neq NP$. What is a neccesary condition for a NP-hard problem to admit an FPTAS?

• Vertex cover? Maximum independent set?

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

PTAS for Makespan Minimization on Identical Machines Introduction

- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

```
Input: n jobs index as [n]
each job j \in [n] has a processing time p_j \in \mathbb{Z}_{>0}
m machines
```

Input: *n* jobs index as [n]each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$ *m* machines

Output: schedule of jobs on machines with minimum makespan

Input: *n* jobs index as
$$[n]$$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$
m machines

Output: schedule of jobs on machines with minimum makespan $\sigma : [n] \to [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

Input: *n* jobs index as
$$[n]$$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$
m machines

Output: schedule of jobs on machines with minimum makespan $\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

 1
 2
 3
 4

 5
 6
 7
 8
 9

 10
 11
 12
 13

4 machines

Input: *n* jobs index as
$$[n]$$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$
m machines

Output: schedule of jobs on machines with minimum makespan $\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

Input: *n* jobs index as
$$[n]$$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$
m machines

Output: schedule of jobs on machines with minimum makespan $\sigma : [n] \to [m]$ with minimum $\max_{i \in [m]} \sum_{i \in \sigma^{-1}(i)} p_i$

- 1: start from an empty schedule
- 2: for j = 1 to n do
- 3: put job j on the machine with the smallest load

- 1: start from an empty schedule
- 2: for j = 1 to n do
- 3: put job j on the machine with the smallest load

Analysis of $\left(2-\frac{1}{m}\right)$ -Approximation for Greedy Algorithm

- 1: start from an empty schedule
- 2: for j = 1 to n do
- 3: put job j on the machine with the smallest load

Analysis of $\left(2 - \frac{1}{m}\right)$ -Approximation for Greedy Algorithm

$$p_{\max} := \max_{j \in [n]} p_j$$

alg $\leq p_{\max} + \frac{1}{m} \cdot (\sum_{j \in [n]} p_j - p_{\max}) = (1 - \frac{1}{m}) p_{\max} + \frac{1}{m} \sum_{j \in [n]} p_j$

- 1: start from an empty schedule
- 2: for j = 1 to n do
- 3: put job j on the machine with the smallest load

Analysis of
$$\left(2 - \frac{1}{m}\right)$$
-Approximation for Greedy Algorithm
 $p_{\max} := \max_{j \in [n]} p_j$
 $\operatorname{alg} \le p_{\max} + \frac{1}{m} \cdot \left(\sum_{j \in [n]} p_j - p_{\max}\right) = \left(1 - \frac{1}{m}\right) p_{\max} + \frac{1}{m} \sum_{j \in [n]} p_j$
 $\operatorname{opt} \ge p_{\max}$
 $\operatorname{opt} \ge p_{\max}$
 $\operatorname{opt} \ge \frac{1}{m} \sum_{j \in [n]} p_j$
 $\Longrightarrow \quad \operatorname{alg} \le \left(2 - \frac{1}{m}\right) \operatorname{opt}$

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #(distinct sizes) is small

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if $p_j < \epsilon \cdot p_{\max}$ and big otherwise

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

- 1: declare j small if $p_j < \epsilon \cdot p_{\max}$ and big otherwise
- 2: use trunction + DP to solve the instance defined by big jobs

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

- 1: declare j small if $p_j < \epsilon \cdot p_{\max}$ and big otherwise
- 2: use trunction + DP to solve the instance defined by big jobs
- 3: use DP for instance $(p'_j)_{j \text{ big}}$ to schedule big jobs

A: alg
$$\leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\max} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.$$

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

- 1: declare j small if $p_j < \epsilon \cdot p_{\max}$ and big otherwise
- 2: use trunction + DP to solve the instance defined by big jobs
- 3: use DP for instance $(p_j')_{j \text{ big}}$ to schedule big jobs
- 4: add small jobs to schedule greedily

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

PTAS for Makespan Minimization on Identical Machines Introduction

- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

• $B := \{j \in [n] : p_j \ge \epsilon p_{\max}\}$: set of big jobs

• $B := \{j \in [n] : p_j \ge \epsilon p_{\max}\}$: set of big jobs • $p'_j := \max\{p_{\max}(1+\epsilon)^t \le p_j : t \in \mathbb{Z}\}, \forall j \in B$ p'_j is the rounded size of j

•
$$B := \{j \in [n] : p_j \ge \epsilon p_{\max}\}$$
: set of big jobs
• $p'_j := \max\{p_{\max}(1+\epsilon)^t \le p_j : t \in \mathbb{Z}\}, \forall j \in B$
 p'_j is the rounded size of j

•
$$k := |\{p'_j : j \in B\}|: \#(\text{distinct rounded sizes})$$

 $k \le 1 + \log_{1+\epsilon} \frac{p_{\max}}{\epsilon p_{\max}} = O(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon})$

•
$$B := \{j \in [n] : p_j \ge \epsilon p_{\max}\}$$
: set of big jobs
• $p'_j := \max\{p_{\max}(1+\epsilon)^t \le p_j : t \in \mathbb{Z}\}, \forall j \in B$
 p'_j is the rounded size of j

•
$$k := |\{p'_j : j \in B\}|: \#(\text{distinct rounded sizes})$$

 $k \le 1 + \log_{1+\epsilon} \frac{p_{\max}}{\epsilon p_{\max}} = O(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon})$

• $\{q_1, q_2, \cdots, q_k\} := \{p'_j : j \in B\}$: the k distinct rounded sizes

•
$$B := \{j \in [n] : p_j \ge \epsilon p_{\max}\}$$
: set of big jobs
• $p'_j := \max\{p_{\max}(1 + \epsilon)^t \le p_j : t \in \mathbb{Z}\}, \forall j \in B$
 p'_j is the rounded size of j

•
$$k := |\{p'_j : j \in B\}|: \#(\text{distinct rounded sizes})$$

 $k \le 1 + \log_{1+\epsilon} \frac{p_{\max}}{\epsilon p_{\max}} = O(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon})$

• $\{q_1, q_2, \cdots, q_k\} := \{p'_j : j \in B\}$: the k distinct rounded sizes

• n_1, \cdots, n_k : #(big jobs) with rounded sizes being q_1, \cdots, q_k

- a vertex (a_1, \cdots, a_k) , $a_i \in [0, n_i], \forall i \in [k]$
 - denotes the instance with a_1 jobs of size q_1 , a_2 jobs of size q_2 , \cdots , a_k jobs of size q_k

- a vertex (a_1, \cdots, a_k) , $a_i \in [0, n_i], \forall i \in [k]$
 - denotes the instance with a_1 jobs of size q_1 , a_2 jobs of size q_2 , \cdots , a_k jobs of size q_k
- an arc $(a_1, \dots, a_k) \to (b_1, \dots b_k)$ of weight $\sum_{i=1}^k (b_i a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$
 - \bullet reducing instance $(b_1,\cdots b_k)$ to (a_1,\cdots,a_k) requires 1 machine of load $\sum_{i=1}^k (b_i-a_i)q_i$

- a vertex (a_1, \cdots, a_k) , $a_i \in [0, n_i], \forall i \in [k]$
 - denotes the instance with a_1 jobs of size q_1 , a_2 jobs of size q_2 , \cdots , a_k jobs of size q_k
- an arc $(a_1, \dots, a_k) \rightarrow (b_1, \dots b_k)$ of weight $\sum_{i=1}^k (b_i a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$
 - reducing instance $(b_1,\cdots b_k)$ to (a_1,\cdots,a_k) requires 1 machine of load $\sum_{i=1}^k (b_i-a_i)q_i$
- Goal: find a path from $(0, \dots, 0)$ to (n_1, \dots, n_k) of at most m edges, so as to minimize the maximum weight on the path.

- a vertex (a_1, \cdots, a_k) , $a_i \in [0, n_i], \forall i \in [k]$
 - denotes the instance with a_1 jobs of size q_1 , a_2 jobs of size q_2 , \cdots , a_k jobs of size q_k
- an arc $(a_1, \dots, a_k) \to (b_1, \dots b_k)$ of weight $\sum_{i=1}^k (b_i a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$
 - reducing instance $(b_1,\cdots b_k)$ to (a_1,\cdots,a_k) requires 1 machine of load $\sum_{i=1}^k (b_i-a_i)q_i$
- Goal: find a path from $(0, \dots, 0)$ to (n_1, \dots, n_k) of at most m edges, so as to minimize the maximum weight on the path.
- \bullet problem can be solved in $O(m \cdot |E|)$ time using DP
- $O(m \cdot |E|) = O(m \cdot n^{2k}) = n^{O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)}.$

Analysis of Algorithm for Big Jobs

- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan

- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\operatorname{opt}_B' \leq \operatorname{opt}_B$

- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\operatorname{opt}_B' \leq \operatorname{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B :

 $(1+\epsilon)\text{-blowup}$ in makespan

- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\operatorname{opt}_B' \leq \operatorname{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B :

 $(1+\epsilon)\text{-blowup}$ in makespan

Theorem The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon) \operatorname{opt}_B$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.

- \mathcal{I}_B : instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B : instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\operatorname{opt}_B' \leq \operatorname{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B :

 $(1+\epsilon)$ -blowup in makespan

Theorem The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon) \operatorname{opt}_B$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.

Adding small jobs to schedule

- 1: starting from the schedule for big jobs
- 2: for every small job j do
- 3: add j to the machine with the smallest load

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

• Case 1: makespan is not increased by small jobs

• Case 1: makespan is not increased by small jobs $alg \leq (1 + \epsilon)opt_B \leq (1 + \epsilon)opt.$

• Case 1: makespan is not increased by small jobs

 $\mathrm{alg} \leq (1+\epsilon) \mathrm{opt}_B \leq (1+\epsilon) \mathrm{opt}.$

• Case 2: makespan is increased by small jobs

• Case 1: makespan is not increased by small jobs

 $\mathrm{alg} \leq (1+\epsilon) \mathrm{opt}_B \leq (1+\epsilon) \mathrm{opt}.$

- Case 2: makespan is increased by small jobs
 - \bullet loads between any two machines differ by at most size of a small job, which is at most $\epsilon \cdot p_{\max}$

• Case 1: makespan is not increased by small jobs

$$alg \le (1+\epsilon)opt_B \le (1+\epsilon)opt.$$

- Case 2: makespan is increased by small jobs
 - \bullet loads between any two machines differ by at most size of a small job, which is at most $\epsilon \cdot p_{\max}$

$$alg \le \epsilon \cdot p_{\max} + \frac{1}{m} \sum_{j \in [n]} p_j \le \epsilon \cdot opt + opt = (1 + \epsilon) \cdot opt.$$

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

	#containers	container capacity
bin packing	objective	fixed
scheduling	fixed	objective

- 1: initially there are 0 bins
- 2: for $i \leftarrow 1$ to n do
- 3: **if** item *i* fits into an existing bin **then** put *i* into the bin
- 4: **else** open a new bin and put i into the bin

- 1: initially there are 0 bins
- 2: for $i \leftarrow 1$ to n do
- 3: **if** item *i* fits into an existing bin **then** put *i* into the bin
- 4: **else** open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- 1: initially there are $0\ {\rm bins}$
- 2: for $i \leftarrow 1$ to n do
- 3: **if** item *i* fits into an existing bin **then** put *i* into the bin
- 4: **else** open a new bin and put *i* into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- If our algorithm uses t bins, then $opt > \frac{t-1}{2}$ and $opt \in \mathbb{Z}_{>0}$
- t is even: $opt \ge \frac{t}{2}$ t is odd: $opt \ge \frac{t+1}{2}$.

- 1: initially there are 0 bins
- 2: for $i \leftarrow 1$ to n do
- 3: **if** item *i* fits into an existing bin **then** put *i* into the bin
- 4: **else** open a new bin and put *i* into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- If our algorithm uses t bins, then $opt > \frac{t-1}{2}$ and $opt \in \mathbb{Z}_{>0}$
- t is even: $opt \ge \frac{t}{2}$ t is odd: $opt \ge \frac{t+1}{2}$.

Lemma The greedy algorithm gives a 2-approximation.

Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio < 3/2.

Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio < 3/2.

Proof.

• It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition.

Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio < 3/2.

Proof.

• It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition.

Equal Partition

Input: *n* numbers $x_1, x_2, \cdots, x_n \in \mathbb{Z}_{>0}$

Output: decide if there is a partition of [n] into A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$

Theorem Equal Partition is (weakly) NP-hard.

- \bullet The approximation ratio is bad only when opt is small
- NP-hard to decide between $opt \leq 2$ and $opt \geq 3$.
- Open: NP-hard to decide between $opt \le 100$ and $opt \ge 102$?

- $\bullet\,$ The approximation ratio is bad only when ${\rm opt}$ is small
- NP-hard to decide between $opt \le 2$ and $opt \ge 3$.
- Open: NP-hard to decide between $opt \le 100$ and $opt \ge 102$?
- The conjecture has not been disproved (assuming $P \neq NP$):

Conjecture: There is an efficient algorithm that outputs a solution with opt + 1 bins.

- $\bullet\,$ The approximation ratio is bad only when ${\rm opt}$ is small
- NP-hard to decide between $opt \le 2$ and $opt \ge 3$.
- Open: NP-hard to decide between $opt \le 100$ and $opt \ge 102$?
- The conjecture has not been disproved (assuming $P \neq NP$):

Conjecture: There is an efficient algorithm that outputs a solution with opt + 1 bins.

• asymptotic α -approximation: an efficient algorithm that finds solution with $\alpha \cdot \operatorname{opt} + c$ bins, with c = O(1).

- $\bullet\,$ The approximation ratio is bad only when ${\rm opt}$ is small
- NP-hard to decide between $opt \le 2$ and $opt \ge 3$.
- Open: NP-hard to decide between $opt \le 100$ and $opt \ge 102$?
- The conjecture has not been disproved (assuming $P \neq NP$):

Conjecture: There is an efficient algorithm that outputs a solution with opt + 1 bins.

• asymptotic α -approximation: an efficient algorithm that finds solution with $\alpha \cdot \operatorname{opt} + c$ bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using at most $(11/9) \cdot \text{opt} + 4$ bins. That is, it is an asymptotic 11/9-approximation.

Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms A_{ϵ} along with a constant $c \geq 0$, where algorithm A_{ϵ} for every $\epsilon > 0$ returns a solution of value at most $(1 + \epsilon)$ opt + c in polynomial time.

Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms A_{ϵ} along with a constant $c \geq 0$, where algorithm A_{ϵ} for every $\epsilon > 0$ returns a solution of value at most $(1 + \epsilon)$ opt + c in polynomial time.

Theorem For any fixed $\epsilon > 0$, there is a polynomial time algorithm that, given a bin-packing instance \mathcal{I} , outputs a solution with at most $(1 + \epsilon)$ opt + 1 bins.

• That is, there is an APTAS for bin-packing.

• $\gamma > 0$ a small constant: item i is $\begin{cases} \mathsf{small} & \text{if } s_i < \gamma \\ \mathsf{big} & \text{if } s_i \geq \gamma \end{cases}$

• $\gamma > 0$ a small constant: item *i* is $\begin{cases}
small & \text{if } s_i < \gamma \\
big & \text{if } s_i \ge \gamma
\end{cases}$

What to do if all items are small?

• $\gamma > 0$ a small constant: item i is $\begin{cases}
small & \text{if } s_i < \gamma \\
big & \text{if } s_i \ge \gamma
\end{cases}$

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size $\leq 1 - \gamma$

•
$$\operatorname{alg} \leq \left\lceil \frac{\operatorname{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \operatorname{opt} + 1, \quad \gamma := \epsilon/2 \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1+\epsilon$$

• $\gamma > 0$ a small constant: item i is $\begin{cases} small & \text{if } s_i < \gamma \\ big & \text{if } s_i \geq \gamma \end{cases}$

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size $\leq 1-\gamma$

• alg
$$\leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1, \quad \gamma := \epsilon/2 \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1+\epsilon$$

What to do if all items are big?

• $\gamma > 0$ a small constant: item i is $\begin{cases}
small & \text{if } s_i < \gamma \\
big & \text{if } s_i \ge \gamma
\end{cases}$

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size $\leq 1-\gamma$

• alg
$$\leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1, \quad \gamma := \epsilon/2 \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1+\epsilon$$

What to do if all items are big?

- \bullet truncate item sizes to obtain \mathcal{I}', \quad using DP to solve \mathcal{I}'
- two essential properties:

 $\operatorname{opt}(\mathcal{I}') \approx \operatorname{opt}(\mathcal{I}) \qquad \#(\mathsf{item \ sizes \ in \ }\mathcal{I}') \ \mathsf{is \ small}$

• $\gamma > 0$ a small constant: item i is $\begin{cases}
small & \text{if } s_i < \gamma \\
big & \text{if } s_i \ge \gamma
\end{cases}$

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size $\leq 1-\gamma$

• alg
$$\leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1$$
, $\gamma := \epsilon/2 \Rightarrow \frac{1}{1-\gamma} < 1+\epsilon$

What to do if all items are big?

- \bullet truncate item sizes to obtain \mathcal{I}', \quad using DP to solve \mathcal{I}'
- two essential properties:

 $\operatorname{opt}(\mathcal{I}') \approx \operatorname{opt}(\mathcal{I}) \qquad \#(\mathsf{item \ sizes \ in \ }\mathcal{I}') \ \mathsf{is \ small}$

 general instance: pack big items using truncation + DP, then use First-Fit to pack small items

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

Construction of Instance \mathcal{I}^\prime

1: sort items in non-increasing sizes

Construction of Instance \mathcal{I}^\prime

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size \boldsymbol{g}

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size g
- 3: discard the first group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size \boldsymbol{g}
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size \boldsymbol{g}
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size g
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size \boldsymbol{g}
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size g
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

- 1: sort items in non-increasing sizes
- 2: partition items into groups of size g
- 3: discard the first group
- 4: for each of the other groups do
- 5: change item size to the biggest size in group

• every group in \mathcal{I}' has the same size.

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{g} \right\rfloor$
- $\bullet \ {\mathcal I}'$ can be solved exactly by DP in $O(n^{2k})\text{-time}$

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{q} \right\rfloor$
- $\bullet \ {\mathcal I}'$ can be solved exactly by DP in $O(n^{2k})\text{-time}$

 $\bullet \ \mbox{let} \ s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{q} \right\rfloor$
- $\bullet \ {\mathcal I}'$ can be solved exactly by DP in $O(n^{2k})\text{-time}$

- $\bullet \mbox{ let } s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{q} \right\rfloor$
- $\bullet \ {\mathcal I}'$ can be solved exactly by DP in $O(n^{2k})\text{-time}$

- $\bullet \mbox{ let } s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k) : the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots , and a_k items of size $s^{(k)}$

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{q} \right\rfloor$
- \mathcal{I}' can be solved exactly by DP in $O(n^{2k})$ -time

- $\bullet \mbox{ let } s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k) : the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots , and a_k items of size $s^{(k)}$
- an arc $(a_1, a_2, \cdots, a_k) \rightarrow (b_1, b_2, \cdots, b_k)$ if
 - $a_i \ge b_i$ for every $i \in [k]$ and, • $s^{(1)}(b_1 - a_1) + s^{(2)}(b_2 - a_2) + \dots + s^{(k)}(b_k - a_k) \le 1$

- \bullet every group in \mathcal{I}' has the same size.
- k := the number of distinct sizes in \mathcal{I}' , $k \leq \left\lfloor \frac{n}{q} \right\rfloor$
- $\bullet~\mathcal{I}'$ can be solved exactly by DP in $O(n^{2k})\text{-time}$

- $\bullet \mbox{ let } s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k) : the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots , and a_k items of size $s^{(k)}$
- an arc $(a_1, a_2, \cdots, a_k) \rightarrow (b_1, b_2, \cdots, b_k)$ if
 - $a_i \ge b_i$ for every $i \in [k]$ and,
 - $s^{(1)}(b_1 a_1) + s^{(2)}(b_2 a_2) + \dots + s^{(k)}(b_k a_k) \le 1$
- DP: computing the shortest path from $(0, 0, \dots, 0)$ to (n_1, n_2, \dots, n_k)

$$\operatorname{opt}(\mathcal{I}) - g \leq \operatorname{opt}(\mathcal{I}') \leq \operatorname{opt}(\mathcal{I}).$$

$$\operatorname{opt}(\mathcal{I}) - g \leq \operatorname{opt}(\mathcal{I}') \leq \operatorname{opt}(\mathcal{I}).$$

• solving $\mathcal{I}' \Rightarrow \text{packing for } \mathcal{I} \text{ with } \leq \operatorname{opt}(\mathcal{I}) + g \text{ bins}$

$$\operatorname{opt}(\mathcal{I}) - g \leq \operatorname{opt}(\mathcal{I}') \leq \operatorname{opt}(\mathcal{I}).$$

- solving $\mathcal{I}' \Rightarrow \text{packing for } \mathcal{I} \text{ with } \leq \text{opt}(\mathcal{I}) + g \text{ bins}$
- $s_i \ge \gamma, \forall i \in [n] \implies \operatorname{opt}(\mathcal{I}) \ge \gamma n.$

$$\operatorname{opt}(\mathcal{I}) - g \leq \operatorname{opt}(\mathcal{I}') \leq \operatorname{opt}(\mathcal{I}).$$

- solving $\mathcal{I}' \quad \Rightarrow \quad \mathsf{packing for } \mathcal{I} \text{ with } \leq \operatorname{opt}(\mathcal{I}) + g \text{ bins}$
- $s_i \ge \gamma, \forall i \in [n] \implies \operatorname{opt}(\mathcal{I}) \ge \gamma n.$

• setting
$$g := \epsilon \gamma n \implies g \le \epsilon \cdot \operatorname{opt}(\mathcal{I})$$
 and $k \le \frac{n}{g} \le \frac{1}{\epsilon \gamma}$

$$\operatorname{opt}(\mathcal{I}) - g \leq \operatorname{opt}(\mathcal{I}') \leq \operatorname{opt}(\mathcal{I}).$$

- solving $\mathcal{I}' \quad \Rightarrow \quad \mathsf{packing for } \mathcal{I} \text{ with } \leq \operatorname{opt}(\mathcal{I}) + g \text{ bins}$
- $s_i \ge \gamma, \forall i \in [n] \implies \operatorname{opt}(\mathcal{I}) \ge \gamma n.$
- setting $g := \epsilon \gamma n \implies g \le \epsilon \cdot \operatorname{opt}(\mathcal{I})$ and $k \le \frac{n}{g} \le \frac{1}{\epsilon \gamma}$

Theorem There is an $O(n^{2/(\epsilon\gamma)})$ -time $(1 + \epsilon)$ -approximation algorithm for the bin-packing problem when all items have size at least γ ,

Outline

1 Knapsack Problem

- Introduction
- FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines

- Introduction
- Dynamic Programming to Schedule Big Jobs
- Analysis of Combined Algorithm

An asymptotical PTAS for Bin Packing

- Introduction
- Algorithm for Big Items
- Combination of Algorithms for Big and Small Items

1: Use truncation + DP to obtain solution ${\cal S}$ for big items

1: Use truncation + DP to obtain solution ${\cal S}$ for big items

1: Use truncation + DP to obtain solution ${\cal S}$ for big items

- 1: Use truncation + DP to obtain solution ${\mathcal S}$ for big items
- 2: Starting from $\mathcal S,$ use First-Fit to pack small items

- 1: Use truncation + DP to obtain solution ${\cal S}$ for big items
- 2: Starting from $\mathcal S,$ use First-Fit to pack small items

• Case 1: no new bins are used to pack small items

• Case 1: no new bins are used to pack small items $\#(\mathsf{bins used}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I}_{\operatorname{big}}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I})$

- Case 1: no new bins are used to pack small items $\#(\mathsf{bins used}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I}_{\operatorname{big}}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I})$
- Case 2: new bins are used

- Case 1: no new bins are used to pack small items $\#(\mathsf{bins used}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I}_{\operatorname{big}}) \leq (1 + \epsilon) \cdot \operatorname{opt}(\mathcal{I})$
- Case 2: new bins are used at most one bin has total size $\leq 1 \gamma$

$$\#(\mathsf{bins used}) < rac{\operatorname{opt}(\mathcal{I})}{1 - \gamma} + 1$$

• Setting $\gamma = \epsilon/2 \implies$ #(bins used) $< \frac{\operatorname{opt}(\mathcal{I})}{1-\epsilon/2} + 1 \le (1+\epsilon)\operatorname{opt}(\mathcal{I}) + 1$

Theorem There is an $O(n^{2/(\epsilon^2)})$ -time algorithms that outputs a solution with at most $(1 + \epsilon) \operatorname{opt}(\mathcal{I}) + 1$ bins.

Theorem There is an APTAS for bin-packing.