Advanced Algorithms (Fall 2023)
Rounding Data and Dynamic Programming

Lecturers: 尹一通，刘景铖，粟师
Nanjing University
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Knapsack Problem

Input: an integer bound \(W > 0 \)
- a set of \(n \) items, each with an integer weight \(w_i > 0 \)
- a value \(v_i > 0 \) for each item \(i \)

Output: a subset \(S \) of items that

\[
\text{maximizes } \sum_{i \in S} v_i \quad \text{s.t.} \quad \sum_{i \in S} w_i \leq W.
\]
Knapsack Problem

Input: an integer bound $W > 0$
- a set of n items, each with an integer weight $w_i > 0$
- a value $v_i > 0$ for each item i

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} v_i \quad \text{s.t. } \sum_{i \in S} w_i \leq W.$$

- Motivation: you have budget W, and want to buy a subset of items of maximum total value
Greedy Algorithm

1. sort items according to non-increasing order of v_i/w_i
2. for each item in the ordering do
3. take the item if we have enough budget

Bad example: $W = 100$, $n = 2$, $w = (1, 100)$, $v = (1, 100)$.
Optimum takes item 2 and greedy takes item 1.
Greedy Algorithm

1. sort items according to non-increasing order of v_i/w_i
2. for each item in the ordering do
3. take the item if we have enough budget

Bad example: $W = 100, n = 2, w = (1, 100), v = (1.1, 100)$.
Greedy Algorithm

1: sort items according to non-increasing order of v_i/w_i
2: for each item in the ordering do
3: take the item if we have enough budget

- Bad example: $W = 100, n = 2, w = (1, 100), v = (1.1, 100)$.
- Optimum takes item 2 and greedy takes item 1.
Fractional Knapsack Problem

Input: integer bound $W > 0$,
a set of n items, each with an integer weight $w_i > 0$
a value $v_i > 0$ for each item i

Output: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that

$$\text{maximizes } \sum_{i=1}^{n} \alpha_i v_i \quad \text{s.t. } \sum_{i=1}^{n} \alpha_i w_i \leq W.$$
Fractional Knapsack Problem

Input: integer bound $W > 0$,
a set of n items, each with an integer weight $w_i > 0$
a value $v_i > 0$ for each item i

Output: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that

$$\text{maximizes } \sum_{i=1}^{n} \alpha_i v_i \quad \text{s.t.} \quad \sum_{i=1}^{n} \alpha_i w_i \leq W.$$

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of v_i/w_i,
2: for each item according to the ordering, take as much fraction of the item as possible.
Fractional Knapsack Problem

Input: integer bound $W > 0$,
a set of n items, each with an integer weight $w_i > 0$
a value $v_i > 0$ for each item i

Output: a vector $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in [0, 1]^n$ that

$$\text{maximizes } \sum_{i=1}^{n} \alpha_i v_i \quad \text{s.t. } \sum_{i=1}^{n} \alpha_i w_i \leq W.$$

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of v_i/w_i,
2: for each item according to the ordering, take as much fraction of the item as possible.

Theorem Greedy algorithm gives the optimum solution for fractional knapsack.
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \ldots, i\}$.

\[
opt[i, W'] = \begin{cases}
0 & i = 0 \\
opt[i - 1, W'] & i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
opt[i - 1, W'] \\
\text{opt}[i - 1, W' - w_i] + v_i
\end{array} \right. & i > 0, w_i \leq W'
\end{cases}
\]
DP for Knapsack Problem

- \(opt[i, W'] \): the optimum value when budget is \(W' \) and items are \(\{1, 2, 3, \cdots, i\} \).

\[
\begin{align*}
opt[i, W'] &= \begin{cases}
0 & \text{if } i = 0 \\
\max \left\{ \begin{array}{l}
\text{opt}[i-1, W'] \\
\text{opt}[i-1, W' - w_i] + v_i
\end{array} \right. & \text{if } i > 0, w_i \leq W' \\
\text{opt}[i-1, W'] & \text{if } i > 0, w_i > W'
\end{cases}
\end{align*}
\]

- Running time of the algorithm is \(O(nW) \).
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are $\{1, 2, 3, \cdots, i\}$.

$$
opt[i, W'] = \begin{cases}
0 & i = 0 \\
opt[i - 1, W'] & i > 0, w_i > W' \\
\max \left\{ \begin{array}{l}
opt[i - 1, W'] \\
opt[i - 1, W' - w_i] + v_i
\end{array} \right\} & i > 0, w_i \leq W'
\end{cases}
$$

- Running time of the algorithm is $O(nW)$.

Q: Is this a polynomial time?
DP for Knapsack Problem

- $opt[i, W']$: the optimum value when budget is W' and items are \{1, 2, 3, \cdots, i\}.

\[
opt[i, W'] = \begin{cases}
0 & \text{if } i = 0 \\
\max \left\{ \begin{array}{l}
\text{opt}[i - 1, W'] \\
\text{opt}[i - 1, W' - w_i] + v_i
\end{array} \right. & \text{if } i > 0, w_i \leq W' \\
\text{opt}[i - 1, W'] & \text{if } i > 0, w_i > W'
\end{cases}
\]

- Running time of the algorithm is $O(nW)$.

Q: Is this a polynomial time?

A: No.
DP for Knapsack Problem

- \(\text{opt}[i, W'] \): the optimum value when budget is \(W' \) and items are \(\{1, 2, 3, \cdots, i\} \).

\[
\text{opt}[i, W'] = \begin{cases}
0 & i = 0 \\
\text{opt}[i - 1, W'] & i > 0, \ w_i > W' \\
\max \left\{ \begin{array}{l}
\text{opt}[i - 1, W'] \\
\text{opt}[i - 1, W' - w_i] + v_i
\end{array} \right\} & i > 0, \ w_i \leq W'
\end{cases}
\]

- Running time of the algorithm is \(O(nW) \).

Q: Is this a polynomial time?

A: No.

- The input size is polynomial in \(n \) and \(\log W \); running time is polynomial in \(n \) and \(W \).
- The running time is pseudo-polynomial.
- n: number of integers
 W: maximum value of all integers

- **pseudo-polynomial time**: $\text{poly}(n, W)$ (e.g., DP for Knapsack)

- **weakly polynomial time**: $\text{poly}(n, \log W)$ (e.g., Euclidean Algorithm for Greatest Common Divisor)

- **strongly polynomial time**: $\text{poly}(n)$ time, assuming basic operations on integers taking $O(1)$ time (e.g., Kruskal’s)

- **weakly NP-hard**: NP-hard to solve in time $\text{poly}(n, \log W)$

- **strongly NP-hard**: NP-hard even if $W = \text{poly}(n)$
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Idea for improving the running time to polynomial

- If we make weights upper bounded by \(\text{poly}(n) \), then pseudo-polynomial time becomes polynomial time.
- Coarsening the weights: \(w'_i = \left\lfloor \frac{w_i}{A} \right\rfloor \) for some appropriately defined integer \(A \).
Idea for improving the running time to polynomial

- If we make weights upper bounded by $\text{poly}(n)$, then pseudo-polynomial time becomes polynomial time.
- Coarsening the weights: $w'_i = \left\lfloor \frac{w_i}{A} \right\rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.
Idea for improving the running time to polynomial

- If we make weights upper bounded by $\text{poly}(n)$, then pseudo-polynomial time becomes polynomial time.
- Coarsening the weights: $w'_i = \left\lfloor \frac{w_i}{A} \right\rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.

 - weight budget constraint : hard
 - maximum value requirement : soft
Idea for improving the running time to polynomial

- If we make weights upper bounded by $\text{poly}(n)$, then pseudo-polynomial time becomes polynomial time.
- Coarsening the weights: $w'_i = \left\lfloor \frac{w_i}{A} \right\rfloor$ for some appropriately defined integer A.
- However, coarsening weights will change the problem.
 - Weight budget constraint: hard
 - Maximum value requirement: soft
- We coarsen the values instead.
- In the DP, we use values as parameters.
Let A be some integer to be defined later
Let A be some integer to be defined later

$v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i
Let \(A \) be some integer to be defined later

\[v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor \] be the scaled value of item \(i \)

Definition of DP cells:

\[f[i, V'] = \min_{S \subseteq [i]: v'(S) \geq V'} w(S) \]
Let A be some integer to be defined later.

$v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i.

Definition of DP cells:

$$f[i, V'] = \min_{S \subseteq [i]: v'(S) \geq V'} w(S)$$

$$f[i, V'] = \begin{cases}
0 & V' \leq 0 \\
\infty & i = 0, V' > 0 \\
\min \left\{ f[i - 1, V'], f[i - 1, V' - v'_i] + w_i \right\} & i > 0, V' > 0
\end{cases}$$
Let A be some integer to be defined later

$v'_i := \left\lfloor \frac{v_i}{A} \right\rfloor$ be the scaled value of item i

Definition of DP cells: $f[i, V'] = \min_{S \subseteq [i]: v'(S) \geq V', w(S)}$

$$f[i, V'] = \begin{cases}
0 & V' \leq 0 \\
\infty & i = 0, V' > 0 \\
\min \left\{ f[i - 1, V'], f[i - 1, V' - v'_i] + w_i \right\} & i > 0, V' > 0
\end{cases}$$

Output A times the largest V' such that $f[n, V'] \leq W$.
Instance \mathcal{I}: (v_1, v_2, \cdots, v_n)
\text{opt: optimum value of } \mathcal{I}$

Instance \mathcal{I}': (Av'_1, \cdots, AV'_n)
\text{opt': optimum value of } \mathcal{I}'$
- Instance \mathcal{I}: (v_1, v_2, \cdots, v_n) \quad opt: optimum value of \mathcal{I}
- Instance \mathcal{I}': (Av'_1, \cdots, AV'_n) \quad opt': optimum value of \mathcal{I}'

\[v_i - A < Av'_i \leq v_i, \quad \forall i \in [n] \]

\[\implies \quad opt - nA < opt' \leq opt \]

- $opt \geq v_{\text{max}} := \max_{i \in [n]} v_i$ (assuming $w_i \leq W, \forall i$)
Instance \mathcal{I}: (v_1, v_2, \cdots, v_n) \hspace{1cm} \text{opt: optimum value of } \mathcal{I}$

Instance $\mathcal{I'}$: (Av_1', \cdots, AV_n') \hspace{1cm} \text{opt': optimum value of } \mathcal{I'}$

\[v_i - A < Av'_i \leq v_i, \quad \forall i \in [n] \]

\[\implies \text{opt} - nA < \text{opt}' \leq \text{opt} \]

\[\text{opt} \geq v_{\text{max}} := \max_{i \in [n]} v_i \] (assuming $w_i \leq W, \forall i$)

setting $A := \left\lfloor \frac{\epsilon \cdot v_{\text{max}}}{n} \right\rfloor$: \hspace{0.5cm} $(1 - \epsilon)\text{opt} \leq \text{opt}' \leq \text{opt}$
Instance \mathcal{I}: (v_1, v_2, \ldots, v_n) \hspace{1cm} \text{opt}: \text{optimum value of } \mathcal{I}

Instance \mathcal{I}': $(A v'_1, \ldots, A V'_n)$ \hspace{1cm} \text{opt'}: \text{optimum value of } \mathcal{I}'

$$v_i - A < A v'_i \leq v_i, \hspace{1cm} \forall i \in [n]$$

$$\implies \text{opt} - nA < \text{opt'} \leq \text{opt}$$

$\text{opt} \geq v_{\text{max}} := \max_{i \in [n]} v_i \hspace{1cm} (\text{assuming } w_i \leq W, \forall i)$

$\text{setting } A := \left\lfloor \frac{\epsilon \cdot v_{\text{max}}}{n} \right\rfloor: (1 - \epsilon)\text{opt} \leq \text{opt'} \leq \text{opt}$

$\forall i, v'_i = O\left(\frac{n}{\epsilon}\right) \implies \text{running time} = O\left(\frac{n^3}{\epsilon}\right)$
Instance \mathcal{I}: (v_1, v_2, \cdots, v_n) \hspace{1cm} opt: optimum value of \mathcal{I}

Instance \mathcal{I}': (Av_1', \cdots, AV_n') \hspace{1cm} opt': optimum value of \mathcal{I}'

\[v_i - A < Av_i' \leq v_i, \quad \forall i \in [n] \]
\[\implies \quad \text{opt} - nA < \text{opt}' \leq \text{opt} \]

\[\text{opt} \geq v_{\text{max}} := \max_{i \in [n]} v_i \ (\text{assuming } w_i \leq W, \forall i) \]

setting $A := \left\lfloor \frac{\epsilon \cdot v_{\text{max}}}{n} \right\rfloor$: $(1 - \epsilon)\text{opt} \leq \text{opt}' \leq \text{opt}$

\[\forall i, v_i' = O(\frac{n}{\epsilon}) \quad \implies \quad \text{running time} = O\left(\frac{n^3}{\epsilon}\right) \]

Theorem There is a $(1 + \epsilon)$-approximation for the knapsack problem in time $O\left(\frac{n^3}{\epsilon}\right)$.
Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem.
Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

- Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n,\frac{1}{\epsilon})$ for input instances of n.

Q: Assume $P \neq NP$. What is a necessary condition for a NP-hard problem to admit an FPTAS?

- Vertex cover?
- Maximum independent set?
Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

- Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem.

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n, \frac{1}{\epsilon})$ for input instances of n.

- So, Knapsack admits an FPTAS.
Def. A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

- **Remark:** the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem.

Def. A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n, \frac{1}{\epsilon})$ for input instances of n.

- So, Knapsack admits an FPTAS.

Q: Assume $P \neq NP$. What is a necessary condition for a NP-hard problem to admit an FPTAS?
A polynomial-time approximation scheme (PTAS) is a family of algorithms A_ϵ, where A_ϵ for every $\epsilon > 0$ is a (polynomial-time) $(1 \pm \epsilon)$-approximation algorithm.

Remark: the approximation ratio is $1 + \epsilon$ or $1 - \epsilon$, depending on whether the problem is a minimization/maximization problem.

A fully polynomial-time approximation scheme (FPTAS) is an approximation scheme A_ϵ such that the running time of A_ϵ is $\text{poly}(n, \frac{1}{\epsilon})$ for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P \neq NP. What is a necessary condition for a NP-hard problem to admit an FPTAS?

- Vertex cover? Maximum independent set?
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Makespan Minimization on Identical Machines

Input: \(n \) jobs index as \([n]\)

- each job \(j \in [n] \) has a processing time \(p_j \in \mathbb{Z}_{>0} \)

\(m \) machines
Makespan Minimization on Identical Machines

Input: n jobs index as $[n]$
- each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$
- m machines

Output: schedule of jobs on machines with minimum makespan
Makespan Minimization on Identical Machines

Input: n jobs index as $[n]$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$

m machines

Output: schedule of jobs on machines with minimum makespan

$\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$
Makespan Minimization on Identical Machines

Input: n jobs index as $[n]$

each job $j \in [n]$ has a processing time $p_j \in \mathbb{Z}_{>0}$

m machines

Output: schedule of jobs on machines with minimum makespan

$\sigma : [n] \rightarrow [m]$ with minimum $\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j$

```
1   2   3   4
5   6   7   8   9
10  11  12  13
```

4 machines
Makespan Minimization on Identical Machines

Input: \(n \) jobs index as \([n]\)
- each job \(j \in [n] \) has a processing time \(p_j \in \mathbb{Z}_{>0} \)
- \(m \) machines

Output: schedule of jobs on machines with minimum makespan

\(\sigma : [n] \to [m] \) with minimum
\[
\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j
\]
Makespan Minimization on Identical Machines

Input: \(n \) jobs index as \([n]\)

Each job \(j \in [n] \) has a processing time \(p_j \in \mathbb{Z}_{>0} \)

\(m \) machines

Output: schedule of jobs on machines with minimum makespan

\(\sigma : [n] \rightarrow [m] \) with minimum \(\max_{i \in [m]} \sum_{j \in \sigma^{-1}(i)} p_j \)
Greedy Algorithm

1: start from an empty schedule
2: for \(j = 1 \) to \(n \) do
3: put job \(j \) on the machine with the smallest load

Analysis of \(2 - 1 \)

\(p_{\text{max}} := \max_{j \in [n]} p_j \)

\(p_{\text{alg}} \leq p_{\text{max}} + 1 \)

\(m \cdot \sum_{j \in [n]} (p_j - p_{\text{max}}) = \frac{1}{1 - \frac{1}{m}} p_{\text{max}} + 1 \)

\(p_{\text{opt}} \geq p_{\text{max}} \)

\(\Rightarrow p_{\text{alg}} \leq 2 - \frac{1}{m} p_{\text{opt}} \)
Greedy Algorithm

1: start from an empty schedule
2: for $j = 1$ to n do
3: put job j on the machine with the smallest load

Analysis of $\left(2 - \frac{1}{m}\right)$-Approximation for Greedy Algorithm
Greedy Algorithm

1: start from an empty schedule
2: for $j = 1$ to n do
3: put job j on the machine with the smallest load

Analysis of $(2 - \frac{1}{m})$-Approximation for Greedy Algorithm

$$p_{\text{max}} := \max_{j \in [n]} p_j$$

$$\text{alg} \leq p_{\text{max}} + \frac{1}{m} \cdot \left(\sum_{j \in [n]} p_j - p_{\text{max}} \right) = \left(1 - \frac{1}{m}\right) p_{\text{max}} + \frac{1}{m} \sum_{j \in [n]} p_j$$
Greedy Algorithm

1: start from an empty schedule
2: for \(j = 1 \) to \(n \) do
3: put job \(j \) on the machine with the smallest load

Analysis of \((2 - \frac{1}{m}) \)-Approximation for Greedy Algorithm

\[
p_{\text{max}} := \max_{j \in [n]} p_j
\]

\[
\text{alg} \leq p_{\text{max}} + \frac{1}{m} \cdot \left(\sum_{j \in [n]} p_j - p_{\text{max}} \right) = \left(1 - \frac{1}{m} \right) p_{\text{max}} + \frac{1}{m} \sum_{j \in [n]} p_j
\]

\[
\begin{align*}
\text{opt} & \geq p_{\text{max}} \\
\text{opt} & \geq \frac{1}{m} \sum_{j \in [n]} p_j
\end{align*}
\] \(\implies \) \(\text{alg} \leq (2 - \frac{1}{m}) \text{opt} \)
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A:

\[
\text{alg} \leq 1 + \frac{P_j \in [n]}{p_j + p_{\text{max}}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon) \text{opt}.
\]

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that the number of distinct sizes is small.

Overview of Algorithm

1. Declare j as small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise.
2. Use truncation + DP to solve the instance defined by big jobs.
3. Use DP for instance $(p'_j)_{j \text{ big}}$ to schedule big jobs.
4. Add small jobs to the schedule greedily.
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that $\#(\text{distinct sizes})$ is small.
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that $(\#(\text{distinct sizes})$ is small.

Overview of Algorithm

1: declare j small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that $\#$(distinct sizes) is small.

Overview of Algorithm

1: declare j small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise
2: use truncation + DP to solve the instance defined by big jobs
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that (distinct sizes) is small

Overview of Algorithm

1: declare j small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance $(p'_j)_j \text{big}$ to schedule big jobs
Q: What happens if all items have size at most $\epsilon \cdot \text{opt}$?

A: $\text{alg} \leq \frac{1}{m} \sum_{j \in [n]} p_j + p_{\text{max}} \leq \text{opt} + \epsilon \cdot \text{opt} = (1 + \epsilon)\text{opt}$.

Q: What can we do if all items have size at least $\epsilon \cdot \text{opt}$?

A: We can round the sizes, so that $\#(\text{distinct sizes})$ is small.

Overview of Algorithm

1: declare j small if $p_j < \epsilon \cdot p_{\text{max}}$ and big otherwise
2: use truncation + DP to solve the instance defined by big jobs
3: use DP for instance $(p'_j)_{j \text{ big}}$ to schedule big jobs
4: add small jobs to schedule greedily
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Dynamic Programming for Big Jobs

- $B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \}$: set of big jobs
- $B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \}$: set of big jobs
- $p'_j := \max\{p_{\text{max}}(1 + \epsilon)^t \leq p_j : t \in \mathbb{Z}\}, \forall j \in B$

 p'_j is the rounded size of j
- $B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \}$: set of big jobs

- $p_j' := \max \{ p_{\text{max}} (1 + \epsilon)^t \leq p_j : t \in \mathbb{Z} \}, \forall j \in B$

 p_j' is the rounded size of j

- $k := |\{ p_j' : j \in B \}|$: #(distinct rounded sizes)

 $k \leq 1 + \log_{1+\epsilon} \frac{p_{\text{max}}}{\epsilon p_{\text{max}}} = O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon} \right)$
\[B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \} : \text{set of big jobs} \]

\[p'_{j} := \max \{ p_{\text{max}}(1 + \epsilon)^t \leq p_j : t \in \mathbb{Z} \}, \forall j \in B \]

\[p'_j \text{ is the rounded size of } j \]

\[k := |\{ p'_j : j \in B \}| : \#(\text{distinct rounded sizes}) \]

\[k \leq 1 + \log_{1+\epsilon} \frac{p_{\text{max}}}{\epsilon p_{\text{max}}} = O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right) \]

\[\{ q_1, q_2, \cdots, q_k \} := \{ p'_j : j \in B \} : \text{the } k \text{ distinct rounded sizes} \]
Dynamic Programming for Big Jobs

- \(B := \{ j \in [n] : p_j \geq \epsilon p_{\text{max}} \} \): set of big jobs

- \(p'_j := \max\{ p_{\text{max}}(1 + \epsilon)^t \leq p_j : t \in \mathbb{Z} \}, \forall j \in B \)

 \(p'_j \) is the rounded size of \(j \)

- \(k := |\{ p'_j : j \in B \}| : \#(\text{distinct rounded sizes}) \)

 \(k \leq 1 + \log_{1+\epsilon} \frac{p_{\text{max}}}{\epsilon p_{\text{max}}} = O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right) \)

- \(\{q_1, q_2, \cdots, q_k\} := \{ p'_j : j \in B \} : \) the \(k \) distinct rounded sizes

- \(n_1, \cdots, n_k : \#(\text{big jobs}) \) with rounded sizes being \(q_1, \cdots, q_k \)
Constructing a Directed Acyclic Graph $G = (V, E)$

A vertex (a_1, \ldots, a_k), $a_i \in [0, n_i]$, $\forall i \in [k]$ denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \cdots, a_k jobs of size q_k.

An arc $(a_1, \ldots, a_k) \rightarrow (b_1, \ldots, b_k)$ of weight $P_k = \sum_{i=1}^{k} (b_i - a_i) q_i$, if $a_i \leq b_i$, $\forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$.

Reducing instance (b_1, \ldots, b_k) to (a_1, \ldots, a_k) requires 1 machine of load $P_k = \sum_{i=1}^{k} (b_i - a_i) q_i$.

Goal: find a path from $(0, \ldots, 0)$ to (n_1, \ldots, n_k) of at most m edges, so as to minimize the maximum weight on the path.

The problem can be solved in $O(m \cdot |E|)$ time using DP unknown time.
Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex (a_1, \cdots, a_k), $a_i \in [0, n_i], \forall i \in [k]$
- denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \cdots, a_k jobs of size q_k
Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex (a_1, \cdots, a_k), $a_i \in [0, n_i], \forall i \in [k]$
 - denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \ldots, a_k jobs of size q_k

- an arc $(a_1, \cdots, a_k) \rightarrow (b_1, \cdots b_k)$ of weight $\sum_{i=1}^{k} (b_i - a_i)q_i$
 - if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$

- reducing instance $(b_1, \cdots b_k)$ to (a_1, \cdots, a_k) requires 1 machine of load $\sum_{i=1}^{k} (b_i - a_i)q_i$
Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex (a_1, \cdots, a_k), $a_i \in [0, n_i], \forall i \in [k]$ denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \ldots, a_k jobs of size q_k.

- an arc $(a_1, \cdots, a_k) \rightarrow (b_1, \cdots b_k)$ of weight $\sum_{i=1}^{k} (b_i - a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$.

- reducing instance $(b_1, \cdots b_k)$ to (a_1, \cdots, a_k) requires 1 machine of load $\sum_{i=1}^{k} (b_i - a_i)q_i$.

Goal: find a path from $(0, \cdots, 0)$ to (n_1, \cdots, n_k) of at most m edges, so as to minimize the maximum weight on the path.
Constructing a Directed Acyclic Graph $G = (V, E)$

- a vertex $(a_1, \cdots, a_k), a_i \in [0, n_i], \forall i \in [k]$ denotes the instance with a_1 jobs of size q_1, a_2 jobs of size q_2, \cdots, a_k jobs of size q_k.

- an arc $(a_1, \cdots, a_k) \rightarrow (b_1, \cdots b_k)$ of weight $\sum_{i=1}^{k} (b_i - a_i)q_i$, if $a_i \leq b_i, \forall i \in [k]$, and $a_i < b_i$ for some $i \in [k]$.

- reducing instance $(b_1, \cdots b_k)$ to (a_1, \cdots, a_k) requires 1 machine of load $\sum_{i=1}^{k} (b_i - a_i)q_i$

Goal: find a path from $(0, \cdots, 0)$ to (n_1, \cdots, n_k) of at most m edges, so as to minimize the maximum weight on the path.

- problem can be solved in $O(m \cdot |E|)$ time using DP

$O(m \cdot |E|) = O(m \cdot n^{2k}) = n^{O\left(\frac{1}{\epsilon} \cdot \log \frac{1}{\epsilon}\right)}$.
\[q_1 + q_3 \]
\[2q_1 \]
\[q_2 + q_3 \]
\[q_2 \]
\[q_1 \]
cost = max\{2q_3, q_1 + q_2 + q_4, q_1 + q_2 + q_3, 2q_2\}
Analysis of Algorithm for Big Jobs

- \mathcal{I}_B: instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}_B': instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan

Theorem: The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon)\text{opt}_B$ in time $n^{O(1/\epsilon \log 1/\epsilon)}$.

Adding small jobs to schedule:
1. starting from the schedule for big jobs
2. for every small job j
 3. add j to the machine with the smallest load
Analysis of Algorithm for Big Jobs

- \mathcal{I}_B: instance $(p_j)_{j \in B}$
 opt_B: its optimum makespan

- \mathcal{I}_B': instance $(p'_j)_{j \in B}$
 opt'_B: its optimum makespan

- $\text{opt}'_B \leq \text{opt}_B$
Analysis of Algorithm for Big Jobs

- \mathcal{I}_B: instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B: instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\text{opt}'_B \leq \text{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B:

 $(1 + \epsilon)$-blowup in makespan
Analysis of Algorithm for Big Jobs

- \mathcal{I}_B: instance $(p_j)_{j \in B}$ opt_B: its optimum makespan
- \mathcal{I}'_B: instance $(p'_j)_{j \in B}$ opt'_B: its optimum makespan
- $\text{opt}'_B \leq \text{opt}_B$
- schedule for $\mathcal{I}'_B \Rightarrow$ schedule for \mathcal{I}_B: $(1 + \epsilon)$-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule of makespan at most $(1 + \epsilon)\text{opt}_B$ in time $n^{O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)}$.
Analysis of Algorithm for Big Jobs

- \(I_B \): instance \((p_j)_{j \in B}\) \(\text{opt}_B \): its optimum makespan
- \(I'_B \): instance \((p'_j)_{j \in B}\) \(\text{opt}'_B \): its optimum makespan
- \(\text{opt}'_B \leq \text{opt}_B \)
- schedule for \(I'_B \) \(\Rightarrow \) schedule for \(I_B \):

 \((1 + \epsilon)\)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule of makespan at most \((1 + \epsilon)\text{opt}_B\) in time \(n^O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)\).

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job \(j \) do
3: add \(j \) to the machine with the smallest load
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Case 1: makespan is not increased by small jobs
Analysis of the Final Algorithm

Case 1: makespan is not increased by small jobs

\[\text{alg} \leq (1 + \epsilon)\text{opt}_B \leq (1 + \epsilon)\text{opt}. \]
Analysis of the Final Algorithm

Case 1: makespan is not increased by small jobs

\[\text{alg} \leq (1 + \epsilon) \text{opt}_B \leq (1 + \epsilon) \text{opt}. \]

Case 2: makespan is increased by small jobs
Case 1: makespan is not increased by small jobs

\[\text{alg} \leq (1 + \epsilon)\text{opt}_B \leq (1 + \epsilon)\text{opt}. \]

Case 2: makespan is increased by small jobs

- loads between any two machines differ by at most size of a small job, which is at most \(\epsilon \cdot p_{\text{max}} \)
Case 1: makespan is not increased by small jobs

\[\text{alg} \leq (1 + \epsilon) \text{opt}_B \leq (1 + \epsilon) \text{opt}. \]

Case 2: makespan is increased by small jobs

- loads between any two machines differ by at most size of a small job, which is at most \(\epsilon \cdot p_{\text{max}} \)

\[\text{alg} \leq \epsilon \cdot p_{\text{max}} + \frac{1}{m} \sum_{j \in [n]} p_j \leq \epsilon \cdot \text{opt} + \text{opt} = (1 + \epsilon) \cdot \text{opt}. \]
Outline

1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Bin Packing

Input: \(n \) items indexed by \([n]\), with sizes \(s_1, s_2, \cdots, s_n \in (0, 1] \)

Output: a packing of items into smallest number of bins of capacity 1.
Bin Packing

Input: n items indexed by $[n]$, with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$

Output: a packing of items into smallest number of bins of capacity 1.
Bin Packing

Input: \(n \) items indexed by \([n]\), with sizes \(s_1, s_2, \cdots, s_n \in (0, 1] \)

Output: a packing of items into smallest number of bins of capacity 1.
Bin Packing

Input: \(n \) items indexed by \([n]\), with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \)

Output: a packing of items into smallest number of bins of capacity 1.
Bin Packing

Input: \(n \) items indexed by \([n]\), with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \)

Output: a packing of items into smallest number of bins of capacity 1.

<table>
<thead>
<tr>
<th>bin packing</th>
<th>#containers</th>
<th>container capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed</td>
<td>objective</td>
<td>fixed</td>
</tr>
<tr>
<td>fixed</td>
<td>fixed</td>
<td>objective</td>
</tr>
</tbody>
</table>
First-Fit

1: initially there are 0 bins
2: \textbf{for} $i \leftarrow 1$ to n \textbf{do}
3: \hspace{1em} \textbf{if} item i fits into an existing bin \textbf{then} put i into the bin
4: \hspace{1em} \textbf{else} open a new bin and put i into the bin
First-Fit

1: initially there are 0 bins
2: for $i \leftarrow 1$ to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

Lemma The greedy algorithm gives a 2-approximation.
First-Fit

1: initially there are 0 bins
2: for $i \leftarrow 1$ to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- If our algorithm uses t bins, then $\text{opt} > \frac{t-1}{2}$ and $\text{opt} \in \mathbb{Z}_{>0}$
- t is even: $\text{opt} \geq \frac{t}{2}$
- t is odd: $\text{opt} \geq \frac{t+1}{2}$.

Lemma The greedy algorithm gives a 2-approximation.
First-Fit

1: initially there are 0 bins
2: for $i \leftarrow 1$ to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size $\leq 1/2$.

- If our algorithm uses t bins, then $\text{opt} > \frac{t-1}{2}$ and $\text{opt} \in \mathbb{Z}_{>0}$
- t is even: $\text{opt} \geq \frac{t}{2}$
- t is odd: $\text{opt} \geq \frac{t+1}{2}$.

Lemma The greedy algorithm gives a 2-approximation.
Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio < 3/2.
Theorem Unless $P=NP$, there is no poly-time approximation algorithm for bin packing with approximation ratio $< 3/2$.

Proof.
- It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition.
Theorem Unless P=NP, there is no poly-time approximation algorithm for bin packing with approximation ratio $< 3/2$.

Proof.
- It is NP-hard to decide if whether the items can be packed into 2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers $x_1, x_2, \cdots, x_n \in \mathbb{Z}_{>0}$

Output: decide if there is a partition of $\left[n \right]$ into A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$

Theorem Equal Partition is (weakly) NP-hard.
• The approximation ratio is bad only when opt is small.
• NP-hard to decide between $\text{opt} \leq 2$ and $\text{opt} \geq 3$.
• Open: NP-hard to decide between $\text{opt} \leq 100$ and $\text{opt} \geq 102$?
- The approximation ratio is bad only when opt is small.
- NP-hard to decide between $\text{opt} \leq 2$ and $\text{opt} \geq 3$.
- Open: NP-hard to decide between $\text{opt} \leq 100$ and $\text{opt} \geq 102$?
- The conjecture has not been disproved (assuming $\text{P} \neq \text{NP}$):

Conjecture: There is an efficient algorithm that outputs a solution with $\text{opt} + 1$ bins.
• The approximation ratio is bad only when opt is small.
• NP-hard to decide between $\text{opt} \leq 2$ and $\text{opt} \geq 3$.
• Open: NP-hard to decide between $\text{opt} \leq 100$ and $\text{opt} \geq 102$?
• The conjecture has not been disproved (assuming $\text{P} \neq \text{NP}$):

 Conjecture: There is an efficient algorithm that outputs a solution with $\text{opt} + 1$ bins.

• **asymptotic α-approximation:** an efficient algorithm that finds solution with $\alpha \cdot \text{opt} + c$ bins, with $c = O(1)$.
The approximation ratio is bad only when opt is small.

NP-hard to decide between $\text{opt} \leq 2$ and $\text{opt} \geq 3$.

Open: NP-hard to decide between $\text{opt} \leq 100$ and $\text{opt} \geq 102$?

The conjecture has not been disproved (assuming $P \neq NP$):

Conjecture: There is an efficient algorithm that outputs a solution with $\text{opt} + 1$ bins.

Asymptotic α-approximation: an efficient algorithm that finds solution with $\alpha \cdot \text{opt} + c$ bins, with $c = O(1)$.

Theorem First-Fit-Decreasing algorithm outputs a solution using at most $(11/9) \cdot \text{opt} + 4$ bins. That is, it is an asymptotic $11/9$-approximation.
Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms A_ϵ along with a constant $c \geq 0$, where algorithm A_ϵ for every $\epsilon > 0$ returns a solution of value at most $(1 + \epsilon)\text{opt} + c$ in polynomial time.
Def. An asymptotic polynomial-time approximation scheme (APTAS) for minimization problems is a family of algorithms A_ϵ along with a constant $c \geq 0$, where algorithm A_ϵ for every $\epsilon > 0$ returns a solution of value at most $(1 + \epsilon) \text{opt} + c$ in polynomial time.

Theorem For any fixed $\epsilon > 0$, there is a polynomial time algorithm that, given a bin-packing instance \mathcal{I}, outputs a solution with at most $(1 + \epsilon) \text{opt} + 1$ bins.

That is, there is an APTAS for bin-packing.
\(\gamma > 0 \) a small constant: item \(i \) is \(\begin{cases}
\text{small} & \text{if } s_i < \gamma \\
\text{big} & \text{if } s_i \geq \gamma
\end{cases} \)
\(\gamma > 0 \) a small constant: item \(i \) is \(\begin{cases}
\text{small} & \text{if } s_i < \gamma \\
\text{big} & \text{if } s_i \geq \gamma
\end{cases} \)

What to do if all items are small?

First-Fit: all but at most 1 bin has total size \(\leq 1 - \gamma \)

\[a_{\text{alg}} \leq l_{\text{opt}} (1 - \gamma) \]

\[m < 1 - \gamma \cdot l_{\text{opt}} + 1, \gamma := \frac{\epsilon}{2} \Rightarrow 1 - \gamma < 1 + \epsilon \]

What to do if all items are big?

truncate item sizes to obtain \(I' \), using DP to solve \(I' \)

Two essential properties:

\[\text{opt}(I') \approx \text{opt}(I) \]

\#(item sizes in \(I' \)) is small

general instance: pack big items using truncation + DP, then use First-Fit to pack small items
\(\gamma > 0 \) a small constant: item \(i \) is \(\begin{cases} \text{small} & \text{if } s_i < \gamma \\ \text{big} & \text{if } s_i \geq \gamma \end{cases} \)

What to do if all items are small?

- **First-Fit**: all but at most 1 bin has total size \(\leq 1 - \gamma \)
- \(\text{alg} \leq \left\lfloor \frac{\text{opt}}{1-\gamma} \right\rfloor < \frac{1}{1-\gamma} \cdot \text{opt} + 1, \quad \gamma := \frac{\epsilon}{2} \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1 + \epsilon \)
• $\gamma > 0$ a small constant: item i is
 \[\begin{cases} \text{small} & \text{if } s_i < \gamma \\ \text{big} & \text{if } s_i \geq \gamma \end{cases}\]

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size $\leq 1 - \gamma$

• $\text{alg} \leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1,$ $\gamma := \epsilon/2 \Rightarrow \frac{1}{1-\gamma} < 1 + \epsilon$

What to do if all items are big?

• [Insert content here]
• \(\gamma > 0 \) a small constant: item \(i \) is \(\begin{cases} \text{small} & \text{if } s_i < \gamma \\ \text{big} & \text{if } s_i \geq \gamma \end{cases} \)

What to do if all items are small?

• First-Fit: all but at most 1 bin has total size \(\leq 1 - \gamma \)

\[\text{alg} \leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1, \quad \gamma := \epsilon/2 \quad \Rightarrow \quad \frac{1}{1-\gamma} < 1 + \epsilon \]

What to do if all items are big?

• truncate item sizes to obtain \(\mathcal{I}' \), using DP to solve \(\mathcal{I}' \)

• two essential properties:

\(\text{opt}(\mathcal{I}') \approx \text{opt}(\mathcal{I}) \quad \#(\text{item sizes in } \mathcal{I}') \) is small
- $\gamma > 0$ a small constant: item i is
 \[
 \begin{cases}
 \text{small} & \text{if } s_i < \gamma \\
 \text{big} & \text{if } s_i \geq \gamma
 \end{cases}
 \]

What to do if all items are small?
- First-Fit: all but at most 1 bin has total size $\leq 1 - \gamma$
- $\text{alg} \leq \left\lceil \frac{\text{opt}}{1-\gamma} \right\rceil < \frac{1}{1-\gamma} \cdot \text{opt} + 1$, $\gamma := \epsilon/2 \implies \frac{1}{1-\gamma} < 1 + \epsilon$

What to do if all items are big?
- truncate item sizes to obtain \mathcal{I}', using DP to solve \mathcal{I}'
- two essential properties:
 \[
 \text{opt}(\mathcal{I}') \approx \text{opt}(\mathcal{I}) \quad \#(\text{item sizes in } \mathcal{I}') \text{ is small}
 \]
- general instance: pack big items using truncation + DP, then use First-Fit to pack small items
1. Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2. PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3. An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Construction of Instance \mathcal{I}'

1: sort items in non-increasing sizes
Construction of Instance \mathcal{I}'

1: sort items in non-increasing sizes
2: partition items into groups of size g
Construction of Instance \mathcal{I}'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
Construction of Instance \mathcal{I}'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group
Construction of Instance \mathcal{I}'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group

\[\text{opt}(\mathcal{I}) - g \leq \text{opt}(\mathcal{I}') \]
Construction of Instance I'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group

$$\text{opt}(I) - g \leq \text{opt}(I')$$
Construction of Instance \mathcal{I}'

1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group

\[
\text{opt}(\mathcal{I}) - g \leq \text{opt}(\mathcal{I}')
\]
Construction of Instance I'
1. sort items in non-increasing sizes
2. partition items into groups of size g
3. discard the first group
4. for each of the other groups do
5. change item size to the biggest size in group

$$\text{opt}(I) - g \leq \text{opt}(I')$$
Construction of Instance \mathcal{I}'

1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

$$\text{opt}(\mathcal{I}) - g \leq \text{opt}(\mathcal{I}') \leq \text{opt}(\mathcal{I})$$
every group in \mathcal{I}' has the same size.
every group in \mathcal{I}' has the same size.

$k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$
• every group in \mathcal{I}' has the same size.
• $k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$
• \mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time
• every group in \mathcal{I}' has the same size.
• $k := \text{the number of distinct sizes in } \mathcal{I}', \ k \leq \left\lfloor \frac{n}{g} \right\rfloor$
• \mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for \mathcal{I}' in $O(n^{2k})$-time

• let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
every group in I' has the same size.

$k :=$ the number of distinct sizes in I', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

I' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for I' in $O(n^{2k})$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
every group in \mathcal{I}' has the same size.

$k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

\mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for \mathcal{I}' in $O(n^{2k})$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k): the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots, and a_k items of size $s^{(k)}$
every group in \mathcal{I}' has the same size.

$k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

\mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for \mathcal{I}' in $O(n^{2k})$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k): the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots, and a_k items of size $s^{(k)}$
- an arc $(a_1, a_2, \cdots, a_k) \rightarrow (b_1, b_2, \cdots, b_k)$ if
 - $a_i \geq b_i$ for every $i \in [k]$ and,
 - $s^{(1)}(b_1 - a_1) + s^{(2)}(b_2 - a_2) + \cdots + s^{(k)}(b_k - a_k) \leq 1$
every group in \mathcal{I}' has the same size.

$k :=$ the number of distinct sizes in \mathcal{I}', $k \leq \left\lfloor \frac{n}{g} \right\rfloor$

\mathcal{I}' can be solved exactly by DP in $O(n^{2k})$-time

Dynamic Programming for \mathcal{I}' in $O(n^{2k})$-time

- let $s^{(1)} \geq s^{(2)} \geq \cdots \geq s^{(k)}$ be the k distinct sizes
- let n_1, n_2, \cdots, n_k be the number of items of each size
- vertex (a_1, a_2, \cdots, a_k): the instance with a_1 items of size $s^{(1)}$, a_2 items of size $s^{(2)}$, \cdots, and a_k items of size $s^{(k)}$
- an arc $(a_1, a_2, \cdots, a_k) \rightarrow (b_1, b_2, \cdots, b_k)$ if
 - $a_i \geq b_i$ for every $i \in [k]$ and,
 - $s^{(1)}(b_1 - a_1) + s^{(2)}(b_2 - a_2) + \cdots + s^{(k)}(b_k - a_k) \leq 1$
- DP: computing the shortest path from $(0, 0, \cdots, 0)$ to (n_1, n_2, \cdots, n_k)
opt(\mathcal{I}) - g \leq opt(\mathcal{I}') \leq opt(\mathcal{I}).
\[\text{opt}(\mathcal{I}) - g \leq \text{opt}(\mathcal{I}') \leq \text{opt}(\mathcal{I}). \]

- solving \(\mathcal{I}' \Rightarrow \text{packing for } \mathcal{I} \text{ with } \leq \text{opt}(\mathcal{I}) + g \text{ bins} \]
\[\text{opt}(\mathcal{I}) - g \leq \text{opt}(\mathcal{I}') \leq \text{opt}(\mathcal{I}). \]

- solving \(\mathcal{I}' \) \(\Rightarrow \) packing for \(\mathcal{I} \) with \(\leq \text{opt}(\mathcal{I}) + g \) bins
- \(s_i \geq \gamma, \forall i \in [n] \) \(\implies \) \(\text{opt}(\mathcal{I}) \geq \gamma n. \)
opt(\mathcal{I}) - g \leq opt(\mathcal{I}') \leq opt(\mathcal{I}).

- solving \mathcal{I}' \Rightarrow packing for \mathcal{I} with \leq opt(\mathcal{I}) + g bins
- \ s_i \geq \gamma, \ \forall i \in [n] \quad \Rightarrow \quad opt(\mathcal{I}) \geq \gamma n.
- setting \ g := \epsilon \gamma n \quad \Rightarrow \quad g \leq \epsilon \cdot opt(\mathcal{I}) \text{ and } k \leq \frac{n}{g} \leq \frac{1}{\epsilon \gamma}
opt(I) − g ≤ opt(I') ≤ opt(I).

- solving I' \Rightarrow packing for I with \leq opt(I) + g bins
- $s_i \geq \gamma, \forall i \in [n]$ \implies opt(I) \geq γn.
- setting $g := \epsilon \gamma n$ \implies $g \leq \epsilon \cdot$ opt(I) and $k \leq \frac{n}{g} \leq \frac{1}{\epsilon \gamma}$

Theorem There is an $O(n^{2/(\epsilon \gamma)})$-time $(1 + \epsilon)$-approximation algorithm for the bin-packing problem when all items have size at least γ.
Outline

1 Knapsack Problem
 - Introduction
 - FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
 - Introduction
 - Dynamic Programming to Schedule Big Jobs
 - Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
 - Introduction
 - Algorithm for Big Items
 - Combination of Algorithms for Big and Small Items
Combining Algorithms for Small and Big Items

1. Use truncation + DP to obtain solution S for big items.
2. Starting from S, use First-Fit to pack small items.
Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
Combining Algorithms for Small and Big Items

1. Use truncation + DP to obtain solution S for big items
2. Starting from S, use First-Fit to pack small items
Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
2: Starting from S, use First-Fit to pack small items
Analysis of the Combined Algorithm

Case 1: no new bins are used to pack small items

\[\text{bins used} \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I) \]

Case 2: new bins are used at most one bin has total size

\[\#(\text{bins used}) < \text{opt}(I) - \gamma + 1 \]
Analysis of the Combined Algorithm

Case 1: no new bins are used to pack small items

\[\#(\text{bins used}) \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I) \]

Case 2: new bins are used

at most one bin has total size \(\leq 1 - \gamma \)

\[\#(\text{bins used}) < \text{opt}(I_{\text{big}}) \]

\[1 - \gamma + 1 \]
Case 1: no new bins are used to pack small items

\[\#(\text{bins used}) \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I) \]
Case 1: no new bins are used to pack small items

\[\#(\text{bins used}) \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I) \]

Case 2: new bins are used
Case 1: no new bins are used to pack small items

\[
\#(\text{bins used}) \leq (1 + \epsilon) \cdot \text{opt}(I_{\text{big}}) \leq (1 + \epsilon) \cdot \text{opt}(I)
\]

Case 2: new bins are used

at most one bin has total size \(\leq 1 - \gamma \)

\[
\#(\text{bins used}) < \frac{\text{opt}(I)}{1 - \gamma} + 1
\]
Setting $\gamma = \epsilon/2 \quad \implies \quad \#(\text{bins used}) < \frac{\text{opt}(I)}{1-\epsilon/2} + 1 \leq (1 + \epsilon)\text{opt}(I) + 1$

Theorem There is an $O(n^2/(\epsilon^2))$-time algorithm that outputs a solution with at most $(1 + \epsilon)\text{opt}(I) + 1$ bins.

Theorem There is an APTAS for bin-packing.