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Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value
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Greedy Algorithm

1: sort items according to non-increasing order of vi/wi

2: for each item in the ordering do
3: take the item if we have enough budget

Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Optimum takes item 2 and greedy takes item 1.
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Fractional Knapsack Problem

Input: integer bound W > 0,

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a vector (α1, α2, · · · , αn) ∈ [0, 1]n that

maximizes
n∑

i=1

αivi s.t.
n∑

i=1

αiwi ≤ W.

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of vi/wi,
2: for each item according to the ordering, take as much fraction

of the item as possible.

Theorem Greedy algorithm gives the optimum solution for
fractional knapsack.
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DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW ).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.
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n: number of integers W : maximum value of all integers

pseudo-polynomial time: poly(n,W ) (e.g., DP for Knapsack)

weakly polynomial time: poly(n, logW ) (e.g., Euclidean
Algorithm for Greatest Common Divisor)

strongly polynomial time: poly(n) time, assuming basic
operations on integers taking O(1) time (e.g., Kruskal’s)

weakly NP-hard: NP-hard to solve in time poly(n, logW )

strongly NP-hard: NP-hard even if W = poly(n)

strongly NP-hardstrongly

polynomial

weakly

polynomial

pseudo-polynomial

weakly NP-hard

polynomial

NP-hard
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Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately

defined integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters
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Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =


0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .
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Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).
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Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?
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Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines
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Greedy Algorithm

1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt
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Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily
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Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk
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Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.
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q1 + q3

q1
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2, 4, 3, 1
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2q2cost = max{2q3, q1 + q2 + q4, q1 + q2 + q3, 2q2}
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Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load
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Analysis of the Final Algorithm

big jobs

small jobs

case 1

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs

loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.
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Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

#containers container capacity

bin packing objective fixed

scheduling fixed objective
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First-Fit

1: initially there are 0 bins
2: for i← 1 to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size ≤ 1/2.

If our algorithm uses t bins, then opt > t−1
2

and opt ∈ Z>0

t is even: opt ≥ t
2

t is odd: opt ≥ t+1
2
.

Lemma The greedy algorithm gives a 2-approximation.
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Theorem Unless P=NP, there is no poly-time approximation
algorithm for bin packing with approximation ratio < 3/2.

Proof.

It is NP-hard to decide if whether the items can be packed into
2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers x1, x2, · · · , xn ∈ Z>0

Output: decide if there is a partition of [n] into A and B such
that

∑
i∈A xi =

∑
i∈B xi

Theorem Equal Partition is (weakly) NP-hard.
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The approximation ratio is bad only when opt is small

NP-hard to decide between opt ≤ 2 and opt ≥ 3.

Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102?

The conjecture has not been disproved (assuming P ̸= NP):

Conjecture: There is an efficient algorithm that outputs a
solution with opt + 1 bins.

asymptotic α-approximation: an efficient algorithm that finds
solution with α · opt + c bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using
at most (11/9) · opt + 4 bins. That is, it is an asymptotic
11/9-approximation.
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Def. An asymptotic polynomial-time approximation scheme
(APTAS) for minimization problems is a family of algorithms Aϵ

along with a constant c ≥ 0, where algorithm Aϵ for every ϵ > 0
returns a solution of value at most (1 + ϵ)opt + c in polynomial
time.

Theorem For any fixed ϵ > 0, there is a polynomial time
algorithm that, given a bin-packing instance I, outputs a solution
with at most (1 + ϵ)opt + 1 bins.

That is, there is an APTAS for bin-packing.
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γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items



34/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items



35/41

Construction of Instance I ′
1: sort items in non-increasing sizes

2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

Instance I
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every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)
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opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,
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1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
2: Starting from S, use First-Fit to pack small items
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Analysis of the Combined Algorithm

case 1

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used
at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1
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Setting γ = ϵ/2 =⇒
#(bins used) < opt(I)

1−ϵ/2
+ 1 ≤ (1 + ϵ)opt(I) + 1

Theorem There is an O(n2/(ϵ2))-time algorithmn that outputs a
solution with at most (1 + ϵ)opt(I) + 1 bins.

Theorem There is an APTAS for bin-packing.
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