
Advanced Algorithms (Fall 2023)

Rounding Data and Dynamic Programming

Lecturers: 尹一通，刘景铖，栗师

Nanjing University

2/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

3/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

4/41

Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value

4/41

Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset of
items of maximum total value

5/41

Greedy Algorithm

1: sort items according to non-increasing order of vi/wi

2: for each item in the ordering do
3: take the item if we have enough budget

Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Optimum takes item 2 and greedy takes item 1.

5/41

Greedy Algorithm

1: sort items according to non-increasing order of vi/wi

2: for each item in the ordering do
3: take the item if we have enough budget

Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Optimum takes item 2 and greedy takes item 1.

5/41

Greedy Algorithm

1: sort items according to non-increasing order of vi/wi

2: for each item in the ordering do
3: take the item if we have enough budget

Bad example: W = 100, n = 2, w = (1, 100), v = (1.1, 100).

Optimum takes item 2 and greedy takes item 1.

6/41

Fractional Knapsack Problem

Input: integer bound W > 0,

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a vector (α1, α2, · · · , αn) ∈ [0, 1]n that

maximizes
n∑

i=1

αivi s.t.
n∑

i=1

αiwi ≤ W.

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of vi/wi,
2: for each item according to the ordering, take as much fraction

of the item as possible.

Theorem Greedy algorithm gives the optimum solution for
fractional knapsack.

6/41

Fractional Knapsack Problem

Input: integer bound W > 0,

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a vector (α1, α2, · · · , αn) ∈ [0, 1]n that

maximizes
n∑

i=1

αivi s.t.
n∑

i=1

αiwi ≤ W.

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of vi/wi,
2: for each item according to the ordering, take as much fraction

of the item as possible.

Theorem Greedy algorithm gives the optimum solution for
fractional knapsack.

6/41

Fractional Knapsack Problem

Input: integer bound W > 0,

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a vector (α1, α2, · · · , αn) ∈ [0, 1]n that

maximizes
n∑

i=1

αivi s.t.
n∑

i=1

αiwi ≤ W.

Greedy Algorithm for Fractional Knapsack

1: sort items according to non-increasing order of vi/wi,
2: for each item according to the ordering, take as much fraction

of the item as possible.

Theorem Greedy algorithm gives the optimum solution for
fractional knapsack.

7/41

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =

0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.

7/41

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =

0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.

7/41

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =

0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.

7/41

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =

0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.

7/41

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.

opt[i,W ′] =

0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′

Running time of the algorithm is O(nW).

Q: Is this a polynomial time?

A: No.

The input size is polynomial in n and logW ; running time is
polynomial in n and W .

The running time is pseudo-polynomial.

8/41

n: number of integers W : maximum value of all integers

pseudo-polynomial time: poly(n,W) (e.g., DP for Knapsack)

weakly polynomial time: poly(n, logW) (e.g., Euclidean
Algorithm for Greatest Common Divisor)

strongly polynomial time: poly(n) time, assuming basic
operations on integers taking O(1) time (e.g., Kruskal’s)

weakly NP-hard: NP-hard to solve in time poly(n, logW)

strongly NP-hard: NP-hard even if W = poly(n)

strongly NP-hardstrongly

polynomial

weakly

polynomial

pseudo-polynomial

weakly NP-hard

polynomial

NP-hard

9/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

10/41

Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately

defined integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters

10/41

Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately

defined integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters

10/41

Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately

defined integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters

10/41

Idea for improving the running time to polynomial

If we make weights upper bounded by poly(n), then
pseudo-polynomial time becomes polynomial time

Coarsening the weights: w′
i =

⌊
wi

A

⌋
for some appropriately

defined integer A.

However, coarsening weights will change the problem.

weight budget constraint : hard
maximum value requirement : soft

We coarsen the values instead

In the DP, we use values as parameters

11/41

Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =

0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .

11/41

Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =

0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .

11/41

Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =

0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .

11/41

Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =

0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .

11/41

Let A be some integer to be defined later

v′i :=
⌊
vi
A

⌋
be the scaled value of item i

Definition of DP cells: f [i, V ′] = minS⊆[i]:v′(S)≥V ′ w(S)

f [i, V ′] =

0 V ′ ≤ 0

∞ i = 0, V ′ > 0

min

{
f [i− 1, V ′]

f [i− 1, V ′ − v′i] + wi

}
i > 0, V ′ > 0

Output A times the largest V ′ such that f [n, V ′] ≤ W .

12/41

Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).

12/41

Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)

setting A :=
⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).

12/41

Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).

12/41

Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).

12/41

Instance I: (v1, v2, · · · , vn) opt: optimum value of I
Instance I ′: (Av′1, · · · , AV ′

n) opt′: optimum value of I ′

vi − A < Av′i ≤ vi, ∀i ∈ [n]

=⇒ opt− nA < opt′ ≤ opt

opt ≥ vmax := maxi∈[n] vi (assuming wi ≤ W,∀i)
setting A :=

⌊
ϵ·vmax

n

⌋
: (1− ϵ)opt ≤ opt′ ≤ opt

∀i, v′i = O(n
ϵ
) =⇒ running time = O(n

3

ϵ
)

Theorem There is a (1 + ϵ)-approximation for the knapsack
problem in time O(n

3

ϵ
).

13/41

Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?

13/41

Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?

13/41

Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?

13/41

Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?

13/41

Def. A polynomial-time approximation scheme (PTAS) is a
family of algorithms Aϵ, where Aϵ for every ϵ > 0 is a
(polynomial-time) (1± ϵ)-approximation algorithm.

Remark: the approximation ratio is 1+ ϵ or 1− ϵ, depending on
whether the problem is a minimization/maximization problem

Def. A fully polynomial-time approximation scheme (FPTAS) is
an approximation scheme Aϵ such that the running time of Aϵ is
poly(n, 1

ϵ
) for input instances of n.

So, Knapsack admits an FPTAS.

Q: Assume P ̸= NP. What is a neccesary condition for a NP-hard
problem to admit an FPTAS?

Vertex cover? Maximum independent set?

14/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

15/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

4 machines

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

1

2

3 4

5 6

7 8

9

10

11 12

13
4 machines

16/41

Makespan Minimization on Identical Machines

Input: n jobs index as [n]

each job j ∈ [n] has a processing time pj ∈ Z>0

m machines

Output: schedule of jobs on machines with minimum makespan

σ : [n]→ [m] with minimum maxi∈[m]

∑
j∈σ−1(i) pj

1 2 4

5 6

10 11

7

12

9

13

8

3

1

2

3 4

5 6

7 8

9

10

11 12

13
4 machines

makespan

17/41

Greedy Algorithm

1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt

17/41

Greedy Algorithm

1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt

17/41

Greedy Algorithm

1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt

17/41

Greedy Algorithm

1: start from an empty schedule
2: for j = 1 to n do
3: put job j on the machine with the smallest load

Analysis of
(
2− 1

m

)
-Approximation for Greedy Algorithm

pmax := max
j∈[n]

pj

alg ≤ pmax +
1

m
· (
∑
j∈[n]

pj − pmax) =
(
1− 1

m

)
pmax +

1

m

∑
j∈[n]

pj

opt ≥ pmax

opt ≥ 1
m

∑
j∈[n] pj

}
=⇒ alg ≤

(
2− 1

m

)
opt

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise

2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs

3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs

4: add small jobs to schedule greedily

18/41

Q: What happens if all items have size at most ϵ · opt?

A: alg ≤ 1
m

∑
j∈[n] pj + pmax ≤ opt + ϵ · opt = (1 + ϵ)opt.

Q: What can we do if all items have size at least ϵ · opt?

A: We can round the sizes, so that #(distinct sizes) is small

Overview of Algorithm

1: declare j small if pj < ϵ · pmax and big otherwise
2: use trunction + DP to solve the instance defined by big jobs
3: use DP for instance (p′j)j big to schedule big jobs
4: add small jobs to schedule greedily

19/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

20/41

Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk

20/41

Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk

20/41

Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)

{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk

20/41

Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk

20/41

Dynamic Programming for Big Jobs

B := {j ∈ [n] : pj ≥ ϵpmax}: set of big jobs

p′j := max{pmax(1 + ϵ)t ≤ pj : t ∈ Z},∀j ∈ B

p′j is the rounded size of j

k := |{p′j : j ∈ B}|: #(distinct rounded sizes)

k ≤ 1 + log1+ϵ
pmax

ϵpmax
= O

(
1
ϵ
· log 1

ϵ

)
{q1, q2, · · · , qk} := {p′j : j ∈ B}: the k distinct rounded sizes

n1, · · · , nk: #(big jobs) with rounded sizes being q1, · · · , qk

21/41

Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.

21/41

Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.

21/41

Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.

21/41

Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.

21/41

Constructing a Directed Acyclic Graph G = (V,E)

a vertex (a1, · · · , ak), ai ∈ [0, ni],∀i ∈ [k]

denotes the instance with a1 jobs of size q1, a2 jobs of size q2,
· · · , ak jobs of size qk

an arc (a1, · · · , ak)→ (b1, · · · bk) of weight
∑k

i=1(bi − ai)qi,
if ai ≤ bi,∀i ∈ [k], and ai < bi for some i ∈ [k]

reducing instance (b1, · · · bk) to (a1, · · · , ak) requires 1 machine
of load

∑k
i=1(bi − ai)qi

Goal: find a path from (0, · · · , 0) to (n1, · · · , nk) of at most
m edges, so as to minimize the maximum weight on the path.

problem can be solved in O(m · |E|) time using DP

O(m · |E|) = O(m · n2k) = nO
(

1
ϵ
·log 1

ϵ

)
.

22/41

0, 0, 0, 0

0, 1, 0, 0 1, 0, 0, 0

0, 1, 1, 0

2, 0, 1, 0 3, 0, 0, 0

22/41

0, 0, 0, 0

0, 1, 0, 0 1, 0, 0, 0

0, 1, 1, 0

2, 0, 1, 0 3, 0, 0, 0

q2q2 + q3

q1 + q3

q1

2q1

22/41

0, 0, 0, 0

0, 1, 0, 0 1, 0, 0, 0

0, 1, 1, 0

2, 0, 1, 0 3, 0, 0, 0

q2q2 + q3

q1 + q3

q1

2, 2, 3, 1

2q3

1, 1, 2, 1

2q1 0, 0, 2, 0

q1 + q2 + q4

2, 4, 3, 1

q1 + q2 + q3

2q2cost = max{2q3, q1 + q2 + q4, q1 + q2 + q3, 2q2}

23/41

Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load

23/41

Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB

schedule for I ′B ⇒ schedule for IB:
(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load

23/41

Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load

23/41

Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load

23/41

Analysis of Algorithm for Big Jobs

IB: instance (pj)j∈B optB: its optimum makespan

I ′B: instance (p′j)j∈B opt′B: its optimum makespan

opt′B ≤ optB
schedule for I ′B ⇒ schedule for IB:

(1 + ϵ)-blowup in makespan

Theorem The dynamic programming algorithm gives a schedule

of makespan at most (1 + ϵ)optB in time nO
(

1
ϵ
log 1

ϵ

)
.

Adding small jobs to schedule

1: starting from the schedule for big jobs
2: for every small job j do
3: add j to the machine with the smallest load

24/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

25/41

Analysis of the Final Algorithm

big jobs

small jobs

case 1

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs

loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.

25/41

Analysis of the Final Algorithm

big jobs

small jobs

case 1

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs

loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.

25/41

Analysis of the Final Algorithm

big jobs

small jobs

case 1 case 2

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs

loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.

25/41

Analysis of the Final Algorithm

big jobs

small jobs

case 1 case 2

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs
loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.

25/41

Analysis of the Final Algorithm

big jobs

small jobs

case 1 case 2

Case 1: makespan is not increased by small jobs

alg ≤ (1 + ϵ)optB ≤ (1 + ϵ)opt.

Case 2: makespan is increased by small jobs
loads between any two machines differ by at most size of a small
job, which is at most ϵ · pmax

alg ≤ ϵ · pmax +
1

m

∑
j∈[n]

pj ≤ ϵ · opt + opt = (1 + ϵ) · opt.

26/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

27/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

28/41

Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

#containers container capacity

bin packing objective fixed

scheduling fixed objective

28/41

Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

#containers container capacity

bin packing objective fixed

scheduling fixed objective

28/41

Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

1 2

3

6
4

5

7

8

#containers container capacity

bin packing objective fixed

scheduling fixed objective

28/41

Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

1 2

3

6
4

5

7

8

3 bins

#containers container capacity

bin packing objective fixed

scheduling fixed objective

28/41

Bin Packing

Input: n items indexed by [n], with sizes s1, s2, · · · , sn ∈ (0, 1]

Output: a packing of items into smallest number of bins of
capacity 1.

1 2 3 4 5 6 7 8

1

1 2

3

6
4

5

7

8

3 bins

#containers container capacity

bin packing objective fixed

scheduling fixed objective

29/41

First-Fit

1: initially there are 0 bins
2: for i← 1 to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size ≤ 1/2.

If our algorithm uses t bins, then opt > t−1
2

and opt ∈ Z>0

t is even: opt ≥ t
2

t is odd: opt ≥ t+1
2
.

Lemma The greedy algorithm gives a 2-approximation.

29/41

First-Fit

1: initially there are 0 bins
2: for i← 1 to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size ≤ 1/2.

If our algorithm uses t bins, then opt > t−1
2

and opt ∈ Z>0

t is even: opt ≥ t
2

t is odd: opt ≥ t+1
2
.

Lemma The greedy algorithm gives a 2-approximation.

29/41

First-Fit

1: initially there are 0 bins
2: for i← 1 to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size ≤ 1/2.

If our algorithm uses t bins, then opt > t−1
2

and opt ∈ Z>0

t is even: opt ≥ t
2

t is odd: opt ≥ t+1
2
.

Lemma The greedy algorithm gives a 2-approximation.

29/41

First-Fit

1: initially there are 0 bins
2: for i← 1 to n do
3: if item i fits into an existing bin then put i into the bin
4: else open a new bin and put i into the bin

Obs. In the output, at most one bin has total size ≤ 1/2.

If our algorithm uses t bins, then opt > t−1
2

and opt ∈ Z>0

t is even: opt ≥ t
2

t is odd: opt ≥ t+1
2
.

Lemma The greedy algorithm gives a 2-approximation.

30/41

Theorem Unless P=NP, there is no poly-time approximation
algorithm for bin packing with approximation ratio < 3/2.

Proof.

It is NP-hard to decide if whether the items can be packed into
2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers x1, x2, · · · , xn ∈ Z>0

Output: decide if there is a partition of [n] into A and B such
that

∑
i∈A xi =

∑
i∈B xi

Theorem Equal Partition is (weakly) NP-hard.

30/41

Theorem Unless P=NP, there is no poly-time approximation
algorithm for bin packing with approximation ratio < 3/2.

Proof.

It is NP-hard to decide if whether the items can be packed into
2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers x1, x2, · · · , xn ∈ Z>0

Output: decide if there is a partition of [n] into A and B such
that

∑
i∈A xi =

∑
i∈B xi

Theorem Equal Partition is (weakly) NP-hard.

30/41

Theorem Unless P=NP, there is no poly-time approximation
algorithm for bin packing with approximation ratio < 3/2.

Proof.

It is NP-hard to decide if whether the items can be packed into
2 bins or not, using the reduction from equal partition.

Equal Partition

Input: n numbers x1, x2, · · · , xn ∈ Z>0

Output: decide if there is a partition of [n] into A and B such
that

∑
i∈A xi =

∑
i∈B xi

Theorem Equal Partition is (weakly) NP-hard.

31/41

The approximation ratio is bad only when opt is small

NP-hard to decide between opt ≤ 2 and opt ≥ 3.

Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102?

The conjecture has not been disproved (assuming P ̸= NP):

Conjecture: There is an efficient algorithm that outputs a
solution with opt + 1 bins.

asymptotic α-approximation: an efficient algorithm that finds
solution with α · opt + c bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using
at most (11/9) · opt + 4 bins. That is, it is an asymptotic
11/9-approximation.

31/41

The approximation ratio is bad only when opt is small

NP-hard to decide between opt ≤ 2 and opt ≥ 3.

Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102?

The conjecture has not been disproved (assuming P ̸= NP):

Conjecture: There is an efficient algorithm that outputs a
solution with opt + 1 bins.

asymptotic α-approximation: an efficient algorithm that finds
solution with α · opt + c bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using
at most (11/9) · opt + 4 bins. That is, it is an asymptotic
11/9-approximation.

31/41

The approximation ratio is bad only when opt is small

NP-hard to decide between opt ≤ 2 and opt ≥ 3.

Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102?

The conjecture has not been disproved (assuming P ̸= NP):

Conjecture: There is an efficient algorithm that outputs a
solution with opt + 1 bins.

asymptotic α-approximation: an efficient algorithm that finds
solution with α · opt + c bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using
at most (11/9) · opt + 4 bins. That is, it is an asymptotic
11/9-approximation.

31/41

The approximation ratio is bad only when opt is small

NP-hard to decide between opt ≤ 2 and opt ≥ 3.

Open: NP-hard to decide between opt ≤ 100 and opt ≥ 102?

The conjecture has not been disproved (assuming P ̸= NP):

Conjecture: There is an efficient algorithm that outputs a
solution with opt + 1 bins.

asymptotic α-approximation: an efficient algorithm that finds
solution with α · opt + c bins, with c = O(1).

Theorem First-Fit-Decreasing algorithm outputs a solution using
at most (11/9) · opt + 4 bins. That is, it is an asymptotic
11/9-approximation.

32/41

Def. An asymptotic polynomial-time approximation scheme
(APTAS) for minimization problems is a family of algorithms Aϵ

along with a constant c ≥ 0, where algorithm Aϵ for every ϵ > 0
returns a solution of value at most (1 + ϵ)opt + c in polynomial
time.

Theorem For any fixed ϵ > 0, there is a polynomial time
algorithm that, given a bin-packing instance I, outputs a solution
with at most (1 + ϵ)opt + 1 bins.

That is, there is an APTAS for bin-packing.

32/41

Def. An asymptotic polynomial-time approximation scheme
(APTAS) for minimization problems is a family of algorithms Aϵ

along with a constant c ≥ 0, where algorithm Aϵ for every ϵ > 0
returns a solution of value at most (1 + ϵ)opt + c in polynomial
time.

Theorem For any fixed ϵ > 0, there is a polynomial time
algorithm that, given a bin-packing instance I, outputs a solution
with at most (1 + ϵ)opt + 1 bins.

That is, there is an APTAS for bin-packing.

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

33/41

γ > 0 a small constant: item i is

{
small if si < γ

big if si ≥ γ

What to do if all items are small?

First-Fit: all but at most 1 bin has total size ≤ 1− γ

alg ≤
⌈

opt
1−γ

⌉
< 1

1−γ
· opt + 1, γ := ϵ/2 ⇒ 1

1−γ
< 1 + ϵ

What to do if all items are big?

truncate item sizes to obtain I ′, using DP to solve I ′

two essential properties:

opt(I ′) ≈ opt(I) #(item sizes in I ′) is small

general instance: pack big items using truncation + DP, then
use First-Fit to pack small items

34/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes

2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

Instance I

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g

3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group

4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

opt(I)− g ≤ opt(I ′)

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

opt(I)− g ≤ opt(I ′)

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

opt(I)− g ≤ opt(I ′)

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

Instance I

opt(I)− g ≤ opt(I ′)

35/41

Construction of Instance I ′
1: sort items in non-increasing sizes
2: partition items into groups of size g
3: discard the first group
4: for each of the other groups do
5: change item size to the biggest size in group

1

0 items

g items g items

Instance I ′

Instance I

opt(I)− g ≤ opt(I ′)≤ opt(I)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋

I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

36/41

every group in I ′ has the same size.

k := the number of distinct sizes in I ′, k ≤
⌊
n
g

⌋
I ′ can be solved exactly by DP in O(n2k)-time

Dynamic Programming for I ′ in O(n2k)-time

let s(1) ≥ s(2) ≥ · · · ≥ s(k) be the k distinct sizes

let n1, n2, · · · , nk be the number of items of each size

vertex (a1, a2, · · · , ak): the instance with a1 items of size s(1),
a2 items of size s(2), · · · , and ak items of size s(k)

an arc (a1, a2, · · · , ak)→ (b1, b2, · · · , bk) if
ai ≥ bi for every i ∈ [k] and,
s(1)(b1 − a1) + s(2)(b2 − a2) + · · ·+ s(k)(bk − ak) ≤ 1

DP: computing the shortest path from (0, 0, · · · , 0) to
(n1, n2, · · · , nk)

37/41

opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,

37/41

opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,

37/41

opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,

37/41

opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,

37/41

opt(I)− g ≤ opt(I ′) ≤ opt(I).

solving I ′ ⇒ packing for I with ≤ opt(I) + g bins

si ≥ γ, ∀i ∈ [n] =⇒ opt(I) ≥ γn.

setting g := ϵγn =⇒ g ≤ ϵ · opt(I) and k ≤ n
g
≤ 1

ϵγ

Theorem There is an O(n2/(ϵγ))-time (1 + ϵ)-approximation
algorithm for the bin-packing problem when all items have size at
least γ,

38/41

Outline

1 Knapsack Problem
Introduction
FPTAS for Knapsack Problem

2 PTAS for Makespan Minimization on Identical Machines
Introduction
Dynamic Programming to Schedule Big Jobs
Analysis of Combined Algorithm

3 An asymptotical PTAS for Bin Packing
Introduction
Algorithm for Big Items
Combination of Algorithms for Big and Small Items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
2: Starting from S, use First-Fit to pack small items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items

2: Starting from S, use First-Fit to pack small items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items

2: Starting from S, use First-Fit to pack small items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items

2: Starting from S, use First-Fit to pack small items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
2: Starting from S, use First-Fit to pack small items

39/41

1

0 items
γ

Combining Algorithms for Small and Big Items

1: Use truncation + DP to obtain solution S for big items
2: Starting from S, use First-Fit to pack small items

40/41

Analysis of the Combined Algorithm

case 1

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used
at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1

40/41

Analysis of the Combined Algorithm

case 1

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used
at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1

40/41

Analysis of the Combined Algorithm

case 1

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used
at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1

40/41

Analysis of the Combined Algorithm

case 1 case 2

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used

at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1

40/41

Analysis of the Combined Algorithm

case 1 case 2

Case 1: no new bins are used to pack small items

#(bins used) ≤ (1 + ϵ) · opt(Ibig) ≤ (1 + ϵ) · opt(I)

Case 2: new bins are used
at most one bin has total size ≤ 1− γ

#(bins used) <
opt(I)
1− γ

+ 1

41/41

Setting γ = ϵ/2 =⇒
#(bins used) < opt(I)

1−ϵ/2
+ 1 ≤ (1 + ϵ)opt(I) + 1

Theorem There is an O(n2/(ϵ2))-time algorithmn that outputs a
solution with at most (1 + ϵ)opt(I) + 1 bins.

Theorem There is an APTAS for bin-packing.

	Knapsack Problem
	Introduction
	FPTAS for Knapsack Problem

	PTAS for Makespan Minimization on Identical Machines
	Introduction
	Dynamic Programming to Schedule Big Jobs
	Analysis of Combined Algorithm

	An asymptotical PTAS for Bin Packing
	Introduction
	Algorithm for Big Items
	Combination of Algorithms for Big and Small Items

