Advanced Algorithms (Fall 2023)

Greedy and Local Search

Lecturers: 尹一通，刘景铖，栗师

Nanjing University
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - \(f \)-Approximation for Set-Cover with Frequency \(f \)
 - \((\ln n + 1)\)-Approximation for Set-Cover
 - \((1 - \frac{1}{e})\)-Approximation for Maximum Coverage
 - \((1 - \frac{1}{e})\)-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Maximum-Weight Spanning Tree Problem

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^E$

Output: the spanning tree T of G with the maximum total weight
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: \(\text{if } u \text{ and } v \text{ are not connected by a path of edges in } F \text{ then} \)
5: \(F \leftarrow F \cup \{(u, v)\} \)
6: return \((V, F)\)
Proof of Correctness of Kruskal’s Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^E$

a set $F_0 \subseteq E$ of edges, that does not contain a cycle

Output: the maximum-weight spanning tree $T = (V, E_T)$ of G
satisfying $F_0 \subseteq E_T$

Lemma (Key Lemma) Given an instance $(G = (V, E), w, F_0)$ of the MST with pre-selected edges problem, let e^* be the maximum weight edge in $E \setminus F_0$ such that $F_0 \cup \{e^*\}$ does not contain a cycle. Then there is an optimum solution $T = (V, E_T)$ to the instance with $e^* \in E_T$.
Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.

- e^*
- F_0
- Edges in optimum tree
1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input:
- \(E \): the ground set of elements
- \(w \in \mathbb{Z}^E_{>0} \): weight vector on elements
- \(S \): an (implicitly given) family of subsets of \(E \)
 - \(\emptyset \in S \)
 - \(S \) is downward closed: if \(A \in S \), \(B \subsetneq A \), then \(B \in S \).

Output: \(A \in S \) that maximizes \(\sum_{e \in A} w_e \)

- maximum-weight spanning tree: \(S = \text{family of forests} \)
Greedy Algorithm

1: \(A \leftarrow \emptyset \)
2: sort elements in \(E \) in non-decreasing order of weights \(w \)
3: for each element \(e \) in the order do
4: if \(A \cup \{e\} \in S \) then \(A \leftarrow A \cup \{e\} \)
5: return \(A \)

Examples where Greedy Algorithm is Not Optimum

- **Knapsack Packing**: given elements \(E \), where every element has a value and a cost, and a cost budget \(C \), the goal is to find a maximum value subset of items with cost at most \(C \)
- **Maximum Weight Bipartite Graph Matching**
- **Matroids**: cases where greedy algorithm is optimum
Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}), where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

1. $\emptyset \in \mathcal{I}$.
2. (downward-closed property) If $B \subset A \in \mathcal{I}$, then $B \in \mathcal{I}$.
3. (augmentation/exchange property) If $A, B \in \mathcal{I}$ and $|B| < |A|$, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in \mathcal{I}$.

Lemma Let $G = (V, E)$. $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $|B| < |A| \Rightarrow (V, B)$ has more CC than (V, A).
- Some edge in A connects two different CC of (V, B). □
Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- \(c_1 = c_2 = 10, c_3 = 20, C = 20 \).
- \(\{1, 2\}, \{3\} \in I \), but \(\{1, 3\}, \{2, 3\} \notin I \).

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between \(\{a_1, a_2\} \) and \(\{b_1, b_2\} \).
- \(\{(a_1, b_1), (a_2, b_2)\}, \{(a_1, b_2)\} \in I \).

Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_\geq 0^E$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A : A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$

\[w_{e^*} \geq w_{e'} \]
\[w(S') \geq w(S) \]
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_E^E$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 1: $S' \leftarrow A \cup \{e^*\}$
 2: while $|S'| < |S|$ do
 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 $\triangleright e$ exists due to exchange property
 4: $S' \leftarrow S' \cup \{e\}$
- S' and S differ by exactly one element
- $w(S') := \sum_{e \in S'} w_e \geq w(S) \implies S'$ is also optimum
Examples of Matroids

- \(E \): the ground set
 \(\mathcal{I} \): the family of independent sets

- Uniform Matroid: \(k \in \mathbb{Z}_{>0} \).
 \[\mathcal{I} = \{ A \subseteq E : |A| \leq k \} \]

- Partition Matroid: partition \((E_1, E_2, \cdots, E_t)\) of \(E \), positive integers \(k_1, k_2, \cdots, k_t \)
 \[\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t] \} \]

- Laminar Matroid: laminar family of subsets of \(E \)
 \(\{E_1, E_2, \cdots, E_t\} \), positive integers \(k_1, k_2, \cdots, k_t \)
 \[\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t] \} \]

Def. A family \(\{E_1, E_2, \cdots, E_t\} \) of subsets of \(E \) is said to be laminar if for every two distinct subsets \(E_i, E_j \) in the family, we have \(E_i \cap E_j = \emptyset \) or \(E_i \subsetneq E_j \) or \(E_j \subsetneq E_i \).
\[\{\{1\}, \{1, 2\}, \{3, 4\}, \{5\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\} \text{ is a laminar family.} \]
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

- Graphic Matroid: graph $G = (V, E)$
 \[\mathcal{I} = \{ A \subseteq E : (V, A) \text{ is a forest} \} \]

- Transversal Matroid: a bipartite graph $G = (E \oplus B, \mathcal{E})$
 \[\mathcal{I} = \{ A \subseteq E : \text{there is a matching in } G \text{ covering } A \} \]

- Linear Matroid: a vector $\vec{v}_e \in \mathbb{R}^d$ for every $e \in E$
 \[\mathcal{I} = \{ A \subseteq E : \text{vectors } \{ \vec{v}_e \}_{e \in A} \text{ are linearly independent} \} \]

Relationship between matroids

- Uniform
- Partition
- Laminar
- Linear
- Transversal
- Graphic
A Graphic Matroid is A Linear Matroid

<table>
<thead>
<tr>
<th>edges</th>
<th>vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2)</td>
<td>(1, −1, 0, 0, 0)</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>(1, 0, −1, 0, 0)</td>
</tr>
<tr>
<td>(1, 5)</td>
<td>(1, 0, 0, 0, −1)</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>(0, 1, −1, 0, 0)</td>
</tr>
<tr>
<td>(2, 4)</td>
<td>(0, 1, 0, −1, 0)</td>
</tr>
<tr>
<td>(3, 4)</td>
<td>(0, 0, 1, −1, 0)</td>
</tr>
<tr>
<td>(4, 5)</td>
<td>(0, 0, 0, 1, −1)</td>
</tr>
</tbody>
</table>
A Laminar Matroid is A Linear Matroid

Example

<table>
<thead>
<tr>
<th>sets</th>
<th>upper bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 2, 3}</td>
<td>2</td>
</tr>
<tr>
<td>{3, 4, 5}</td>
<td>2</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5, 6}</td>
<td>3</td>
</tr>
</tbody>
</table>

- \(x^a, x^b, x^c \in \mathbb{R}^3\) are linearly independent
- \(x^d, x^e, x^f, x^g: \text{rand}(0, 1) \cdot x^a + \text{rand}(0, 1) x^b + \cdot \text{rand}(0, 1) x^c\)
- \(x^1, x^2, x^3: \text{rand}(0, 1) \cdot x^d + \text{rand}(0, 1) x^e\)
- \(x^4, x^5, x^6: \text{rand}(0, 1) \cdot x^f + \text{rand}(0, 1) x^g\)
- each \(\text{rand}(0, 1)\) gives an independent random real in [0, 1]
Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is **dependent**.
- A maximal independent set is called a **basis** (plural: bases)
- A minimal dependent set is called a **circuit**

Lemma All bases of a matroid have the same size.

Proof.

By exchange property.

Def. Given a matroid $\mathcal{M} = (E, \mathcal{I})$, the **rank** of a subset A of E, denoted as $r_\mathcal{M}(A)$, is defined as the size of the maximum independent subset of A. $r_\mathcal{M} : 2^E \rightarrow \mathbb{Z}_{\geq 0}$ is called the **rank function** of \mathcal{M}.
Outline

1. **Greedy Algorithms: Maximum-Weight Independent Set in Matroids**
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. **Greedy Algorithms: Set Cover and Related Problems**
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. **Local Search**
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Recap: Approximation Algorithms

- For minimization problems:
 \[
 \text{approximation ratio} := \frac{\text{cost of our solution}}{\text{cost of optimum solution}} \geq 1
 \]

- For maximization problems:
 \[
 \text{approximation ratio} := \frac{\text{value of our solution}}{\text{value of optimum solution}} \leq 1
 \]
 or
 \[
 \text{approximation ratio} := \frac{\text{value of optimum solution}}{\text{value of our solution}} \geq 1
 \]
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Vertex Cover Problem

Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.

Vertex-Cover Problem

Input: $G = (V, E)$

Output: a vertex cover C with minimum $|C|$
First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: while \(E' \neq \emptyset \) do
3: let \(v \) be the vertex of the maximum degree in \((V, E')\)
4: \(C \leftarrow C \cup \{v\} \),
5: remove all edges incident to \(v \) from \(E' \)
6: return \(C \)

Theorem Greedy algorithm is an \((\ln n + 1)\)-approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - optimum solution C^* must cover edge (u, v), using either u or v
 - we select both, so we are always ahead of the optimum solution
 - we use at most 2 times more vertices than C^* does
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, C \leftarrow \emptyset \)
2. \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3. \quad let \((u, v)\) be any edge in \(E' \)
4. \quad \(C \leftarrow C \cup \{u, v\} \)
5. \quad remove all edges incident to \(u \) and \(v \) from \(E' \)
6. \textbf{return} \(C \)

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.
- Let \(E' \) be the set of edges \((u, v)\) considered in Step 3
- Observation: \(E' \) is a matching and \(|C| = 2|E'| \)
- To cover \(E' \), the optimum solution needs \(|E'| \) vertices
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Set Cover with Bounded Frequency f

Input: $U, |U| = n$: ground set

$S_1, S_2, \cdots, S_m \subseteq U$

every $j \in U$ appears in at most f subsets in

$\{S_1, S_2, \cdots, S_m\}$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Vertex Cover $=$ Set Cover with Frequency 2

- edges \Leftrightarrow elements
- vertices \Leftrightarrow sets
- every edge (element) can be covered by 2 vertices (sets)
f-Approximation Algorithm for Set Cover with Frequency f

1: \(C \leftarrow \emptyset \)
2: \(\text{while } \bigcup_{i \in C} S_i \neq U \text{ do} \)
3: \(\quad \text{let } e \text{ be any element in } U \setminus \bigcup_{i \in C} S_i \)
4: \(\quad C \leftarrow C \cup \{i \in [m] : e \in S_i\} \)
5: \(\text{return } C \)

Theorem The algorithm is a \(f \)-approximation algorithm.

Proof.

- Let \(U' \) be the set of all elements \(e \) considered in Step 3
- Observation: no set \(S_i \) contains two elements in \(U' \)
- To cover \(U' \), the optimum solution needs \(|U'| \) sets
- \(C \leq f \cdot |U'| \)
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Set Cover

Input: $U, |U| = n$: ground set
$S_1, S_2, \cdots, S_m \subseteq U$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

1: $C \leftarrow \emptyset, U' \leftarrow U$
2: while $U' \neq \emptyset$ do
3: choose the i that maximizes $|U' \cap S_i|$
4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
5: return C
- g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \leq \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.
- Consider the g sets $S_1^*, S_2^*, \cdots, S_g^*$ in optimum solution
- $S_1^* \cup S_2^* \cup \cdots \cup S_g^* = U$
- at beginning of step t, some set in $S_1^*, S_2^*, \cdots, S_g^*$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_t \leq u_{t-1} - \frac{u_{t-1}}{g} = \left(1 - \frac{1}{g}\right) u_{t-1}.$
Proof of \((\ln n + 1)\)-approximation.

- Let \(t = \lceil g \cdot \ln n \rceil\). \(u_0 = n\). Then
 \[
 u_t \leq \left(1 - \frac{1}{g}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.
 \]

- So \(u_t = 0\), approximation ratio \(\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1\).

A more careful analysis gives a \(H_n\)-approximation, where \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\) is the \(n\)-th harmonic number.

- \(\ln(n + 1) < H_n < \ln n + 1\).

\((1 - c) \ln n\)-hardness for any \(c = \Omega(1)\)

Let \(c > 0\) be any constant. There is no polynomial-time \((1 - c) \ln n\)-approximation algorithm for set-cover, unless

- \(\text{NP} \subseteq \text{quasi-poly-time}\), [Lund, Yannakakis 1994; Feige 1998]
- \(P = \text{NP}\). [Dinur, Steuer 2014]
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
• set cover: use smallest number of sets to cover all elements.
• maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: $U, |U| = n$: ground set,

\[S_1, S_2, \ldots, S_m \subseteq U, \quad k \in [m] \]

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

1: $C \leftarrow \emptyset, U' \leftarrow U$
2: for $t \leftarrow 1$ to k do
3: choose the i that maximizes $|U' \cap S_i|$
4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
5: return C
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.

- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \(#(\text{covered elements})\) by greedy algorithm after step \(t\)

\[
\begin{align*}
 p_t & \geq p_{t-1} + \frac{o - p_{t-1}}{k} \\
 o - p_t & \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right) (o - p_{t-1}) \\
 o - p_k & \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o \\
 p_k & \geq \left(1 - \frac{1}{e}\right) \cdot o
\end{align*}
\]

- The \((1 - \frac{1}{e})\)-approximation extends to a more general problem.
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f : 2^{[n]} \to \mathbb{R}$ is called \textbf{submodular} if it satisfies one of the following three equivalent conditions:

(1) $\forall A, B \subseteq [n]:$
$$f(A \cup B) + f(A \cap B) \leq f(A) + f(B).$$

(2) $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B:$
$$f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A).$$

(3) $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j:$
$$f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$$

- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
- (1) \Rightarrow (2) \Rightarrow (3), \quad (3) \Rightarrow (2) \Rightarrow (1)
Examples of Sumodular Functions

- linear function: \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)
- budget-additive function: \(f(S) = \min \left\{ \sum_{i \in S} w_i, B \right\}, \forall S \subseteq [n] \)
- coverage function: given sets \(S_1, S_2, \cdots, S_n \subseteq \Omega \),
 \[
 f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]
 \]
- matroid rank function: given a matroid \(\mathcal{M} = ([n], \mathcal{I}) \)
 \[
 r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}, \forall A \subseteq [n]
 \]
- cut function: given graph \(G = ([n], E) \)
 \[
 f(A) = \left| E(A, [n] \setminus A) \right|, \forall A \subseteq [n]
 \]
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f : 2^{[n]} \rightarrow \mathbb{R}$ is said to be **monotone** if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f : 2^{[n]} \rightarrow \mathbb{R}$ is said to be **symmetric** if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric
Matroid Rank Function is Submodular

- $M := (E, \mathcal{I})$: a matroid, $A \subsetneq E, i, j \in E \setminus A, i \neq j$
- need: \(r_M(A) + r_M(A \cup \{i, j\}) \leq r_M(A \cup \{i\}) + r_M(A \cup \{j\}) \)

The following greedy algorithm returns a maximum independent subset of any $X \subseteq E$

1: \(S \leftarrow \emptyset \)
2: while \(\exists e \in X \setminus S \text{s.t.} \ S \cup \{e\} \in \mathcal{I} \) do
3: let e be an arbitrary element satisfying the condition
4: \(S \leftarrow S \cup \{e\} \)

run the algorithm for $X = A$, obtaining $S, r_M(A) = k := |S|$

- $S \in \{i\} \in \mathcal{I} \? \ S \in \{j\} \in \mathcal{I} \?$

- YY: \(r_M(A \cup \{i\}) = r_M(A \cup \{j\}) = k + 1, r_M(A \cup \{i\}) \leq k + 2 \)

- NN: \(r_M(A \cup \{i\}) = r_M(A \cup \{j\}) = r_M(A \cup \{i, j\}) = k \)

- YN: \(r_M(A \cup \{i\}) = r_M(A \cup \{i, j\}) = k + 1, r_M(A \cup \{j\}) = k \)
(1 − \frac{1}{e})-Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function \(f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0} \), \(k \in [n] \)

Output: A subset \(S \subseteq [n] \) with \(|S| = k \), so as to maximize \(f(S) \)

- We can assume \(f(\emptyset) = 0 \)

Greedy Algorithm for the Problem

1. \(S \leftarrow \emptyset \)
2. **for** \(t \leftarrow 1 \) to \(k \) **do**
3. choose the \(i \) that maximizes \(f(S \cup \{i\}) \)
4. \(S \leftarrow S \cup \{i\} \)
5. **return** \(S \)
Theorem Greedy algorithm gives $(1 - \frac{1}{e})$-approximation for submodular-maximization under a cardinality constraint.

Proof.

- o: optimum value
- p_t: value obtained by greedy algorithm after step t

need to prove: $p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}$

- $o - p_t \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$

- $o - p_k \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o$

- $p_k \geq \left(1 - \frac{1}{e}\right) \cdot o$
Def. A set function $f : 2^{[n]} \to \mathbb{R}_{\geq 0}$ is **sub-additive** if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f : 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive.

Proof.

For $A, B \subseteq [n]$, we have $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$. So, $f(A \cup B) \leq f(A) + f(B)$ as $f(A \cap B) \geq 0$. \qed
Lemma Let $f : 2^{[n]} \to \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Proof.

- Let $A, B \subseteq [n] \setminus S$; it suffices to consider ground set $[n] \setminus S$.
 \[
 f_S(A \cup B) + f_S(A \cap B) - f_S(A) + f_S(B)
 = f(S \cup A \cup B) - f(S) + f(S \cup (A \cap B)) - f(S)
 - \left(f(S \cup A) - f(S) + f(S \cup B) - f(S) \right)
 = f(S \cup A \cup B) + f(S \cup (A \cap B)) - f(S \cup A) - f(S \cup B)
 \leq 0
 \]

- The last inequality is by $S \cup A \cup B = (S \cup A) \cup (S \cup B)$, $S \cup (A \cap B) = (S \cup A) \cap (S \cup B)$ and submodularity of f. □
Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t
 $|S| = t - 1$, $p_{t-1} = f(S)$
- f_S is submodular and thus sub-additive

\[
 f_S(S^*) \leq \sum_{i \in S^*} f_S(i) \quad \Rightarrow \quad \exists i \in S^*, f_S(i) \geq \frac{1}{k} f_S(S^*)
\]

- for the i, we have

\[
 f(S \cup \{i\}) - f(S) \geq \frac{1}{k} (f(S^*) - f(S))
\]

\[
 p_t \geq f(S \cup \{i\}) \geq p_{t-1} + \frac{1}{k} (o - p_{t-1})
\]
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Maximum-Cut

Input: Graph $G = (V, E)$

Output: partition of V into $(S, T = V \setminus S)$ so as to maximize $|E(S, T)|$, $E(S, T) = \{uv \in E : u \in S \land v \in T\}$.
Def. A solution \((S, T)\) is a local-optimum if moving any vertex to its opposite side cannot increase the cut value.

Local-Search for Maximum-Cut

1: \((S, T) \leftarrow \) any cut
2: while \(\exists v \in V\), changing side of \(v\) increases cut value do
3: switch \(v\) to the other side in \((S, T)\)
4: return \((S, T)\)
Lemma Local search gives a 2-approximation for maximum-cut.

- d_v: degree of v

Proof.

1. $\forall v \in S : E(v, S) \leq E(v, T) \Rightarrow |E(v, T)| \geq \frac{1}{2}d_v$
2. $\forall v \in T : E(v, T) \leq E(v, S) \Rightarrow |E(v, S)| \geq \frac{1}{2}d_v$
3. adding all inequalities:

 $$2|E(S, T)| \geq \frac{1}{2} \sum_{v \in V} d_v = |E|.$$

4. So $|E(S, T)| \geq \frac{1}{2}|E| \geq \frac{1}{2}$ (value of optimum cut).
The following algorithm also gives a 2-approximation:

Greedy Algorithm for Maximum-Cut

1. $S \leftarrow \emptyset$, $T \leftarrow \emptyset$
2. for every $v \in V$, in arbitrary order do
3. adding v to S or T so as to maximize $|E(S, T)|$
4. return (S, T)

[Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)

Under Unique-Game-Conjecture (UGC), the ratio is best possible.
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - \(f \)-Approximation for Set-Cover with Frequency \(f \)
 - \((\ln n + 1)\)-Approximation for Set-Cover
 - \((1 - \frac{1}{e})\)-Approximation for Maximum Coverage
 - \((1 - \frac{1}{e})\)-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - **Local Search for Uncapacitated Facility Location Problem**
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Uncapacitated Facility Location

Input: F: Facilities \hspace{1cm} D: Clients

c: metric over $F \cup D$ \hspace{1cm} $(f_i)_{i \in F}$: facility costs

Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in D} c(j, S)$

$c(j, S)$: smallest distance between j and a facility in S

- Best-approximation ratio: 1.488-Approximation [Li, 2011]
- 1.463-hardness, $1.463 \approx \text{root of } x = 1 + 2e^{-x}$
\[\text{cost}(S) := \sum_{i \in S} f_i + \sum_{j \in D} c(j, S), \forall S \subseteq F \]

Local Search Algorithm for Uncapacitated Facility Location

1: \(S \leftarrow \text{arbitrary set of facilities} \)
2: \(\textbf{while} \ \text{exists } S' \subseteq F \text{ with } |S \setminus S'| \leq 1, |S' \setminus S| \leq 1 \text{ and } \text{cost}(S') < \text{cost}(S) \ \textbf{do} \)
3: \(S' \leftarrow S \)
4: \(\textbf{return } S \)

The algorithm runs in pseudo-polynomial time, but we ignore the issue for now.

\(S \) is a local optimum, under the following local operations:
- **add** \((i), i \notin S\): \(S \leftarrow S \cup \{i\} \)
- **delete** \((i), i \in S\): \(S \leftarrow S \setminus \{i\} \)
- **swap** \((i, i'), i \in S, i' \notin S\): \(S \leftarrow S \setminus \{i\} \cup \{i'\} \)
- S: the local optimum returned by the algorithm
- S^*: the (unknown) optimum solution

\[F := \sum_{i \in S} f_i \quad \sigma_j : \text{closest facility in } S \text{ to } j \]

\[C := \sum_{j \in D} c_j \sigma_j \]

\[F^* := \sum_{i \in S^*} f_i \quad \sigma_j^* : \text{closest facility in } S^* \text{ to } j \]

\[C^* := \sum_{j \in D} c_j \sigma_j^* \]

Lemma (analysis for connection cost) $C \leq F^* + C^*$

Lemma (analysis for facility cost) $F \leq F^* + 2C^*$

So, $F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*)$
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Analysis of C

- adding i^* does not increase the cost:

$$\sum_{j \in \sigma^{-1}(i^*)} c_{\sigma(j)} j \leq f_{i^*} + \sum_{j \in \sigma^{-1}(i^*)} c_{i^*j}$$

- summing up over all $i^* \in S^*$, we get

$$\sum_{j \in D} c_{\sigma(j)} j \leq \sum_{i^* \in S^*} f_{i^*} + \sum_{j \in D} c_{\sigma^*(j)} j$$

$$C \leq F^* + C^*$$
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete($i$)
- $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
- reconnection distance is at most
 $$c_{i^*j} + c_{i^*\phi(i^*)} \leq c_{i^*j} + c_{i^*i}$$
 $$\leq c_{i^*j} + c_{i^*j} + c_{ij} = 2c_{i^*j} + c_{ij}$$
- distance increment is at most $2c_{i^*j}$
- by local optimality:
 $$f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$$
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi(i^*) = i, \psi(i) \neq i^*$: consider add($i^*$)
- $\sigma(j) = i, \sigma^*(j) = i^*$: reconnect j to i^*
- by local optimality:

$$0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$$
Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap (i, i')
 - $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it
distance increment is at most $2c_{\sigma^*(j)j}$

- $\sigma(j) = i, \phi(\sigma^*(j)) = i$: reconnect j to i'
distance increment is at most

$$c_{ij} + c_{i'i} - c_{ij} = c_{i'i} \leq c_{i\sigma^*(j)} \leq c_{ij} + c_{\sigma^*(j)j}$$

- $f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j}$
 + $\sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})$
\(i \in S \) is not paired: \(f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j} \)

\(i^* \in S^* \) is not paired: \(0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j}) \)

\(i \in S \) and \(i' \in S^* \) are paired:

\[
f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})
\]

summing all the inequalities:

\[
\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D: \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j)j} + \sum_{j \in D: \phi(\sigma^*(j)) = \sigma(j)} (c_{\sigma^*(j)j} - c_{\sigma(j)j} + c_{\sigma(j)j} + c_{\sigma^*(j)j}) + 2 \sum_{j \in D: \phi} \]

\[
F \leq F^* + 2C^*
\]
\[C \leq F^* + C^*, \quad F \leq F^* + 2C^* \]
\[\Rightarrow \quad F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*) \]

Exercise: scaling facility costs by some \(\lambda > 1 \) can give a \((1 + \sqrt{2})\)-approximation.

- Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location

1. \(S \leftarrow \) arbitrary set of facilities, \(\delta \leftarrow \frac{\epsilon}{4|F|} \)
2. \textbf{while} exists \(S' \subseteq F \) with \(|S \setminus S'| \leq 1, |S' \setminus S| \leq 1 \) and cost\((S') < (1 - \delta)\text{cost}(S)\) \textbf{do}
3. \(S' \leftarrow S \)
4. \textbf{return} \(S \)