Advanced Algorithms (Fall 2023) Greedy and Local Search

Lecturers: 尹一通,刘景铖,<mark>栗师</mark> Nanjing University

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under
 - a Cardinality Constraint
- 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Maximum-Weight Spanning Tree Problem

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$

Output: the spanning tree T of G with the maximum total

weight

Kruskal's Algorithm for Maximum-Weight Spanning Tree

- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-increasing order of weights ${\it w}$
- 3: **for** each edge (u, v) in the order **do**
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: return (V, F)

Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph G=(V,E) and edge weights $w\in\mathbb{Z}_{>0}^E$ a set $F_0\subseteq E$ of edges, that does not contain a cycle

Output: the maximum-weight spanning tree $T=(V,E_T)$ of ${\it G}$

satisfying $F_0 \subseteq E_T$

Lemma (Key Lemma) Given an instance $(G=(V,E),w,F_0)$ of the MST with pre-selected edges problem, let e^* be the maximum weight edge in $E\setminus F_0$ such that $F_0\cup\{e^*\}$ does not contain a cycle. Then there is an optimum solution $T=(V,E_T)$ to the instance with $e^*\in E_T$.

Proof of Correctness of Kruskal's Algorithm

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under
 - a Cardinality Constraint
- 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input: *E*: the ground set of elements

 $w \in \mathbb{Z}_{>0}^E$: weight vector on elements

 \mathcal{S} : an (implicitly given) family of subsets of E

- $\bullet \ \emptyset \in \mathcal{S}$
- S is downward closed: if $A \in S, B \subsetneq A$, then $B \in S$.

Output: $A \in \mathcal{S}$ that maximizes $\sum_{e \in A} w_e$

• maximum-weight spanning tree: S = family of forests

Greedy Algorithm

- 1: $A \leftarrow \emptyset$
- 2: sort elements in E in non-decreasing order of weights w
- 3: **for** each element e in the order **do**
- 4: **if** $A \cup \{e\} \in \mathcal{S}$ **then** $A \leftarrow A \cup \{e\}$
- 5: **return** A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has
 a value and a cost, and a cost budget C, the goal is to find a
 maximum value subset of items with cost at most C
- Maximum Weight Bipartite Graph Matching
- Matroids: cases where greedy algorithm is optimum

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- $\emptyset \in \mathcal{I}$.
- ② (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- **③** (augmentation/exchange property) If $A, B \in \mathcal{I}$ and |B| < |A|, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in \mathcal{I}$.

Lemma Let G=(V,E). $F\subseteq E$ is in $\mathcal I$ iff (V,F) is a forest. Then $(E,\mathcal I)$ is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $|B| < |A| \Rightarrow (V, B)$ has more CC than (V, A).
- Some edge in A connects two different CC of (V, B).

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_1 = c_2 = 10, c_3 = 20, C = 20.$
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between $\{a_1, a_2\}$ and $\{b_1, b_2\}$.
- $\{(a_1,b_1),(a_2,b_2)\},\{(a_1,b_2)\}\in\mathcal{I}.$

Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.

Lemma (Key Lemma)

- ullet given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}^E_{>0}$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*
- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E,\mathcal{I})$, weights $w\in\mathbb{Z}_{>0}^E$, $A\in\mathcal{I}$,
- ullet goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ullet Then, some optimum solution contains e^*

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 - 1: $S' \leftarrow A \cup \{e^*\}$
 - 2: **while** |S'| < |S| **do**
 - 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 - $\triangleright e$ exists due to exchange property
 - 4: $S' \leftarrow S' \cup \{e\}$
- ullet S' and S differ by exactly one element
- $w(S') := \sum_{e \in S'} w_e \ge w(S) \implies S'$ is also optimum

Examples of Matroids

- E: the ground set \mathcal{I} : the
 - \mathcal{I} : the family of independent sets
 - Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{ A \subseteq E : |A| \le k \}.$$

• Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

$$\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t] \}.$$

- Laminar Matroid: laminar family of subsets of E $\{E_1, E_2, \cdots, E_t\}$, positive integers k_1, k_2, \cdots, k_t $\mathcal{I} = \{A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t]\}.$
- **Def.** A family $\{E_1, E_2, \cdots, E_t\}$ of subsets of E is said to be laminar if for every two distinct subsets E_i, E_j in the family, we have $E_i \cap E_j = \emptyset$ or $E_i \subsetneq E_j$ or $E_j \subsetneq E_i$.

Examples of Matroids

- ullet E: the ground set \mathcal{I} : the family of independent sets
- ullet Graphic Matroid: graph G=(V,E)

$$\mathcal{I} = \{ A \subseteq E : (V, A) \text{ is a forest} \}$$

• Transversal Matroid: a bipartite graph $G = (E \uplus B, \mathcal{E})$

$$\mathcal{I} = \{A \subseteq E : \text{there is a matching in } G \text{ covering } A\}$$

ullet Linear Matroid: a vector $\vec{v_e} \in \mathbb{R}^d$ for every $e \in E$

$$\mathcal{I} = \{A \subseteq E : \mathsf{vectors}\ \{\vec{v}_e\}_{e \in A} \ \mathsf{are\ linearly\ independent}\}$$

A Graphic Matroid is A Linear Matroid

edges	vectors
(1,2)	(1,-1,0,0,0)
(1,3)	(1,0,-1,0,0)
(1,5)	(1,0,0,0,-1)
(2,3)	(0,1,-1,0,0)
(2,4)	(0,1,0,-1,0)
(3,4)	(0,0,1,-1,0)
(4,5)	(0,0,0,1,-1)

A Laminar Matroid is A Linear Matroid

Example			
sets	upper bounds		
$\overline{\{1,2,3\}}$	2		
${\{3,4,5\}}$	2		
$\{1, 2, 3, 4, 5, 6\}$	3		

- \bullet $x^a, x^b, x^c \in \mathbb{R}^3$ are linearly independent
- $\bullet \ x^d, x^e, x^f, x^g \colon \operatorname{rand}(0,1) \cdot x^a + \operatorname{rand}(0,1) x^b + \cdot \operatorname{rand}(0,1) x^c$
- $\bullet \ x^1, x^2, x^3 \colon \operatorname{rand}(0,1) \cdot x^d + \operatorname{rand}(0,1) x^e$
- $\bullet \ x^4, x^5, x^6 \colon \operatorname{rand}(0,1) \cdot x^f + \operatorname{rand}(0,1) x^g$
- \bullet each $\operatorname{rand}(0,1)$ gives an independent random real in [0,1]

Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal indepent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof.

By exchange property.

Def. Given a matroid $\mathcal{M}=(E,\mathcal{I})$, the rank of a subset A of E, denoted as $r_{\mathcal{M}}(A)$, is defined as the size of the maximum independent subset of A. $r_{\mathcal{M}}: 2^E \to \mathbb{Z}_{\geq 0}$ is called the rank function of \mathcal{M} .

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Recap: Approximation Algorithms

• For minimization problems:

$$\text{approximation ratio} := \frac{\text{cost of our solution}}{\text{cost of optimum solution}} \geq 1$$

• For maximization problems:

$$\mbox{approximation ratio} := \frac{\mbox{value of our solution}}{\mbox{value of optimum solution}} \leq 1$$

or

$$\mbox{approximation ratio} := \frac{\mbox{value of optimum solution}}{\mbox{value of our solution}} \geq 1$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - \bullet $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Vertex Cover Problem

Def. Given a graph G=(V,E), a vertex cover of G is a subset $C\subseteq V$ such that for every $(u,v)\in E$ then $u\in C$ or $v\in C$.

Vertex-Cover Problem

Input: G = (V, E)

Output: a vertex cover C with minimum |C|

First Try: A "Natural" Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let v be the vertex of the maximum degree in (V, E')
- 4: $C \leftarrow C \cup \{v\}$,
- 5: remove all edges incident to v from E'
- 6: return C

Theorem Greedy algorithm is an $(\ln n + 1)$ -approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm

2-Approximation Algorithm for Vertex Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let (u, v) be any edge in E'
- 4: $C \leftarrow C \cup \{u, v\}$
- 5: remove all edges incident to u and v from E'
- 6: return C
- ullet counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - ullet optimum solution C^* must cover edge (u,v), using either u or v
 - we select both, so we are always ahead of the optimum solution
 - ullet we use at most 2 times more vertices than C^* does

2-Approximation Algorithm for Vertex Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let (u, v) be any edge in E'
- 4: $C \leftarrow C \cup \{u, v\}$
- 5: remove all edges incident to u and v from E'
- 6: **return** C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- Let E' be the set of edges (u, v) considered in Step 3
- Observation: E' is a matching and |C| = 2|E'|
- ullet To cover E', the optimum solution needs |E'| vertices

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1-\frac{1}{c})$ -Approximation for Maximum Coverage • $(1-\frac{1}{c})$ -Approximation for Submodular Maximization under
 - a Cardinality Constraint
- 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Set Cover with Bounded Frequency *f*

Input:
$$U, |U| = n$$
: ground set
$$S_1, S_2, \cdots, S_m \subseteq U$$
 every $j \in U$ appears in at most f subsets in $\{S_1, S_2, \cdots, S_m\}$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Vertex Cover = Set Cover with Frequency 2

- edges ⇔ elements
- vertices ⇔ sets
- every edge (element) can be covered by 2 vertices (sets)

$f ext{-}\mathsf{Approximation}$ Algorithm for Set Cover with Frequency f

- 1: $C \leftarrow \emptyset$
- 2: while $\bigcup_{i \in C} S_i \neq U$ do
- 3: let e be any element in $U \setminus \bigcup_{i \in C} S_i$
- 4: $C \leftarrow C \cup \{i \in [m] : e \in S_i\}$
- 5: **return** C

Theorem The algorithm is a f-approximation algorithm.

Proof.

- ullet Let U' be the set of all elements e considered in Step 3
- ullet Observation: no set S_i contains two elements in U'
- ullet To cover U', the optimum solution needs |U'| sets
- $C \leq f \cdot |U'|$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $\left(1-\frac{\mathbb{I}}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Set Cover

Input: U, |U| = n: ground set

$$S_1, S_2, \cdots, S_m \subseteq U$$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: while $U' \neq \emptyset$ do
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: return C

ullet g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.

- Consider the g sets $S_1^*, S_2^*, \cdots, S_q^*$ in optimum solution
- $\bullet \ S_1^* \cup S_2^* \cup \cdots \cup S_q^* = U$
- at beginning of step t, some set in $S_1^*, S_2^*, \cdots, S_g^*$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_t \le u_{t-1} \frac{u_{t-1}}{g} = \left(1 \frac{1}{g}\right) u_{t-1}.$

Proof of $(\ln n + 1)$ -approximation.

• Let $t = \lceil g \cdot \ln n \rceil$. $u_0 = n$. Then $u_t \le \left(1 - \frac{1}{a}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$

• So
$$u_t=0$$
, approximation ratio $\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1$.

- A more careful analysis gives a H_n -approximation, where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is the n-th harmonic number.
- $\ln(n+1) < H_n < \ln n + 1$.

$(1-c) \ln n$ -hardness for any $c = \Omega(1)$

Let c>0 be any constant. There is no polynomial-time $(1-c)\ln n$ -approximation algorithm for set-cover, unless

- NP ⊆ quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]
- P = NP. [Dinur, Steuer 2014]

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: U, |U| = n: ground set,

$$S_1, S_2, \cdots, S_m \subseteq U, \qquad k \in [m]$$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: **for** $t \leftarrow 1$ **to** k **do**
- 3: choose the i that maximizes $|U' \cap S_i|$
- 4: $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
- 5: return C

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for maximum coverage.

Proof.

- ullet o: max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t

$$\bullet \ p_t \ge p_{t-1} + \frac{o - p_{t-1}}{k}$$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

•
$$o - p_k \le \left(1 - \frac{1}{k}\right)^k (o - p_0) \le \frac{1}{e} \cdot o$$

$$\bullet \ p_k \ge \left(1 - \frac{1}{e}\right) \cdot o$$

• The $(1-\frac{1}{e})$ -approximation extends to a more general problem.

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{2})$ -Approximation for Maximum Coverage
 - ullet $\left(1-rac{1}{e}
 ight)$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

- (1) $\forall A, B \subseteq [n]$: $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$.
- (2) $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B$: $f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A)$.
- (3) $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j$: $f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$
- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
- $(1) \Rightarrow (2) \Rightarrow (3)$, $(3) \Rightarrow (2) \Rightarrow (1)$

Examples of Sumodular Functions

- linear function: $f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n]$
- budget-additive function: $f(S) = \min \Big\{ \sum_{i \in S} w_i, B \Big\}, \forall S \subseteq [n]$
- ullet coverage function: given sets $S_1, S_2, \cdots, S_n \subseteq \Omega$,

$$f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]$$

ullet matroid rank function: given a matroid $\mathcal{M}=([n],\mathcal{I})$

$$r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}, \forall A \subseteq [n]$$

ullet cut function: given graph G=([n],E)

$$f(A) = |E(A, [n] \setminus A)|, \forall A \subseteq [n]$$

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- ullet entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f:2^{[n]}\to\mathbb{R}$ is said to be monotone if $f(A)\leq f(B)$ for every $A\subseteq B\subseteq [n]$.

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric

Matroid Rank Function is Submodular

- $M := (E, \mathcal{I})$: a matroid, $A \subsetneq E, i, j \in E \setminus A, i \neq j$
- need: $r_M(A) + r_M(A \cup \{i, j\}) \le r_M(A \cup \{i\}) + r_M(A \cup \{j\})$
- ullet The following greedy algorithm returns a maximum independent subset of any $X\subseteq E$
 - 1: $S \leftarrow \emptyset$
 - 2: while $\exists e \in X \setminus S \text{ s.t. } S \cup \{e\} \in \mathcal{I} \text{ do}$
 - 3: let e be an arbitrary element satisfying the condition
 - 4: $S \leftarrow S \cup \{e\}$
- ullet run the algorithm for X=A, obtaining S, $r_M(A)=k:=|S|$
- $S \in \{i\} \in \mathcal{I}$? $S \in \{j\} \in \mathcal{I}$?
- YY: $r_M(A \cup \{i\}) = r_M(A \cup \{j\}) = k+1, r_M(A \cup \{i\}) \le k+2$
- NN: $r_M(A \cup \{i\}) = r_M(A \cup \{j\}) = r_M(A \cup \{i,j\}) = k$
- YN: $r_M(A \cup \{i\}) = r_M(A \cup \{i,j\}) = k+1, r_M(A \cup \{j\}) = k$

$\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \to \mathbb{R}_{>0}$, $k \in [n]$

Output: A subset $S \subseteq [n]$ with |S| = k, so as to maximize f(S)

• We can assume $f(\emptyset) = 0$

Greedy Algorithm for the Problem

- 1: $S \leftarrow \emptyset$
- 2: **for** $t \leftarrow 1$ to k **do**
- 3: choose the i that maximizes $f(S \cup \{i\})$
- 4: $S \leftarrow S \cup \{i\}$
- 5: return S

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for submodular-maximization under a cardinality constraint.

Proof.

- o: optimum value
- ullet p_t : value obtained by greedy algorithm after step t
- need to prove: $p_t \ge p_{t-1} + \frac{o p_{t-1}}{k}$
- $o p_t \le o p_{t-1} \frac{o p_{t-1}}{k} = \left(1 \frac{1}{k}\right)(o p_{t-1})$
- $\bullet o p_k \le \left(1 \frac{1}{k}\right)^k (o p_0) \le \frac{1}{e} \cdot o$
- $p_k \ge \left(1 \frac{1}{e}\right) \cdot o$

Def. A set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive.

Proof.

For
$$A,B\subseteq [n]$$
, we have $f(A\cup B)+f(A\cap B)\leq f(A)+f(B)$. So, $f(A\cup B)\leq f(A)+f(B)$ as $f(A\cap B)\geq 0$.

Lemma Let $f: 2^{[n]} \to \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Proof.

• Let $A, B \subseteq [n] \setminus S$; it suffices to consider ground set $[n] \setminus S$.

$$f_{S}(A \cup B) + f_{S}(A \cap B) - f_{S}(A) + f_{S}(B)$$

$$= f(S \cup A \cup B) - f(S) + f(S \cup (A \cap B)) - f(S)$$

$$- (f(S \cup A) - f(S) + f(S \cup B) - f(S))$$

$$= f(S \cup A \cup B) + f(S \cup (A \cap B)) - f(S \cup A) - f(S \cup B)$$

$$\leq 0$$

• The last inequality is by $S \cup A \cup B = (S \cup A) \cup (S \cup B)$, $S \cup (A \cap B) = (S \cup A) \cap (S \cup B)$ and submodularity of f.

Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t|S| = t - 1, $p_{t-1} = f(S)$
- ullet f_S is submodular and thus sub-additive

$$f_S(S^*) \le \sum_{i \in S^*} f_S(i) \quad \Rightarrow \quad \exists i \in S^*, f_S(i) \ge \frac{1}{k} f_S(S^*)$$

• for the i, we have

$$f(S \cup \{i\}) - f(S) \ge \frac{1}{k} (f(S^*) - f(S))$$
$$p_t \ge f(S \cup \{i\}) \ge p_{t-1} + \frac{1}{k} (o - p_{t-1})$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $\left(1-\frac{\mathbb{I}}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint

Search

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Local Search for Maximum-Cut

Maximum-Cut

Input: Graph G = (V, E)

Output: partition of V into $(S, T = V \setminus S)$ so as to maximize

 $|E(S,T)|, E(S,T) = \{uv \in E : u \in S \land v \in T\}.$

Def. A solution (S,T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.

Local-Search for Maximum-Cut

- 1: $(S,T) \leftarrow \text{any cut}$
- 2: **while** $\exists v \in V$, changing side of v increases cut value **do**
- 3: switch v to the other side in (S, T)
- 4: **return** (S,T)

Lemma Local search gives a 2-approximation for maximum-cut.

• d_v : degree of v

Proof.

- $\forall v \in S : E(v, S) \le E(v, T) \Rightarrow |E(v, T)| \ge \frac{1}{2} d_v$
- $\forall v \in T : E(v,T) \le E(v,S) \Rightarrow |E(v,S)| \ge \frac{1}{2}d_v$
- adding all inequalities:

$$2|E(S,T)| \ge \frac{1}{2} \sum_{v \in V} d_v = |E|.$$

• So $|E(S,T)| \ge \frac{1}{2}|E| \ge \frac{1}{2}$ (value of optimum cut).

• The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

- 1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
- 2: **for** every $v \in V$, in arbitrary order **do**
- 3: adding v to S or T so as to maximize |E(S,T)|
- 4: return (S,T)
- [Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)
- Under Unique-Game-Conjecture (UGC), the ratio is best possible

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Uncapacitated Facility Location

Input: F: Facilities D: Clients

c: metric over $F \cup D$ $(f_i)_{i \in F}$: facility costs

Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in D} c(j, S)$

c(j,S): smallest distance between j and a facility in S

- Best-approximation ratio: 1.488-Approximation [Li, 2011]
- 1.463-hardness, $1.463 \approx \text{root of } x = 1 + 2e^{-x}$

• $cost(S) := \sum_{i \in S} f_i + \sum_{j \in D} c(j, S), \forall S \subseteq F$

Local Search Algorithm for Uncapacitated Facility Location

- 1: $S \leftarrow$ arbitrary set of facilities
- 2: while exists $S' \subseteq F$ with $|S \setminus S'| \le 1$, $|S' \setminus S| \le 1$ and $\cos(S') < \cos(S)$ do
- 3: $S' \leftarrow S$
- 4: return S
- The algorithm runs in pseodu-polynomial time, but we ignore the issue for now.

S is a local optimum, under the following local operations

- $add(i), i \notin S: S \leftarrow S \cup \{i\}$
- $delete(i), i \in S: S \leftarrow S \setminus \{i\}$
- $\operatorname{swap}(i, i'), i \in S, i' \notin S : S \leftarrow S \setminus \{i\} \cup \{i'\}$

- S: the local optimum returned by the algorithm
- S^* : the (unknown) optimum solution

$$F:=\sum_{i\in S}f_i \qquad \sigma_j: \text{closest facility in } S \text{ to } j \qquad C:=\sum_{j\in D}c_{j\sigma_j}$$

$$F^*:=\sum_{i\in S^*}f_i \qquad \sigma_j^*: \text{closest facility in } S^* \text{ to } j \qquad C^*:=\sum_{j\in D}c_{j\sigma_j^*}$$

Lemma (analysis for connection cost) $C \le F^* + C^*$

Lemma (analysis for facility cost) $F \leq F^* + 2C^*$

So,
$$F + C \le 2F^* + 3C^* \le \frac{3}{3}(F^* + C^*)$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

- □ Facilities
- Clients

Analysis of C

• adding *i** does not increase the cost:

$$\sum_{j \in \sigma^{*-1}(i^*)} c_{\sigma(j)j} \le f_{i^*} + \sum_{j \in \sigma^{*-1}(i^*)} c_{i^*j}$$

• summing up over all $i^* \in S^*$, we get

$$\sum_{j \in D} c_{\sigma(j)j} \le \sum_{i^* \in S^*} f_{i^*} + \sum_{j \in D} c_{\sigma^*(j)j}$$
$$C \le F^* + C^*$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- ② Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - ullet f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1-\frac{1}{e})$ -Approximation for Maximum Coverage
 - $\left(1-\frac{\mathbb{I}}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint
- Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

- Facilities
- Clients

Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete(i)
 - $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
 - reconnection distance is at most

$$c_{i*j} + c_{i*\phi(i*)} \le c_{i*j} + c_{i*i}$$

$$\le c_{i*j} + c_{i*j} + c_{ij} = 2c_{i*j} + c_{ij}$$

- distance increment is at most $2c_{i*j}$
- by local optimality:

$$f_i \le 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$$

- □ Facilities
- Clients

Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi(i^*) = i, \psi(i) \neq i^*$: consider add (i^*)
 - $\sigma(j) = i, \sigma^*(j) = i^*$: reconnect j to i^*
 - by local optimality:

$$0 \le f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{*-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$$

- □ Facilities
- Clients

Analysis of F

- $i \in S$, $\phi^{-1}(i) \neq \emptyset$, $\phi(i') = i$, $\psi(i) = i'$: consider swap(i, i')
 - $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it distance increment is at most $2c_{\sigma^*(j)j}$
 - $\sigma(j)=i, \phi(\sigma^*(j))=i$: reconnect j to i' distance increment is at most

$$c_{ij} + c_{ii'} - c_{ij} = c_{ii'} \le c_{i\sigma^*(j)} \le c_{ij} + c_{\sigma^*(j)j}$$

$$f_{i} \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^{*}(j)) \neq i} c_{\sigma^{*}(j)j}$$

$$+ \sum_{j \in \sigma^{-1}(i): \phi(\sigma^{*}(j)) = i} (c_{ij} + c_{\sigma^{*}(j)j})$$

• $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$

•
$$i^* \in S^*$$
 is not paired: $0 \le f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{*-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$

• $i \in S$ and $i' \in S^*$ are paired:

$$f_i \le f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \ne i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})$$

summing all the inequalities:

$$\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D: \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j)j}$$

$$+ \sum_{j \in D: \phi(\sigma^*(j)) = \sigma(j)} (c_{\sigma^*(j)j} - c_{\sigma(j)j} + c_{\sigma(j)j} + c_{\sigma^*(j)j}) + 2$$

$$F \leq F^* + 2C^*$$

$$C \le F^* + C^*, \qquad F \le F^* + 2C^*$$

 $\Rightarrow \qquad F + C \le 2F^* + 3C^* \le 3(F^* + C^*)$

Exercise: scaling facility costs by some $\lambda > 1$ can give a $(1 + \sqrt{2})$ -approximation.

• Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location

- 1: $S \leftarrow$ arbitrary set of facilities, $\delta \leftarrow \frac{\epsilon}{4|F|}$
- 2: while exists $S' \subseteq F$ with $|S \setminus S'| \le 1$, $|S' \setminus S| \le 1$ and $\cos(S') < (1 \delta)\cos(S)$ do
- 3: $S' \leftarrow S$
- 4: return S