Advanced Algorithms (Fall 2023)

Greedy and Local Search

Lecturers: 尹一通，刘景铖，栗师

Nanjing University
Outline

1. **Greedy Algorithms: Maximum-Weight Independent Set in Matroids**
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. **Greedy Algorithms: Set Cover and Related Problems**
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. **Local Search**
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Maximum-Weight Spanning Tree Problem

Input: Graph \(G = (V, E) \) and edge weights \(w \in \mathbb{Z}_E^{>0} \)

Output: the spanning tree \(T \) of \(G \) with the maximum total weight
Maximum-Weight Spanning Tree Problem

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}^E_{>0}$

Output: the spanning tree T of G with the maximum total weight
Maximum-Weight Spanning Tree Problem

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^E$

Output: the spanning tree T of G with the maximum total weight
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup \{(u, v)\}$
6: return (V, F)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: if \(u \) and \(v \) are not connected by a path of edges in \(F \) then
5: \(F \leftarrow F \cup \{(u, v)\} \)
6: return \((V, F)\)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup \{(u, v)\}$
6: return (V, F)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: \textbf{for} each edge \((u, v)\) in the order \textbf{do}
4: \hspace{1em} \textbf{if} \(u \) and \(v \) are not connected by a path of edges in \(F \) \textbf{then}
5: \hspace{2em} \(F \leftarrow F \cup \{(u, v)\} \)
6: \textbf{return} \((V, F)\)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup \{(u, v)\}$
6: return (V, F)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: \hspace{1em} if \(u \) and \(v \) are not connected by a path of edges in \(F \) then
5: \hspace{2em} \(F \leftarrow F \cup \{(u, v)\} \)
6: \hspace{1em} return \((V, F)\)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: if \(u \) and \(v \) are not connected by a path of edges in \(F \) then
5: \(F \leftarrow F \cup \{(u, v)\} \)
6: return \((V, F)\)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: \hspace{1cm} if \(u \) and \(v \) are not connected by a path of edges in \(F \) then
5: \hspace{2cm} \(F \leftarrow F \cup \{(u, v)\} \)
6: return \((V, F)\)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup \{(u, v)\}$
6: return (V, F)
Kruskal’s Algorithm for Maximum-Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: sort edges in \(E \) in non-increasing order of weights \(w \)
3: for each edge \((u, v)\) in the order do
4: \hspace{1em} if \(u \) and \(v \) are not connected by a path of edges in \(F \) then
5: \hspace{2em} \(F \leftarrow F \cup \{(u, v)\} \)
6: return \((V, F)\)
Proof of Correctness of Kruskal’s Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}^E_{>0}$

a set $F_0 \subseteq E$ of edges, that does not contain a cycle

Output: the maximum-weight spanning tree $T = (V, E_T)$ of G

satisfying $F_0 \subseteq E_T$
Proof of Correctness of Kruskal’s Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges

Input: Graph $G = (V, E)$ and edge weights $w \in \mathbb{Z}^E_{>0}$

a set $F_0 \subseteq E$ of edges, that does not contain a cycle

Output: the maximum-weight spanning tree $T = (V, E_T)$ of G satisfying $F_0 \subseteq E_T$

Lemma (Key Lemma) Given an instance $(G = (V, E), w, F_0)$ of the MST with pre-selected edges problem, let e^* be the maximum weight edge in $E \setminus F_0$ such that $F_0 \cup \{e^*\}$ does not contain a cycle. Then there is an optimum solution $T = (V, E_T)$ to the instance with $e^* \in E_T$.
Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.
Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.

- F_0
- Edges in optimum tree
Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.

e^*

F_0

edges in optimum tree
Proof of Correctness of Kruskal’s Algorithm

Proof of Key Lemma.

e^*

F_0

edges in optimum tree
Outline

1. **Greedy Algorithms: Maximum-Weight Independent Set in Matroids**
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. **Greedy Algorithms: Set Cover and Related Problems**
 - 2-Approximation Algorithm for Vertex Cover
 - \(f \)-Approximation for Set-Cover with Frequency \(f \)
 - \((\ln n + 1)\)-Approximation for Set-Cover
 - \(\left(1 - \frac{1}{e}\right)\)-Approximation for Maximum Coverage
 - \(\left(1 - \frac{1}{e}\right)\)-Approximation for Submodular Maximization under a Cardinality Constraint

3. **Local Search**
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Q: Does the greedy algorithm work for more general problems?
Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input: E: the ground set of elements
$w \in \mathbb{Z}^E_{>0}$: weight vector on elements
S: an (implicitly given) family of subsets of E
- $\emptyset \in S$
- S is downward closed: if $A \in S$, $B \subsetneq A$, then $B \in S$.

Output: $A \in S$ that maximizes $\sum_{e \in A} w_e$
Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem

Input:
- \(E \): the ground set of elements
- \(w \in \mathbb{Z}^E_{>0} \): weight vector on elements
- \(S \): an (implicitly given) family of subsets of \(E \)
 - \(\emptyset \in S \)
 - \(S \) is downward closed: if \(A \in S, B \subsetneq A \), then \(B \in S \).

Output: \(A \in S \) that maximizes \(\sum_{e \in A} w_e \)

- maximum-weight spanning tree: \(S = \) family of forests
Greedy Algorithm

1: $A \leftarrow \emptyset$
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: if $A \cup \{e\} \in S$ then $A \leftarrow A \cup \{e\}$
5: return A
Greedy Algorithm

1. \(A \leftarrow \emptyset \)
2. sort elements in \(E \) in non-decreasing order of weights \(w \)
3. for each element \(e \) in the order do
4. \hspace{1cm} if \(A \cup \{e\} \in S \) then \(A \leftarrow A \cup \{e\} \)
5. return \(A \)

Examples where Greedy Algorithm is Not Optimum

- **Knapsack Packing**: given elements \(E \), where every element has a value and a cost, and a cost budget \(C \), the goal is to find a maximum value subset of items with cost at most \(C \)
Greedy Algorithm

1: \(A \leftarrow \emptyset \)
2: sort elements in \(E \) in non-decreasing order of weights \(w \)
3: for each element \(e \) in the order do
4: \hspace{1em} if \(A \cup \{e\} \in S \) then \(A \leftarrow A \cup \{e\} \)
5: return \(A \)

Examples where Greedy Algorithm is Not Optimum

- **Knapsack Packing**: given elements \(E \), where every element has a value and a cost, and a cost budget \(C \), the goal is to find a maximum value subset of items with cost at most \(C \)
- **Maximum Weight Bipartite Graph Matching**
Greedy Algorithm

1. \(A \leftarrow \emptyset \)
2. sort elements in \(E \) in non-decreasing order of weights \(w \)
3. for each element \(e \) in the order do
4. \[\text{if } A \cup \{e\} \in S \text{ then } A \leftarrow A \cup \{e\} \]
5. return \(A \)

Examples where Greedy Algorithm is Not Optimum
- **Knapsack Packing**: given elements \(E \), where every element has a value and a cost, and a cost budget \(C \), the goal is to find a maximum value subset of items with cost at most \(C \)
- **Maximum Weight Bipartite Graph Matching**
- **Matroids**: cases where greedy algorithm is optimum
Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}), where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

1. $\emptyset \in \mathcal{I}$.
2. (downward-closed property) If $B \subset A \in \mathcal{I}$, then $B \in \mathcal{I}$.
3. (augmentation/exchange property) If $A, B \in \mathcal{I}$ and $|B| < |A|$, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in \mathcal{I}$.

Lemma

Let $G = (V, E)$. $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

$|B| < |A|$ ⇒ (V, B) has more CC than (V, A). Some edge in A connects two different CC of (V, B).

Def. A (finite) matroid \(M \) is a pair \((E, I) \), where \(E \) is a finite set (called the ground set) and \(I \) is a family of subsets of \(E \) (called independent sets) with the following properties:

1. \(\emptyset \in I \).
2. (downward-closed property) If \(B \subset A \in I \), then \(B \in I \).
3. (augmentation/exchange property) If \(A, B \in I \) and \(|B| < |A| \), then there exists \(e \in A \setminus B \) such that \(B \cup \{e\} \in I \).

Lemma Let \(G = (V, E) \). \(F \subseteq E \) is in \(I \) iff \((V, F) \) is a forest. Then \((E, I) \) is a matroid, and it is called a graphic matroid.
Def. A (finite) matroid \mathcal{M} is a pair (E, I), where E is a finite set (called the ground set) and I is a family of subsets of E (called independent sets) with the following properties:

1. $\emptyset \in I$.
2. (downward-closed property) If $B \subset A \in I$, then $B \in I$.
3. (augmentation/exchange property) If $A, B \in I$ and $|B| < |A|$, then there exists $e \in A \setminus B$ such that $B \cup \{e\} \in I$.

Lemma Let $G = (V, E)$. $F \subseteq E$ is in I iff (V, F) is a forest. Then (E, I) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $|B| < |A| \Rightarrow (V, B)$ has more CC than (V, A).
- Some edge in A connects two different CC of (V, B).

\[\square \]
Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- \(c_1 = c_2 = 10, c_3 = 20, C = 20 \).
- \(\{1, 2\}, \{3\} \in \mathcal{I} \), but \(\{1, 3\}, \{2, 3\} \notin \mathcal{I} \).
Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- \(c_1 = c_2 = 10, c_3 = 20, C = 20\).
- \(\{1, 2\}, \{3\} \in \mathcal{I}\), but \(\{1, 3\}, \{2, 3\} \notin \mathcal{I}\).

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between \(\{a_1, a_2\}\) and \(\{b_1, b_2\}\).
- \(\{(a_1, b_1), (a_2, b_2)\}, \{(a_1, b_2)\} \in \mathcal{I}\).
Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- \(c_1 = c_2 = 10, c_3 = 20, C = 20. \)
- \(\{1, 2\}, \{3\} \in \mathcal{I}, \) but \(\{1, 3\}, \{2, 3\} \notin \mathcal{I}. \)

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between \(\{a_1, a_2\} \) and \(\{b_1, b_2\} \).
- \(\{(a_1, b_1), (a_2, b_2)\}, \{(a_1, b_2)\} \in \mathcal{I}. \)

Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_{\geq 0}^E$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A : A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_+^E$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A : A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}^E_{\geq 0}$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg\max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_E^2$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A : A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 1. $S' \leftarrow A \cup \{e^*\}$
 2. while $|S'| < |S|$ do
 3. let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 ▷ e exists due to exchange property
 4. $S' \leftarrow S' \cup \{e\}$
Lemma (Key Lemma)
- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}^E_{\geq 0}$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A : A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

Proof.
- let $S \supseteq A$, $S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 1: $S' \leftarrow A \cup \{e^*\}$
 2: while $|S'| < |S|$ do
 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 $\triangleright e$ exists due to exchange property
 4: $S' \leftarrow S' \cup \{e\}$
- S' and S differ by exactly one element
Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}_0^E$, $A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- Then, some optimum solution contains e^*

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^* \notin S$
 1: $S' \leftarrow A \cup \{e^*\}$
 2: while $|S'| < |S|$ do
 3: let e be any element in $S \setminus S'$ with $S' \cup \{e\} \in \mathcal{I}$
 \quad $\triangleright e$ exists due to exchange property
 4: $S' \leftarrow S' \cup \{e\}$
- S' and S differ by exactly one element
- $w(S') := \sum_{e \in S'} w_e \geq w(S) \implies S'$ is also optimum
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

Uniform Matroid: $k \in \mathbb{Z} > 0$.

Partition Matroid: partition (E_1, E_2, \ldots, E_t) of E, positive integers k_1, k_2, \ldots, k_t.

Laminar Matroid: laminar family of subsets of $E\{E_1, E_2, \ldots, E_t\}$, positive integers k_1, k_2, \ldots, k_t.
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{ A \subseteq E : |A| \leq k \}.$$
Examples of Matroids

- E: the ground set
- I: the family of independent sets

Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$I = \{ A \subseteq E : |A| \leq k \}.$$

Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

$$I = \{ A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t] \}.$$
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$\mathcal{I} = \{A \subseteq E : |A| \leq k\}.$$

Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

$$\mathcal{I} = \{A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t]\}.$$

Laminar Matroid: laminar family of subsets of E

$$\{E_1, E_2, \cdots, E_t\},$$ positive integers k_1, k_2, \cdots, k_t

$$\mathcal{I} = \{A \subseteq E : |A \cap E_i| \leq k_i, \forall i \in [t]\}.$$

Def. A family $\{E_1, E_2, \cdots, E_t\}$ of subsets of E is said to be laminar if for every two distinct subsets E_i, E_j in the family, we have $E_i \cap E_j = \emptyset$ or $E_i \subsetneq E_j$ or $E_j \subsetneq E_i$.

14/60
\[\{1\}, \{1, 2\}, \{3, 4\}, \{5\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\} \] is a laminar family.
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

Graphic Matroid: graph $G = (V, E)$

$$\mathcal{I} = \{A \subseteq E : (V, A) \text{ is a forest}\}$$
Examples of Matroids

- E: the ground set

- \mathcal{I}: the family of independent sets

- Graphic Matroid: graph $G = (V, E)$
 \[\mathcal{I} = \{ A \subseteq E : (V, A) \text{ is a forest} \} \]

- Transversal Matroid: a bipartite graph $G = (E \cup B, E)$
 \[\mathcal{I} = \{ A \subseteq E : \text{there is a matching in } G \text{ covering } A \} \]
Examples of Matroids

- E: the ground set
- \mathcal{I}: the family of independent sets

Graphic Matroid: graph $G = (V, E)$

$$\mathcal{I} = \{ A \subseteq E : (V, A) \text{ is a forest} \}$$

Transversal Matroid: a bipartite graph $G = (E \uplus B, \mathcal{E})$

$$\mathcal{I} = \{ A \subseteq E : \text{there is a matching in } G \text{ covering } A \}$$

Linear Matroid: a vector $\vec{v}_e \in \mathbb{R}^d$ for every $e \in E$

$$\mathcal{I} = \{ A \subseteq E : \text{vectors} \{ \vec{v}_e \}_{e \in A} \text{ are linearly independent} \}$$
Examples of Matroids

- **E**: the ground set
- **I**: the family of independent sets

Graphic Matroid: graph $G = (V, E)$

$$I = \{ A \subseteq E : (V, A) \text{ is a forest}\}$$

Transversal Matroid: a bipartite graph $G = (E \cup B, \mathcal{E})$

$$I = \{ A \subseteq E : \text{there is a matching in } G \text{ covering } A\}$$

Linear Matroid: a vector $\vec{v}_e \in \mathbb{R}^d$ for every $e \in E$

$$I = \{ A \subseteq E : \text{vectors } \{\vec{v}_e\}_{e \in A} \text{ are linearly independent}\}$$

Relationship between matroids

- Uniform
- Partition
- Transversal
- Linear
- Laminar
- Graphic
Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is **dependent**.
- A maximal independent set is called a **basis** (plural: bases)
- A minimal dependent set is called a **circuit**
Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal independent set is called a **basis** (plural: bases)
- A minimal dependent set is called a **circuit**

Lemma All bases of a matroid have the same size.

Proof.

By exchange property.
Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal independent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof.
By exchange property.

Def. Given a matroid $\mathcal{M} = (E, \mathcal{I})$, the rank of a subset A of E, denoted as $r_\mathcal{M}(A)$, is defined as the size of the maximum independent subset of A. $r_\mathcal{M} : 2^E \rightarrow \mathbb{Z}_{\geq 0}$ is called the rank function of \mathcal{M}.
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Recap: Approximation Algorithms

For minimization problems:

\[
\text{approximation ratio} := \frac{\text{cost of our solution}}{\text{cost of optimum solution}} \geq 1
\]

For maximization problems:

\[
\text{approximation ratio} := \frac{\text{value of our solution}}{\text{value of optimum solution}} \leq 1
\]

or

\[
\text{approximation ratio} := \frac{\text{value of optimum solution}}{\text{value of our solution}} \geq 1
\]
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Def. Given a graph $G = (V, E)$, a vertex cover of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.
Vertex Cover Problem

Def. Given a graph $G = (V, E)$, a *vertex cover* of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.

Vertex-Cover Problem

Input: $G = (V, E)$

Output: a vertex cover C with minimum $|C|$
First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1. $E' \leftarrow E, C \leftarrow \emptyset$
2. while $E' \neq \emptyset$ do
3. let v be the vertex of the maximum degree in (V, E')
4. $C \leftarrow C \cup \{v\}$,
5. remove all edges incident to v from E'
6. return C

Theorem
Greedy algorithm is an $(\ln n + 1)$-approximation for vertex-cover. We prove it for the more general set cover problem. The logarithmic factor is tight for this algorithm.
First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3: \hspace{1em} let \(v \) be the vertex of the maximum degree in \((V, E')\)
4: \hspace{1em} \(C \leftarrow C \cup \{v\} \),
5: \hspace{1em} remove all edges incident to \(v \) from \(E' \)
6: \textbf{return} \(C \)

Theorem Greedy algorithm is an \((\ln n + 1)\)-approximation for vertex-cover.
First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let v be the vertex of the maximum degree in (V, E')
4: $C \leftarrow C \cup \{v\}$,
5: remove all edges incident to v from E'
6: return C

Theorem Greedy algorithm is an $(\ln n + 1)$-approximation for vertex-cover.

We prove it for the more general set cover problem.
First Try: A “Natural” Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3: \quad \text{let} \(v \) \text{ be the vertex of the maximum degree in } (V, E')
4: \quad C \leftarrow C \cup \{v\},
5: \quad \text{remove all edges incident to } v \text{ from } E'
6: \quad \text{return } C

Theorem Greedy algorithm is an \((\ln n + 1)\)-approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm
2-Approximation Algorithm for Vertex Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3: \textbf{let} \((u, v)\) \textbf{be any edge in} \(E' \)
4: \(C \leftarrow C \cup \{u, v\} \)
5: \text{remove all edges incident to} \(u \) \text{ and} \(v \) \text{ from} \(E' \)
6: \textbf{return} \(C \)
2-Approximation Algorithm for Vertex Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3: \quad \text{let} \ (u, v) \ \text{be any edge in} \ E'
4: \quad C \leftarrow C \cup \{u, v\}
5: \quad \text{remove all edges incident to} \ u \ \text{and} \ v \ \text{from} \ E'
6: \quad \textbf{return} \ C

- counter-intuitive: adding both \(u \) and \(v \) to \(C \) seems wasteful
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - optimum solution C^* must cover edge (u, v), using either u or v
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

• counter-intuitive: adding both u and v to C seems wasteful
• intuition for the 2-approximation ratio:
 • optimum solution C^* must cover edge (u, v), using either u or v
 • we select both, so we are always ahead of the optimum solution
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - optimum solution C^* must cover edge (u, v), using either u or v
 - we select both, so we are always ahead of the optimum solution
 - we use at most 2 times more vertices than C^* does
2-Approximation Algorithm for Vertex Cover

1. \(E' \leftarrow E, C \leftarrow \emptyset \)
2. while \(E' \neq \emptyset \) do
 3. let \((u, v)\) be any edge in \(E' \)
 4. \(C \leftarrow C \cup \{u, v\} \)
 5. remove all edges incident to \(u \) and \(v \) from \(E' \)
3. return \(C \)

Theorem
The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.
Let \(E' \) be the set of edges \((u, v)\) considered in Step 3
Observation:
\(E' \) is a matching and \(|C| = 2 |E'| \)
To cover \(E' \), the optimum solution needs \(|E'| \) vertices
2-Approximation Algorithm for Vertex Cover

1. $E' \leftarrow E, C \leftarrow \emptyset$
2. while $E' \neq \emptyset$ do
3. let (u, v) be any edge in E'
4. $C \leftarrow C \cup \{u, v\}$
5. remove all edges incident to u and v from E'
6. return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C' \leftarrow C' \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C'

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.
- Let E' be the set of edges (u, v) considered in Step 3
2-Approximation Algorithm for Vertex Cover

1: $E' \leftarrow E, C \leftarrow \emptyset$
2: while $E' \neq \emptyset$ do
3: let (u, v) be any edge in E'
4: $C \leftarrow C \cup \{u, v\}$
5: remove all edges incident to u and v from E'
6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.
- Let E' be the set of edges (u, v) considered in Step 3
- Observation: E' is a matching and $|C| = 2|E'|$
2-Approximation Algorithm for Vertex Cover

1: \(E' \leftarrow E, C \leftarrow \emptyset \)
2: \textbf{while} \(E' \neq \emptyset \) \textbf{do}
3: \textbf{let} \((u, v)\) be any edge in \(E' \)
4: \(C \leftarrow C \cup \{u, v\} \)
5: remove all edges incident to \(u \) and \(v \) from \(E' \)
6: \textbf{return} \(C \)

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.
- Let \(E' \) be the set of edges \((u, v)\) considered in Step 3
- Observation: \(E' \) is a matching and \(|C| = 2|E'| \)
- To cover \(E' \), the optimum solution needs \(|E'| \) vertices
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Set Cover

Input: $U, |U| = n$: ground set

$S_1, S_2, \cdots, S_m \subseteq U$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$
Set Cover with Bounded Frequency f

Input: $U, |U| = n$: ground set

$S_1, S_2, \ldots, S_m \subseteq U$

every $j \in U$ appears in at most f subsets in

$\{S_1, S_2, \ldots, S_n\}$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$
Set Cover with Bounded Frequency f

Input: U, $|U| = n$: ground set

$S_1, S_2, \ldots, S_m \subseteq U$

every $j \in U$ appears in at most f subsets in

$\{S_1, S_2, \ldots, S_n\}$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Vertex Cover $=$ Set Cover with Frequency 2

- edges \Leftrightarrow elements
- vertices \Leftrightarrow sets
- every edge (element) can be covered by 2 vertices (sets)
f-Approximation Algorithm for Set Cover with Frequency f

1: $C \leftarrow \emptyset$
2: while $\bigcup_{i \in C} S_i \neq U$ do
3: \hspace{1em} let e be any element in $U \setminus \bigcup_{i \in C} S_i$
4: \hspace{1em} $C \leftarrow C \cup \{i \in [m] : e \in S_i\}$
5: return C
\textbf{Algorithm for Set Cover with Frequency f}

1: $C \leftarrow \emptyset$
2: \textbf{while} $\bigcup_{i \in C} S_i \neq U$ \textbf{do}
3: \hspace{1em} let e be any element in $U \setminus \bigcup_{i \in C} S_i$
4: \hspace{1em} $C \leftarrow C \cup \{i \in [m] : e \in S_i\}$
5: \textbf{return} C

\textbf{Theorem} The algorithm is a f-approximation algorithm.
f-Approximation Algorithm for Set Cover with Frequency f

1. \(C \leftarrow \emptyset \)
2. \(\textbf{while } \bigcup_{i \in C} S_i \neq U \ \textbf{do} \)
3. \(\text{let } e \text{ be any element in } U \setminus \bigcup_{i \in C} S_i \)
4. \(C \leftarrow C \cup \{i \in [m] : e \in S_i\} \)
5. \(\textbf{return } C \)

Theorem The algorithm is a \(f \)-approximation algorithm.

Proof.
- Let \(U' \) be the set of all elements \(e \) considered in Step 3.
- Observation: no set \(S_i \) contains two elements in \(U' \).
- To cover \(U' \), the optimum solution needs \(|U'| \) sets.
- \(C \leq f \cdot |U'| \).
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Set Cover

Input: \(U, \ |U| = n \): ground set

\[S_1, S_2, \cdots, S_m \subseteq U \]

Output: minimum size set \(C \subseteq [m] \) such that \(\bigcup_{i \in C} S_i = U \)

Greedy Algorithm for Set Cover

1. \(C \leftarrow \emptyset \), \(U' \leftarrow U \)
2. While \(U' \neq \emptyset \) do
 3. Choose the \(i \) that maximizes \(|U' \cap S_i| \)
 4. \(C \leftarrow C \cup \{i\} \), \(U' \leftarrow U' \setminus S_i \)
3. Return \(C \)
Set Cover

Input: \(U, |U| = n \): ground set

\(S_1, S_2, \cdots, S_m \subseteq U \)

Output: minimum size set \(C \subseteq [m] \) such that \(\bigcup_{i \in C} S_i = U \)

Greedy Algorithm for Set Cover

1. \(C \leftarrow \emptyset, U' \leftarrow U \)
2. **while** \(U' \neq \emptyset \) **do**
3. choose the \(i \) that maximizes \(|U' \cap S_i| \)
4. \(C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i \)
5. **return** \(C \)
Lemma Let u_t, $t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \leq \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$
- g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \leq \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.

- Consider the g sets $S_1^*, S_2^*, \ldots, S_g^*$ in optimum solution
- $S_1^* \cup S_2^* \cup \cdots \cup S_g^* = U$
Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \leq \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.

- Consider the g sets $S^*_1, S^*_2, \cdots, S^*_g$ in optimum solution
- $S^*_1 \cup S^*_2 \cup \cdots \cup S^*_g = U$
- at beginning of step t, some set in $S^*_1, S^*_2, \cdots, S^*_g$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_t \leq u_{t-1} - \frac{u_{t-1}}{g} = \left(1 - \frac{1}{g}\right) u_{t-1}$.

\blacksquare
Proof of \((\ln n + 1)\)-approximation.

- Let \(t = \lceil g \cdot \ln n \rceil. u_0 = n\). Then
 \[
 u_t \leq \left(1 - \frac{1}{g}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.
 \]

- So \(u_t = 0\), approximation ratio \(\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1\). \(\square\)
Proof of \((\ln n + 1)\)-approximation.

- Let \(t = \lceil g \cdot \ln n \rceil\). \(u_0 = n\). Then
 \[u_t \leq (1 - \frac{1}{g})^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.\]

- So \(u_t = 0\), approximation ratio \(\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1.\)

- A more careful analysis gives a \(H_n\)-approximation, where \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\) is the \(n\)-th harmonic number.

- \(\ln(n + 1) < H_n < \ln n + 1.\)
Proof of \((\ln n + 1)\)-approximation.

- Let \(t = \lceil g \cdot \ln n \rceil\). \(u_0 = n\). Then
 \[
u_t \leq (1 - \frac{1}{g})^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.
\]

- So \(u_t = 0\), approximation ratio \(\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1\).

A more careful analysis gives a \(H_n\)-approximation, where \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}\) is the \(n\)-th harmonic number.

- \(\ln(n + 1) < H_n < \ln n + 1\).

\((1 - c) \ln n\)-hardness for any \(c = \Omega(1)\)

Let \(c > 0\) be any constant. There is no polynomial-time \((1 - c) \ln n\)-approximation algorithm for set-cover, unless

- \(\text{NP} \subseteq \text{quasi-poly-time}, [\text{Lund, Yannakakis 1994; Feige 1998}]\)
- \(\text{P} = \text{NP}. [\text{Dinur, Steuer 2014}]\)
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
- set cover: use smallest number of sets to cover all elements.
- **maximum coverage**: use k sets to cover maximum number of elements

Maximum Coverage

Input:
- U, $|U| = n$: ground set,
- $S_1, S_2, \ldots, S_m \subseteq U$,
- $k \in [m]$,

Output:
- $C \subseteq [m], |C| = k$ with the maximum $S_i \in C$ S_i

Greedy Algorithm for Maximum Coverage

1. $C \leftarrow \emptyset$, $U' \leftarrow U$
2. for $t \leftarrow 1$ to k do
3. choose the i that maximizes $|U' \cap S_i|$
4. $C \leftarrow C \cup \{i\}$, $U' \leftarrow U' \setminus S_i$
5. return C
- **set cover**: use smallest number of sets to cover all elements.
- **maximum coverage**: use k sets to cover maximum number of elements

<table>
<thead>
<tr>
<th>Maximum Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $U,</td>
</tr>
<tr>
<td>Output: $C \subseteq [m],</td>
</tr>
</tbody>
</table>
- **set cover**: use smallest number of sets to cover all elements.
- **maximum coverage**: use k sets to cover maximum number of elements

Maximum Coverage

Input: $U, |U| = n$: ground set,

$S_1, S_2, \cdots, S_m \subseteq U, \quad k \in [m]$

Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

1. $C \leftarrow \emptyset, U' \leftarrow U$
2. for $t \leftarrow 1$ to k do
3. choose the i that maximizes $|U' \cap S_i|$
4. $C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$
5. return C
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.

- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \#(covered elements) by greedy algorithm after step \(t\)
Theorem Greedy algorithm gives $(1 - \frac{1}{e})$-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- p_t: #(covered elements) by greedy algorithm after step t
- $p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}$
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.

- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \(\#(\text{covered elements})\) by greedy algorithm after step \(t\)
- \(p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}\)
- \(o - p_t \leq o - p_{t-1} - \frac{o-p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})\)
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.

- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \#(covered elements) by greedy algorithm after step \(t\)

\[
 p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}
\]

\[
 o - p_t \leq o - p_{t-1} - \frac{o-p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})
\]

\[
 o - p_k \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o
\]
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.

- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \(#(\text{covered elements})\) by greedy algorithm after step \(t\)

\[
p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}
\]

\[
o - p_t \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = (1 - \frac{1}{k})(o - p_{t-1})
\]

\[
o - p_k \leq (1 - \frac{1}{k})^k (o - p_0) \leq \frac{1}{e} \cdot o
\]

\[
p_k \geq \left(1 - \frac{1}{e}\right) \cdot o
\]
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for maximum coverage.

Proof.
- \(o\): max. number of elements that can be covered by \(k\) sets.
- \(p_t\): \(\#(\text{covered elements})\) by greedy algorithm after step \(t\)

\[
p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}
\]

\[
o - p_t \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})
\]

\[
o - p_k \leq \left(1 - \frac{1}{k}\right)^k(o - p_0) \leq \frac{1}{e} \cdot o
\]

\[
p_k \geq \left(1 - \frac{1}{e}\right) \cdot o
\]

- The \((1 - \frac{1}{e})\)-approximation extends to a more general problem.
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f : 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

1. $\forall A, B \subseteq [n]:$
 \[f(A \cup B) + f(A \cap B) \leq f(A) + f(B). \]

2. $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B:$
 \[f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A). \]

3. $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j:$
 \[f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}). \]
Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f : 2^n \to \mathbb{R}$ is called **submodular** if it satisfies one of the following three equivalent conditions:

1. $\forall A, B \subseteq [n]:$
 \[f(A \cup B) + f(A \cap B) \leq f(A) + f(B). \]

2. $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B:$
 \[f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A). \]

3. $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j:$
 \[f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}). \]

(2): **diminishing marginal values**: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f : 2^{[n]} \rightarrow \mathbb{R}$ is called **submodular** if it satisfies one of the following three equivalent conditions:

1. $\forall A, B \subseteq [n]$:
 $$f(A \cup B) + f(A \cap B) \leq f(A) + f(B).$$

2. $\forall A \subseteq B \subsetneq [n], i \in [n] \setminus B$:
 $$f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A).$$

3. $\forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j$:
 $$f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}).$$

- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
- $(1) \Rightarrow (2) \Rightarrow (3), \quad (3) \Rightarrow (2) \Rightarrow (1)$
Examples of Sumodular Functions

- **linear function:** \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)
Examples of Sumodular Functions

- linear function: \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)

- budget-additive function: \(f(S) = \min \left\{ \sum_{i \in S} w_i, B \right\}, \forall S \subseteq [n] \)
Examples of Sumodular Functions

- linear function: \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)

- budget-additive function: \(f(S) = \min \left\{ \sum_{i \in S} w_i, B \right\}, \forall S \subseteq [n] \)

- coverage function: given sets \(S_1, S_2, \cdots, S_n \subseteq \Omega \),
 \[
 f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]
 \]
Examples of Sumodular Functions

- linear function: \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)

- budget-additive function: \(f(S) = \min \left\{ \sum_{i \in S} w_i, B \right\}, \forall S \subseteq [n] \)

- coverage function: given sets \(S_1, S_2, \cdots, S_n \subseteq \Omega \),

 \[f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n] \]

- matroid rank function: given a matroid \(\mathcal{M} = ([n], \mathcal{I}) \)

 \[r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}, \forall A \subseteq [n] \]
Examples of Sumodular Functions

- linear function: \(f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n] \)

- budget-additive function: \(f(S) = \min \left\{ \sum_{i \in S} w_i, B \right\}, \forall S \subseteq [n] \)

- coverage function: given sets \(S_1, S_2, \cdots, S_n \subseteq \Omega \),

\[
f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]
\]

- matroid rank function: given a matroid \(\mathcal{M} = ([n], \mathcal{I}) \)

\[
r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}, \forall A \subseteq [n]
\]

- cut function: given graph \(G = ([n], E) \)

\[
f(A) = \left| E(A, [n] \setminus A) \right|, \forall A \subseteq [n]
\]
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

The coverage, matroid rank and entropy functions are monotone, and the cut function is symmetric.
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

The coverage, matroid rank, and entropy functions are monotone, and the cut function is symmetric.
Examples of Submodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

\[
f(S) := H(X_i : i \in S), \forall S \subseteq [n]
\]
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

\[f(S) := H(X_i : i \in S), \forall S \subseteq [n] \]

Def. A submodular function $f : 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f : 2^{[n]} \rightarrow \mathbb{R}$ is said to be **monotone** if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f : 2^{[n]} \rightarrow \mathbb{R}$ is said to be **symmetric** if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables \(X_1, X_2, \ldots, X_n \)

\[
f(S) := H(X_i : i \in S), \forall S \subseteq [n]
\]

Def. A submodular function \(f : 2^{[n]} \rightarrow \mathbb{R} \) is said to be **monotone** if \(f(A) \leq f(B) \) for every \(A \subseteq B \subseteq [n] \).

Def. A submodular function \(f : 2^{[n]} \rightarrow \mathbb{R} \) is said to be **symmetric** if \(f(A) = f([n] \setminus A) \) for every \(A \subseteq [n] \).

- coverage, matroid rank and entropy functions are monotone
Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f : 2^{[n]} \to \mathbb{R}$ is said to be **monotone** if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f : 2^{[n]} \to \mathbb{R}$ is said to be **symmetric** if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric
(1 − \frac{1}{e})-Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function $f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$, $k \in [n]$

Output: A subset $S \subseteq [n]$ with $|S| = k$, so as to maximize $f(S)$
Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function \(f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}, \quad k \in [n] \)

Output: A subset \(S \subseteq [n] \) with \(|S| = k\), so as to maximize \(f(S) \)

- We can assume \(f(\emptyset) = 0 \)
Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function \(f : 2^{[n]} \to \mathbb{R}_{\geq 0}, \quad k \in [n] \)

Output: A subset \(S \subseteq [n] \) with \(|S| = k \), so as to maximize \(f(S) \)

- We can assume \(f(\emptyset) = 0 \)

Greedy Algorithm for the Problem

1. \(S \leftarrow \emptyset \)
2. for \(t \leftarrow 1 \) to \(k \) do
3. choose the \(i \) that maximizes \(f(S \cup \{i\}) \)
4. \(S \leftarrow S \cup \{i\} \)
5. return \(S \)
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for submodular-maximization under a cardinality constraint.
Theorem Greedy algorithm gives \((1 - \frac{1}{e})\)-approximation for submodular-maximization under a cardinality constraint.

Proof.

- \(o\): optimum value
- \(p_t\): value obtained by greedy algorithm after step \(t\)
- need to prove: \(p_t \geq p_{t-1} + \frac{o - p_{t-1}}{k}\)
- \(o - p_t \leq o - p_{t-1} - \frac{o - p_{t-1}}{k} = (1 - \frac{1}{k})(o - p_{t-1})\)
- \(o - p_k \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o\)
- \(p_k \geq \left(1 - \frac{1}{e}\right) \cdot o\)
Def. A set function $f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.
Def. A set function $f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive.
Def. A set function \(f : 2^{[n]} \to \mathbb{R}_{\geq 0} \) is sub-additive if for every two sets \(A, B \subseteq [n] \), we have \(f(A \cup B) \leq f(A) + f(B) \).

Lemma A non-negative submodular set function \(f : 2^{[n]} \to \mathbb{R}_{\geq 0} \) is sub-additive.

Proof.

For \(A, B \subseteq [n] \), we have \(f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \).

So, \(f(A \cup B) \leq f(A) + f(B) \) as \(f(A \cap B) \geq 0 \). \(\square \)
Lemma Let $f : 2^{[n]} \rightarrow \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.
Lemma Let $f : 2^n \rightarrow \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Proof.

- Let $A, B \subseteq [n] \setminus S$; it suffices to consider ground set $[n] \setminus S$.
 \[f_S(A \cup B) + f_S(A \cap B) - f_S(A) + f_S(B) = f(S \cup A \cup B) - f(S) + f(S \cup (A \cap B)) - f(S) \]
 \[- \left(f(S \cup A) - f(S) + f(S \cup B) - f(S) \right) \]
 \[= f(S \cup A \cup B) + f(S \cup (A \cap B)) - f(S \cup A) - f(S \cup B) \leq 0 \]

- The last inequality is by $S \cup A \cup B = (S \cup A) \cup (S \cup B)$, $S \cup (A \cap B) = (S \cup A) \cap (S \cup B)$ and submodularity of f. \(\square\)
Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t
 $|S| = t - 1$, $p_{t-1} = f(S)$
Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t
 $|S| = t - 1$, $p_{t-1} = f(S)$
- f_S is submodular and thus sub-additive

$$f_S(S^*) \leq \sum_{i \in S^*} f_S(i) \Rightarrow \exists i \in S^*, f_S(i) \geq \frac{1}{k} f_S(S^*)$$
Proof of $p_t \geq p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t
 $|S| = t - 1$, $p_{t-1} = f(S)$
- f_S is submodular and thus sub-additive

\[
f_S(S^*) \leq \sum_{i \in S^*} f_S(i) \implies \exists i \in S^*, f_S(i) \geq \frac{1}{k} f_S(S^*)
\]

- for the i, we have

\[
f(S \cup \{i\}) - f(S) \geq \frac{1}{k} (f(S^*) - f(S))
\]

\[
p_t \geq f(S \cup \{i\}) \geq p_{t-1} + \frac{1}{k} (o - p_{t-1})
\]
Outline

1. Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2. Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3. Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Local Search for Maximum-Cut

Maximum-Cut

Input: Graph $G = (V, E)$

Output: partition of V into $(S, T = V \setminus S)$ so as to maximize $|E(S, T)|$, $E(S, T) = \{uv \in E : u \in S \land v \in T\}$.

<table>
<thead>
<tr>
<th>Local-Search for Maximum-Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $(S, T) \leftarrow$ any cut</td>
</tr>
<tr>
<td>2: while $\exists v \in V$, changing side of v increases cut value do</td>
</tr>
<tr>
<td>3: switch v to the other side in (S, T)</td>
</tr>
<tr>
<td>4: return (S, T)</td>
</tr>
</tbody>
</table>
Maximum-Cut

Input: Graph $G = (V, E)$

Output: partition of V into $(S, T = V \setminus S)$ so as to maximize $|E(S, T)|$, $E(S, T) = \{uv \in E : u \in S \land v \in T\}$.

Def. A solution (S, T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.
Local Search for Maximum-Cut

Maximum-Cut

Input: Graph $G = (V, E)$

Output: partition of V into $(S, T = V \setminus S)$ so as to maximize $|E(S, T)|$, $E(S, T) = \{uv \in E : u \in S \land v \in T\}$.

Def. A solution (S, T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.

Local-Search for Maximum-Cut

1: $(S, T) \leftarrow$ any cut
2: while $\exists v \in V$, changing side of v increases cut value do
3: switch v to the other side in (S, T)
4: return (S, T)
Lemma Local search gives a 2-approximation for maximum-cut.

Proof. \(\forall v \in S: E(v, S) \leq E(v, T) \Rightarrow |E(v, S)| \geq \frac{1}{2}dv \)

\(\forall v \in T: E(v, T) \leq E(v, S) \Rightarrow |E(v, T)| \geq \frac{1}{2}dv \)

Adding all inequalities:

\(2 |E(S, T)| \geq \frac{1}{2} \sum_{v \in V} dv = |E| \)

So \(|E(S, T)| \geq \frac{1}{2} |E| \geq \frac{1}{2} (\text{value of optimum cut}) \).
Lemma Local search gives a 2-approximation for maximum-cut.

- \(d_v \): degree of \(v \)

Proof.

- \(\forall v \in S : E(v, S) \leq E(v, T) \Rightarrow |E(v, S)| \geq \frac{1}{2} d_v \)
- \(\forall v \in T : E(v, T) \leq E(v, S) \Rightarrow |E(v, T)| \geq \frac{1}{2} d_v \)
Lemma Local search gives a 2-approximation for maximum-cut.

- d_v: degree of v

Proof.

- $\forall v \in S: E(v, S) \leq E(v, T) \Rightarrow |E(v, S)| \geq \frac{1}{2} d_v$
- $\forall v \in T: E(v, T) \leq E(v, S) \Rightarrow |E(v, T)| \geq \frac{1}{2} d_v$

adding all inequalities:

$$2|E(S, T)| \geq \frac{1}{2} \sum_{v \in V} d_v = |E|.$$

So $|E(S, T)| \geq \frac{1}{2} |E| \geq \frac{1}{2}$ (value of optimum cut).
The following algorithm also gives a 2-approximation for the maximum-cut problem:

Greedy Algorithm for Maximum-Cut

1. $S \leftarrow \emptyset, T \leftarrow \emptyset$
2. for every $v \in V$, in arbitrary order do
 3. adding v to S or T so as to maximize $|E(S, T)|$
4. return (S, T)
The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1. $S \leftarrow \emptyset$, $T \leftarrow \emptyset$
2. **for** every $v \in V$, in arbitrary order **do**
3. adding v to S or T so as to maximize $|E(S, T)|$
4. **return** (S, T)

[Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)
The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1. \(S \leftarrow \emptyset, T \leftarrow \emptyset \)
2. for every \(v \in V \), in arbitrary order do
3. adding \(v \) to \(S \) or \(T \) so as to maximize \(|E(S, T)| \)
4. return \((S, T)\)

[Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)

Under Unique-Game-Conjecture (UGC), the ratio is best possible
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 - $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Uncapacitated Facility Location

Input:
- \(F \): Facilities
- \(D \): Clients
- \(c \): metric over \(F \cup D \)
- \((f_i)_{i \in F} \): facility costs

Output:
- \(S \subseteq F \), so as to minimize
 \[P_{i \in S} f_i + P_{j \in D} c(j, S) \]
 \(c(j, S) \): smallest distance between \(j \) and a facility in \(S \)

Best-approximation ratio: 1.488-Approximation [Li, 2011]
1.463-hardness, approximately \(\sqrt{1 + 2e} \)
Uncapacitated Facility Location

Input: \(F \): Facilities \hspace{1cm} \(D \): Clients

\[c: \text{metric over } F \cup D \quad (f_i)_{i \in F}: \text{facility costs} \]

Output: \(S \subseteq F \), so as to minimize \(\sum_{i \in S} f_i + \sum_{j \in D} c(j, S) \)

\(c(j, S) \): smallest distance between \(j \) and a facility in \(S \)
Uncapacitated Facility Location

Input: F: Facilities \hspace{1cm} D: Clients

c: metric over $F \cup D$ \hspace{1cm} $(f_i)_{i \in F}$: facility costs

Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in D} c(j, S)$

$c(j, S)$: smallest distance between j and a facility in S
Uncapacitated Facility Location

Input:
- F: Facilities
- D: Clients

c: metric over $F \cup D$

$(f_i)_{i \in F}$: facility costs

Output:
- $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in D} c(j, S)$

$c(j, S)$: smallest distance between j and a facility in S

- Best-approximation ratio: 1.488-Approximation [Li, 2011]
- 1.463-hardness, $1.463 \approx \text{root of } x = 1 + 2e^{-x}$
\[\text{cost}(S) := \sum_{i \in S} f_i + \sum_{j \in D} c(j, S), \forall S \subseteq F \]

Local Search Algorithm for Uncapacitated Facility Location

1: \(S \leftarrow \) arbitrary set of facilities
2: **while** exists \(S' \subseteq F \) with \(|S \setminus S'| \leq 1, |S' \setminus S| \leq 1 \) and \(\text{cost}(S') < \text{cost}(S) \) **do**
3: \(S' \leftarrow S \)
4: **return** \(S \)

- The algorithm runs in pseudo-polynomial time, but we ignore the issue for now.
• $\text{cost}(S) := \sum_{i \in S} f_i + \sum_{j \in D} c(j, S), \forall S \subseteq F$

Local Search Algorithm for Uncapacitated Facility Location

1: $S \leftarrow$ arbitrary set of facilities
2: while exists $S' \subseteq F$ with $|S \setminus S'| \leq 1$, $|S' \setminus S| \leq 1$ and $\text{cost}(S') < \text{cost}(S)$ do
3: $S' \leftarrow S$
4: return S

The algorithm runs in pseudo-polynomial time, but we ignore the issue for now.

S is a local optimum, under the following local operations

• add$(i), i \notin S$: $S \leftarrow S \cup \{i\}$
• delete$(i), i \in S$: $S \leftarrow S \setminus \{i\}$
• swap$(i, i'), i \in S, i' \notin S$: $S \leftarrow S \setminus \{i\} \cup \{i'\}$
- S: the local optimum returned by the algorithm
- S^*: the (unknown) optimum solution

\[F := \sum_{i \in S} f_i \quad \sigma_j : \text{closest facility in } S \text{ to } j \]
\[C := \sum_{j \in D} c_j \sigma_j \]

\[F^* := \sum_{i \in S^*} f_i \quad \sigma_j^* : \text{closest facility in } S^* \text{ to } j \]
\[C^* := \sum_{j \in D} c_j \sigma_j^* \]
- S: the local optimum returned by the algorithm
- S^*: the (unknown) optimum solution

$$F := \sum_{i \in S} f_i \quad \sigma_j : \text{closest facility in } S \text{ to } j$$

$$F^* := \sum_{i \in S^*} f_i \quad \sigma_j^* : \text{closest facility in } S^* \text{ to } j$$

$$C := \sum_{j \in D} c_j \sigma_j$$

$$C^* := \sum_{j \in D} c_j \sigma_j^*$$

Lemma (analysis for connection cost) $C \leq F^* + C^*$

Lemma (analysis for facility cost) $F \leq F^* + 2C^*$
- \(S \): the local optimum returned by the algorithm
- \(S^* \): the (unknown) optimum solution

\[
F := \sum_{i \in S} f_i \quad \sigma_j : \text{closest facility in } S \text{ to } j \quad C := \sum_{j \in D} c_{j\sigma_j}
\]

\[
F^* := \sum_{i \in S^*} f_i \quad \sigma^*_j : \text{closest facility in } S^* \text{ to } j \quad C^* := \sum_{j \in D} c_{j\sigma^*_j}
\]

Lemma (analysis for connection cost) \(C \leq F^* + C^* \)

Lemma (analysis for facility cost) \(F \leq F^* + 2C^* \)

So, \(F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*) \)
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$-Approximation for Set-Cover
 - $(1 - \frac{1}{e})$-Approximation for Maximum Coverage
 - $(1 - \frac{1}{e})$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost
Analysis of C

Let S be the set of facilities and S^* be the set of clients. Adding i^* does not increase the cost:

$$\sum_{j \in \sigma^*} c_{i^*j} \leq f_{i^*} + \sum_{j \in \sigma^*} c_{i^*j}$$

Summing up over all $i^* \in F^*$, we get

$$\sum_{j \in J} c_{\sigma^*j} \leq F^* + C^*$$
Analysis of C

- adding i^* does not increase the cost:
Facilities

Clients

Analysis of C

- adding i^* does not increase the cost:

\[
\sum_{j \in J} c_{\sigma^*(j)} j \leq \sum_{i^* \in F^*} c_{i^* j} + \sum_{j \in J} c_{\sigma^*(j)} j \leq F^* + C^*
\]
Facilities

Clients

Analysis of C

- adding i^* does not increase the cost:

$$\sum_{j \in \sigma^{*-1}(i^*)} c_{\sigma(j)j} \leq f_{i^*} + \sum_{j \in \sigma^{*-1}(i^*)} c_{i^*j}$$
Analysis of C

- adding i^* does not increase the cost:

$$\sum_{j \in \sigma^{*-1}(i^*)} c_{\sigma(j)j} \leq f_{i^*} + \sum_{j \in \sigma^{*-1}(i^*)} c_{i^*j}$$

- summing up over all $i^* \in F^*$, we get

$$\sum_{j \in J} c_{\sigma(j)j} \leq \sum_{i^* \in F^*} f_{i^*} + \sum_{j \in J} c_{\sigma^*(j)j}$$

$$C \leq F^* + C^*$$
Outline

1 Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 • Recap: Maximum-Weight Spanning Tree Problem
 • Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems
 • 2-Approximation Algorithm for Vertex Cover
 • f-Approximation for Set-Cover with Frequency f
 • $(\ln n + 1)$-Approximation for Set-Cover
 • $\left(1 - \frac{1}{e}\right)$-Approximation for Maximum Coverage
 • $\left(1 - \frac{1}{e}\right)$-Approximation for Submodular Maximization under a Cardinality Constraint

3 Local Search
 • Warmup Problem: 2-Approximation for Maximum-Cut
 • Local Search for Uncapacitated Facility Location Problem
 • Local Search for UFL: Analysis for Connection Cost
 • Local Search for UFL: Analysis for Facility Cost
Analysis of F
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete$(i)$
Analysis of F

- $\phi(i^*)$, $i^* \in S^*$: closest facility in S to i^*
- $\psi(i)$, $i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete($i$)
- $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
Facilities

Clients

Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete($i$)
 - $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
 - reconnection distance is at most

$$c_{i^*j} + c_{i^*\phi(i^*)} \leq c_{i^*j} + c_{i^*i}$$

$$\leq c_{i^*j} + c_{i^*j} + c_{ij} = 2c_{i^*j} + c_{ij}$$
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete($i$)
 - $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
- reconnection distance is at most

 $c_{i^*j} + c_{i^*\phi(i^*)} \leq c_{i^*j} + c_{i^*i}$

 $\leq c_{i^*j} + c_{i^*j} + c_{ij} = 2c_{i^*j} + c_{ij}$

- distance increment is at most $2c_{i^*j}$
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete$(i)$
 - $j \in \sigma^{-1}(i)$ reconnected to $\phi(i^* := \sigma^*(j))$
 - reconnection distance is at most
 \[
 c_{i^*j} + c_{i^*\phi(i^*)} \leq c_{i^*j} + c_{i^*i}
 \leq c_{i^*j} + c_{i^*j} + c_{ij} = 2c_{i^*j} + c_{ij}
 \]
 - distance increment is at most $2c_{i^*j}$
 - by local optimality:
 \[
 f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}
 \]
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi(i^*) = i, \psi(i) \neq i^*$: consider add($i^*$)
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi(i^*) = i, \psi(i) \neq i^*$: consider add($i^*$)
- $\sigma(j) = i, \sigma^*(j) = i^*$: reconnect j to i^*
Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi(i^*) = i, \psi(i) \neq i^*$: consider add($i^*$)
- $\sigma(j) = i, \sigma^*(j) = i^*$: reconnect j to i^*

by local optimality:

$$0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$$
Analysis of F

Facilities

Clients
Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap($i, i'$)
Facilities

Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap (i, i')
 - $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it
 - distance increment is at most $2c_{\sigma^*(j)j}$
Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap (i, i')
- $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it
distance increment is at most $2c_{\sigma^*(j)}$
- $\sigma(j) = i, \phi(\sigma^*(j)) = i$: reconnect j to i'

Where S represents Facilities and S^* represents Clients.
Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap (i, i')
 - $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it
 distance increment is at most $2c_{\sigma^*(j)j}$
 - $\sigma(j) = i, \phi(\sigma^*(j)) = i$: reconnect j to i'
 distance increment is at most
 \[c_{ij} + c_{ii'} - c_{ij} = c_{ii'} \leq c_{i\sigma^*(j)} \leq c_{ij} + c_{\sigma^*(j)j} \]
Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap (i, i')
 - $\sigma(j) = i, \phi(\sigma^*(j)) \neq i$: reconnect j to it
distance increment is at most $2c_{\sigma^*(j)j}$
 - $\sigma(j) = i, \phi(\sigma^*(j)) = i$: reconnect j to i'
distance increment is at most

 \[c_{ij} + c_{i'i'} - c_{ij} = c_{i'i'} \leq c_{i\sigma^*(j)} \leq c_{ij} + c_{\sigma^*(j)j} \]

- \[f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} \]

 \[+ \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j}) \]
\begin{itemize}

\item $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$

\item $i^* \in S^*$ is not paired: $0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*-1(i^*)} (c_{i^*j} - c_{\sigma(j)j})$

\item $i \in S$ and $i' \in S^*$ are paired:

\begin{align*}
 f_i & \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})
\end{align*}

\item summing all the inequalities:

\begin{align*}
 \sum_{i \in S} f_i & \leq \sum_{i^* \in S^*} f_{i^*}
\end{align*}

\end{itemize}
\begin{itemize}
 \item $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$
 \item $i^* \in S^*$ is not paired: $0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{-1}(i^*)} \left(c_{i^*j} - c_{\sigma(j)j} \right)$
 \item $i \in S$ and $i' \in S^*$ are paired:
 \[f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} \left(c_{ij} + c_{\sigma^*(j)j} \right) \]
 \item summing all the inequalities:
 \[\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} \]
\end{itemize}
• \(i \in S \) is not paired: \(f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j} \)

• \(i^* \in S^* \) is not paired: \(0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j}) \)

• \(i \in S \) and \(i' \in S^* \) are paired:

\[
f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})
\]

• summing all the inequalities:

\[
\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D : \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j)j}
\]
\begin{itemize}
 \item $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$
 \item $i^* \in S^*$ is not paired: $0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*-1(i^*)} (c_{i^*j} - c_{\sigma(j)j})$
 \item $i \in S$ and $i' \in S^*$ are paired:
 \begin{align*}
 f_i & \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j}) \\
 \end{align*}
 \item summing all the inequalities:
 \begin{align*}
 \sum_{i \in S} f_i & \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D : \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j)j}
 \end{align*}
\end{itemize}
- $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$

- $i^* \in S^*$ is not paired: $0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$

- $i \in S$ and $i' \in S^*$ are paired:

$$f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})$$

- Summing all the inequalities:

$$\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D: \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j)j}$$

$$+ \sum_{j \in D: \phi(\sigma^*(j)) = \sigma(j)} (c_{\sigma^*(j)j} - c_{\sigma(j)j} + c_{\sigma(j)j} + c_{\sigma^*(j)j})$$
\begin{itemize}
 \item $i \in S$ is not paired:
 \[f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*}(j) j \]

 \item $i^* \in S^*$ is not paired:
 \[0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{-1}(i^*)} (c_{i^* j} - c_{\sigma(j) j}) \]

 \item $i \in S$ and $i' \in S^*$ are paired:
 \[f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j) j} + \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j) j}) \]

 \item summing all the inequalities:
 \[\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D : \phi(\sigma^*(j)) \neq \sigma(j)} c_{\sigma^*(j) j} + 2 \sum_{j \in D : \phi(\sigma^*(j)) = \sigma(j)} c_{\sigma^*(j) j} \]
\end{itemize}
- \(i \in S \) is not paired: \(f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)} j \)

- \(i^* \in S^* \) is not paired: \(0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} \left(c_{i^* j} - c_{\sigma(j)} j \right) \)

- \(i \in S \) and \(i' \in S^* \) are paired:
 \[
 f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)} j + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^*(j)) = i} \left(c_{ij} + c_{\sigma^*(j)} j \right)
 \]

- summing all the inequalities:
 \[
 \sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D} c_{\sigma^*(j)} j
 \]
• $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$

• $i^* \in S^*$ is not paired: $0 \leq f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^*^{-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$

• $i \in S$ and $i' \in S^*$ are paired:

$$f_i \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i) : \phi(\sigma^*(j)) = i} (c_{ij} + c_{\sigma^*(j)j})$$

• summing all the inequalities:

$$\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{j \in D} c_{\sigma^*(j)j}$$

$$F \leq F^* + 2C^*$$
\[C \leq F^* + C^*, \quad F \leq F^* + 2C^* \]
\[\Rightarrow \quad F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*) \]
\[C \leq F^* + C^*, \quad F \leq F^* + 2C^* \]
\[\Rightarrow \quad F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*) \]

Exercise: scaling facility costs by some \(\lambda > 1 \) can give a \((1 + \sqrt{2})\)-approximation.
\[C \leq F^* + C^*, \quad F \leq F^* + 2C^* \]

\[\Rightarrow F + C \leq 2F^* + 3C^* \leq 3(F^* + C^*) \]

Exercise: scaling facility costs by some \(\lambda > 1 \) can give a \((1 + \sqrt{2})\)-approximation.

- Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location

1. \(S \leftarrow \) arbitrary set of facilities, \(\delta \leftarrow \frac{\epsilon}{4|F|} \)
2. while exists \(S' \subseteq F \) with \(|S \setminus S'| \leq 1, |S' \setminus S| \leq 1 \) and \(\text{cost}(S') < (1 - \delta)\text{cost}(S) \) do
3. \(S' \leftarrow S \)
4. return \(S \)