
尹⼀通 Nanjing University, 2023 Fall

Advanced Algorithms
Hashing and Sketching

Balls into Bins

Balls into Bins (Random Function)

• n balls into m bins:

• uniform random function:

Pr[assignment] =
1
m

⋯
1
m

=
1

mn

Pr[f] =
1

[n] → [m]
=

1
mn

[n] [m]

uniform random function
f : [n] → [m]1-1 birthday

on-to coupon collector

pre-image size occupancy

Birthday Paradox

Paradox:
(i) a statement that leads to a contradiction;
(ii) a situation which defies intuition.(ii) a situation which defies intuition.

In a class of m>57 students, with >99% probability,
there are two students with the same birthday.

Assumption: birthdays are uniformly & independently distributed.

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

Birthday Paradox

Pr[ℰ] =
[n] 1−1 [m]

[n] → [m]
=

m(m − 1)⋯(m − n + 1)
mn

=
n−1

∏
i=0

(1 −
i
m)

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

Birthday Paradox

Pr[ℰ] = Pr[all n balls are thrown into ditinct bins]

=
n

∏
i=1

Pr[the ith ball is thrown into an empty bin ∣

first i − 1 balls are thrown into ditinct bins]

Suppose that balls are thrown one-by-one:

=
n

∏
i=1

(1 −
i − 1

m) =
n−1

∏
i=0

(1 −
i
m)

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

chain
rule

Birthday Paradox

Pr[ℰ] =
n−1

∏
i=0

(1 −
i
m) ≈

n−1

∏
i=0

e− i
m ≈ e−n2/2m

e−(1+o(1))n2/2m ≤
n−1

∏
i=0

(1 −
i
m) ≤ e−(1−o(1))n2/2m

(Taylor: for)1 − x ≈ e−x x = o(1)

Formally:
(assuming)n ≪ m

when n = 2m ln
1
p ⟹ Pr[ℰ] = (1 ± o(1))p

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

Birthday Paradox

Pr[ℰ] =
n−1

∏
i=0

(1 −
i
m) ≈

n−1

∏
i=0

e− i
m ≈ e−n2/2m

e−(1+o(1))n2/2m ≤
n−1

∏
i=0

(1 −
i
m) ≤ e−(1−o(1))n2/2m

(Taylor: for)1 − x ≈ e−x x = o(1)

Formally:
(assuming)n ≪ m

when n = 2m ln
1
p ⟹ Pr[ℰ] = (1 ± o(1))p

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

Hash Tables & Filters

Data Structure for Set

Data: a set of items

Query: an item

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S

• Space cost: size of data structure (in bits)

• entropy of a set: bits (when)

• Time cost: time to answer a query (in memory accesses)

• Balanced tree: space, time

• Perfect hashing: space, time

log (N
n) = O(n log N) N ≫ n

O(n log N) O(log n)
O(n log N) O(1)

Perfect Hashing

 of size n S = {a, b, c, d, e, f} ⊆ [N]

af cb de

h

Table T:
m

uniform
random Pr[perfect]

Birthday
= n2

[N] ! [m]

SUHA: Simple Uniform Hash Assumption

no collision

Query(x):

retrieve hash function h;

check whether T[h(x)] = x;

≈ e−n2/2m > 1/2

Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family of hash functions in is -universal
if for any distinct ,

.

Moreover, is strongly -universal (-wise independent)
if for any distinct and any ,

.

ℋ U → [m] k
x1, …, xk ∈ U

Pr
h∈ℋ

[h(x1) = ⋯ = h(xk)] ≤
1

mk−1

ℋ k k
x1, …, xk ∈ U y1, …, yk ∈ [m]

Pr
h∈ℋ [

k

⋀
i=1

h(xi) = yi] =
1

mk

k-Universal Hash Family

• Linear congruential hashing:

• Represent for sufficiently large prime

•

•

• Degree- polynomial in finite field with random coefficients

• Hashing between binary fields:

(a*x+b)>>(w-l)

U ⊆ ℤp p

ha,b(x) = ((ax + b) mod p) mod m

ℋ = {ha,b ∣ a ∈ ℤp∖{0}, b ∈ ℤp}

k
GF(2w) → GF(2l)

ha,b(x) =

hash functions h : U → [m]

Theorem:

The linear congruential family is 2-wise independent. ℋ

Birthday Paradox (pairwise independence)

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

by 2-universal hashing

• Location of balls:

• Total # of collisions:

• Linearity of expectation:

n X1, X2, …, Xn ∈ [m]

Y = ∑
i<j

I[Xi = Xj]

𝔼[Y] = ∑
i<j

Pr[Xi = Xj] ≤ (n
2) 1

m
2-universal

Markov’s Inequality
Markov’s Inequality

For nonnegative random variable , for any ,

X t > 0

Pr[X ≥ t] ≤
𝔼[X]

t

Let Y = {1 X ≥ t
0 o.w.

⟹ Y ≤ ⌊ X
t ⌋ ≤

X
t

Pr[X ≥ t] = 𝔼[Y] ≤ 𝔼 [X
t] =

𝔼[X]
t

Birthday Paradox (pairwise independence)

n balls are thrown into m bins:

event : each bin receives balls ℰ ≤ 1

by 2-universal hashing

• Location of balls:

• Total # of collisions:

• Linearity of expectation:

n X1, X2, …, Xn ∈ [m]

Y = ∑
i<j

I[Xi = Xj]

𝔼[Y] = ∑
i<j

Pr[Xi = Xj] ≤ (n
2) 1

m
2-universal

Pr[¬ℰ] = Pr[Y ≥ 1] ≤ 𝔼[Y]• Markov’s inequality:

when

n ≤ 2mϵ

≤ ϵ

Perfect Hashing

 of size n S = {a, b, c, d, e, f} ⊆ [N]

af cb de

h

Table T:
m

2-universal Pr[imperfect][N] ! [m]

Query(x):

retrieve hash function h;

check whether T[h(x)] = x;

=
n(n − 1)

2m

For 2-universal family from to , if , for any
of size , there is an that cause no collisions over .

ℋ [N] [m] m > (n
2) S ⊆ [N]

n h ∈ ℋ S

FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984)

540 M.L . FREDMAN, J. KOMLOS, AND E. SZEMERI~DI

COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x mod
p)mod r 2 is one-to-one when restrtcted to W.

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j) <- 1
for all j. I"!

Given S c U, [S I = n, our technique for representing the set S works as follows.
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as
determined by the value of the function f(x) = (kx mod p)mod n; pointers to
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n),
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first
location of Tj we store I W~I, and in the second location we store the value k'
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12]
+ 2 of block Tj.

A membership query for q is executed as follows:

1. Set k = T[0] and setj = (kq mod p)mod n.
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the

quantities [I11::1 and k' in the first two locations of block Tj.
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q

lies in this cell.

A query requires five probes, and our choice of k in Corollary 1 implies that the
size of T is at most 6n. An example is provided below.

Example
m - - 3 0 , p = 3 1 , n = 6 , S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1

0 1 2 3 4 5 6

12 13 14 15 16 17 18 19 20 21 22
1111141 1211 1 5 1 2 1 I I 1 2 1 3 1 I 1181301
I W21k' I W4I k ' I WsI k '

23 24
I l l 1 1151
I W61 k '

A query for 30 is processed as follows:

1. k = T[0] = 2 , j = (30.2 mod 31)mod 6 = 5.
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two

elements and that k' --- 3.
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5

and find that 30 is indeed present.

The time required to construct the representation for S might be as bad as O(mn)
in the worst case; finding k may require testing many possible values before a
suitable one is found. However, by increasing the size of T by a constant factor,

• Space cost: words (each of bits)

• Time cost: for each query in the worst case

O(n) O(log N)
O(1)

Data: a set of items

Query: an item

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S

FKS Perfect Hashing

h

B1 B2 Bn

buckets:

n itemsS :

[N]� [n]primary hashing

h2 hnh1

� �perfect hashing for B1 perfect hashing for Bn

FKS Perfect Hashing

perfect hashing for B1 perfect hashing for Bn

h2 hn

h

B1 B2 Bn

�

h1

�

[N]� [n]
Query(x):

retrieve primary hash h;

goto bucket ;

retrieve secondary hash ;

check whether ;

i = h(x)
hi

Ti[hi(x)] = x

Set of size S ⊆ [N] n

using space |B1 |2 using space |Bn |2

• from 2-universal family s.t. is perfect for for all ∃ h1, …, hn hi Bi i

Collision Number
n balls are thrown into m bins by 2-universal hashing

• Location of bins:

Collision #:

• Linearity of expectation:

• Size of the i-th bin:

n X1, X2, …, Xn ∈ [m]
Y = ∑

i<j

I[Xi = Xj]

𝔼[Y] = ∑
i<j

Pr[Xi = Xj]

|Bi |

≤ (n
2) 1

m
2-universal

Y =
n

∑
i=1

(|Bi |
2) =

1
2

n

∑
i=1

|Bi | (|Bi | − 1) ⟹ 𝔼 [
n

∑
i=1

|Bi |
2] =

n(n − 1)
m

+ n

FKS Perfect Hashing

perfect hashing for B1 perfect hashing for Bn

h2 hn

h

B1 B2 Bn

�

h1

�

[N]� [n]
Query(x):

retrieve primary hash h;

goto bucket ;

retrieve secondary hash ;

check whether ;

i = h(x)
hi

Ti[hi(x)] = x

Set of size S ⊆ [N] n

• from a 2-universal family s.t. the total space cost is O(n)∃h
using space |B1 |2 using space |Bn |2

FKS Perfect Hashing
(Fredman, Komlós, Szemerédi, 1984)

540 M.L . FREDMAN, J. KOMLOS, AND E. SZEMERI~DI

COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x mod
p)mod r 2 is one-to-one when restrtcted to W.

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j) <- 1
for all j. I"!

Given S c U, [S I = n, our technique for representing the set S works as follows.
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as
determined by the value of the function f(x) = (kx mod p)mod n; pointers to
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n),
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first
location of Tj we store I W~I, and in the second location we store the value k'
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12]
+ 2 of block Tj.

A membership query for q is executed as follows:

1. Set k = T[0] and setj = (kq mod p)mod n.
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the

quantities [I11::1 and k' in the first two locations of block Tj.
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q

lies in this cell.

A query requires five probes, and our choice of k in Corollary 1 implies that the
size of T is at most 6n. An example is provided below.

Example
m - - 3 0 , p = 3 1 , n = 6 , S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1

0 1 2 3 4 5 6

12 13 14 15 16 17 18 19 20 21 22
1111141 1211 1 5 1 2 1 I I 1 2 1 3 1 I 1181301
I W21k' I W4I k ' I WsI k '

23 24
I l l 1 1151
I W61 k '

A query for 30 is processed as follows:

1. k = T[0] = 2 , j = (30.2 mod 31)mod 6 = 5.
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two

elements and that k' --- 3.
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5

and find that 30 is indeed present.

The time required to construct the representation for S might be as bad as O(mn)
in the worst case; finding k may require testing many possible values before a
suitable one is found. However, by increasing the size of T by a constant factor,

• space, time in the worst case

• Dynamic version: [Dietzfelbinger, Karlin, Mehlhorn, Meyer

auf der Heide, Rohnert, Tarjan, 1984]

O(n log N) O(1)

Data: a set of items

Query: an item

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S

Optimal Dynamic Perfect Hashing
(Upper Bound, STOC 2022)

Optimal Dynamic Perfect Hashing
(Lower Bound, FOCS 2023)

Data Structure for Set
Data: a set of items

Query: an item

Determine whether .

S n x1, x2, …, xn ∈ U = [N]
x ∈ U

x ∈ S
• Space cost: size of data structure (in bits)

• entropy of a set: bits (when)

• Sketch: lossy representation of using < entropy space

log (N
n) = O(n log N) N ≫ n

S

Approximate Set

• uniform hash function (to be fixed)h : U → [m] m

Data Structure: bit array

 is initialized to all 0’s;

for each : set ;

Query : answer “yes” iff

A ∈ {0,1}m

A
xi ∈ S A[h(xi)] = 1

x A[h(x)] = 1

• : always correct

• : false positive

x ∈ S
x ∉ S Pr [A[h(x)] = 1] = 1 − (1 − 1/m)n ≈ 1 − e−n/m

Data: a set of items

Query: an item

Answer whether with bounded error.

S n x1, x2, …, xn ∈ U = [N]
x ∈ U
x ∈ S

Bloom Filters (Bloom 1970)

• uniform & independent hash function h1, …, hk : U → [m]

Data Structure: bit array

 is initialized to all 0’s;

for each : set for all ;

Query : “yes” iff for all

A ∈ {0,1}m

A
xi ∈ S A[hj(xi)] = 1 1 ≤ j ≤ k

x A[hj(x)] = 1 1 ≤ j ≤ k

(and to be fixed)k m

Data: a set of items

Query: an item

Answer whether with bounded error.

S n x1, x2, …, xn ∈ U = [N]
x ∈ U
x ∈ S

Bloom Filters (Bloom 1970)

• uniform & independent hash function h1, …, hk : U → [m]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

xy z

w

1 1 11 1 11

v false positive!

h1 h2 h3

Data Structure: bit array

 is initialized to all 0’s;

for each : set for all ;

Query : “yes” iff for all

A ∈ {0,1}m

A
xi ∈ S A[hj(xi)] = 1 1 ≤ j ≤ k

x A[hj(x)] = 1 1 ≤ j ≤ k

• uniform & independent hash function h1, …, hk : U → [m]
Data: set of size Query: S ⊆ U n x ∈ U

• : always correct

• : false positive

x ∈ S
x ∉ S

≤ (1 − (1 − 1/m)kn)k ≈ (1 − e−kn/m)k

Data Structure: bit array

 is initialized to all 0’s;

for each : set for all ;

Query : “yes” iff for all

A ∈ {0,1}m

A
xi ∈ S A[hj(xi)] = 1 1 ≤ j ≤ k

x A[hj(x)] = 1 1 ≤ j ≤ k

Pr [∀1 ≤ j ≤ k : A[hj(x)] = 1]
= (Pr [A[hj(x)] = 1])

k

= (1 − Pr [A[hj(x)] = 0])
k

Data Structure: bit array

 is initialized to all 0’s;

for each : set for all ;

Query : “yes” iff for all

A ∈ {0,1}m

A
xi ∈ S A[hj(xi)] = 1 1 ≤ j ≤ k

x A[hj(x)] = 1 1 ≤ j ≤ k

• uniform & independent hash function h1, …, hk : U → [m]
Data: set of size Query: S ⊆ U n x ∈ U

• : always correct

• : false positive

x ∈ S
x ∉ S

≤ (1 − (1 − 1/m)kn)k ≈ (1 − e−kn/m)k

choose

k = c ln 2
m = cn

= 2−c ln 2 ≤ (0.6185)c

Pr [∀1 ≤ j ≤ k : A[hj(x)] = 1]
= (Pr [A[hj(x)] = 1])

k

= (1 − Pr [A[hj(x)] = 0])
k

Bloom Filters (Bloom 1970)

• uniform & independent hash function h1, …, hk : U → [m]

• choose and

• space cost: bits, time cost:

• false positive

k = c ln 2 m = cn
m = cn k = c ln 2

≤ (0.6185)c

Data: a set of items

Query: an item

Answer whether with bounded error.

S n x1, x2, …, xn ∈ U = [N]
x ∈ U
x ∈ S

Data Structure: bit array

 is initialized to all 0’s;

for each : set ;

Query : answer “yes” iff

A ∈ {0,1}m

A
xi ∈ S A[h(xi)] = 1

x A[h(x)] = 1

Distinct Elements
(Frequency Moments)

Count Distinct Elements
Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}
• Data stream model: input data item comes one at a time

• Naïve algorithm: store all distinct data items using bits

• Sketch: (lossy) representation of data using space

• Lower bound (Alon-Matias-Szegedy): any deterministic (exact or

approx.) algorithm must use bits of space in the worst case

Ω(z log N)

≪ z

Ω(N)

x1 x2 xn

Algorithm
an estimation of
f(x1, …, xn) = {x1, x2, …, xn}

Count Distinct Elements

• Data stream model: input data item comes one at a time

• -estimator: randomized variable

(ϵ, δ) ̂Z

Pr [(1 − ϵ)z ≤ ̂Z ≤ (1 + ϵ)z] ≥ 1 − δ

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical
accuracy of 5% and in a single pass the total vocabulary of Shakespeare.

——Durand and Flajolet 2003

x1 x2 xn

Algorithm ̂Z

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

• (idealized) uniform hash function

• the same hash value

• : uniform and independent values in

• partition into subintervals (with identically distributed lengths)

h : U → [0,1]
xi = xj ⟶ h(xi) = h(xj) ∈r [0,1]

{h(x1), …, h(xn)} z × [0,1]

[0,1] z + 1

Simple Uniform Hash Assumption (SUHA):

A uniform function is available, whose preprocessing,
representation and evaluation are considered to be easy.

𝔼 [min
1≤i≤n

h(xi)] = 𝔼[length of a subinterval] =
1

z + 1
(by symmetry)

• estimator: ?̂Z =
1

mini h(xi)
− 1 Variance is too large!

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Markov’s Inequality
Markov’s Inequality

For nonnegative random variable , for any ,

X t > 0

Pr[X ≥ t] ≤
𝔼[X]

t

Corollary

For random variable and nonnegative-valued
function , for any ,

X
f t > 0

Pr[f(X) ≥ t] ≤
𝔼[f(X)]

t

Chebyshev’s Inequality
Chebyshev’s Inequality

For random variable , for any ,

X t > 0

Pr [|X − 𝔼[X] | ≥ t] ≤
Var[X]

t2

• Variance:

Var[X] = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[X])2

Apply Markov’s inequality to :Y = (X − 𝔼[X])2

Pr [|X − 𝔼[X] | ≥ t] = Pr[Y ≥ t2] ≤
𝔼 [Y]

t2
≤

Var[X]
t2

Pr [̂Z < (1 − ϵ)z or ̂Z > (1 + ϵ)z] ≤ δ

• (idealized) uniform hash function h : U → [0,1]

Min Sketch:

let ;

return ;

Y = min
1≤i≤n

h(xi)

̂Z =
1
Y

− 1

• By symmetry:

• Goal:

𝔼 [Y] =
1

n + 1

Y −
1

z + 1
>

ϵ/2
z + 1

assuming ϵ ≤ 1/2

Y − 𝔼[Y] >
ϵ/2

z + 1

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

• Uniform independent hash values:

•

H1, …, Hz ∈ [0,1]

Y = min
1≤i≤z

Hi

0 1

geometry
probability: pdf: p(y) = z(1 − y)z−1

𝔼[Y2] = ∫
1

0
y2p(y) dy = ∫

1

0
y2z(1 − y)z−1 dy

Pr[Y > y] = (1 − y)z

=
2

(z + 1)(z + 2)

Var[Y] = 𝔼[Y2] − 𝔼[Y]2 =
z

(z + 1)2(z + 2)
≤

1
(z + 1)2

• (idealized) uniform hash function h : U → [0,1]

Min Sketch:

let ;

return ;

Y = min
1≤i≤n

h(xi)

̂Z =
1
Y

− 1

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Y − 𝔼[Y] >
ϵ/2

z + 1
Pr [Y − 𝔼[Y] >

ϵ/2
z + 1] ≤

4
ϵ2

Pr [̂Z < (1 − ϵ)z or ̂Z > (1 + ϵ)z] ≤ δ

assuming ϵ ≤ 1/2

Var[Y] ≤
1

(z + 1)2

(Chebyshev)

• (idealized) uniform hash function h : U → [0,1]
• By symmetry:

• Goal:

𝔼 [Y] =
1

z + 1

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Min Sketch:

let ;

return ;

Y = min
1≤i≤n

h(xi)

̂Z =
1
Y

− 1

The Mean Trick (for Variance Reduction)

• Variance and covariance:

• Useful properties:

Var[X] = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[X])2

Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

Var[X + a] = Var[X]
Var[aX] = a2Var[X]

Var [∑
i

Xi] = ∑
i

Var[Xi] + ∑
i≠j

Cov(Xi, Xj)

• For pairwise independent identically distributed ’s:Xi

Var [1
k

k

∑
i=1

Xi] =
1
k2

k

∑
i=1

Var[Xi] =
1
k

Var[X1]

• uniform & independent hash functions h1, …, hk : U → [0,1]

Min Sketch:

for each , let ;

return where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z =
1
Y

− 1 Y =
1
k

k

∑
j=1

Yj

𝔼 [Yj] =
1

z + 1

Var[Yj] ≤
1

(z + 1)2

• For every :1 ≤ j ≤ k

𝔼 [Y] =
1

z + 1

Var [Y] ≤
1

k(z + 1)2

linearity of
expectation

independence

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Y − 𝔼 [Y] >
ϵ/2

z + 1
Pr [Y − 𝔼 [Y] >

ϵ/2
z + 1] ≤

4
kϵ2

• Goal: Pr [̂Z < (1 − ϵ)z or ̂Z > (1 + ϵ)z] ≤ δ

assuming ϵ ≤ 1/2

(Chebyshev)

k = ⌈ 4
ϵ2δ ⌉Set

≤ δ

• uniform & independent hash functions h1, …, hk : U → [0,1]

Min Sketch:

for each , let ;

return where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z =
1
Y

− 1 Y =
1
k

k

∑
j=1

Yj

𝔼 [Y] =
1

z + 1

Var [Y] ≤
1

k(z + 1)2

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Min Sketch:

for each , let ;

return where ;

1 ≤ j ≤ k Yj = min
1≤i≤n

hj(xi)

̂Z =
1
Y

− 1 Y =
1
k

k

∑
j=1

Yj

• Space cost: real numbers in

• Storing idealized hash functions.

k = O (1
ϵ2δ) [0,1]

k

Pr [(1 − ϵ)z ≤ ̂Z ≤ (1 + ϵ)z] ≥ 1 − δ

set k = ⌈4/(ϵ2δ)⌉

• uniform & independent hash functions h1, …, hk : U → [0,1]

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ U = [N]

z = {x1, x2, …, xn}

Universal Hashing

Universal Hash Family (Carter and Wegman 1979):

A family of hash functions in is -universal
if for any distinct ,

.

Moreover, is strongly -universal (-wise independent)
if for any distinct and any ,

.

ℋ U → [m] k
x1, …, xk ∈ U

Pr
h∈ℋ

[h(x1) = ⋯ = h(xk)] ≤
1

mk−1

ℋ k k
x1, …, xk ∈ U y1, …, yk ∈ [m]

Pr
h∈ℋ [

k

⋀
i=1

h(xi) = yi] =
1

mk

k-Universal Hash Family

• Linear congruential hashing:

• Represent for sufficiently large prime

•

•

• Degree- polynomial in finite field with random coefficients

• Hashing between binary fields:

(a*x+b)>>(w-l)

U ⊆ ℤp p

ha,b(x) = ((ax + b) mod p) mod m

ℋ = {ha,b ∣ a ∈ ℤp∖{0}, b ∈ ℤp}

k
GF(2w) → GF(2l)

ha,b(x) =

hash functions h : U → [m]

Theorem:

The linear congruential family is 2-wise independent. ℋ

Flajolet-Martin Algorithm
Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}
• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Pr [̂Z <
z
C
 or ̂Z > C ⋅ z] ≤

3
C

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}
• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Yr = ∑
x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]
Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Let

(linearity of expectation)

𝔼[Yr] = ∑
x∈{x1,…,xn}

Pr [zeros (h(x)) ≥ r] = z2−r

(pairwise independence)
Var[Yr] = ∑

x∈{x1,…,xn}

Var [I[zeros (h(x)) ≥ r]] = z2−r(1 − 2−r) ≤ z2−r

Pairwise Independent Trials

Corollary (Chebyshev’s Inequality):

If is a sum of pairwise independent random variables taking
values in , for any ,

X
{0,1} t > 0

Pr [|X − 𝔼[X] | ≥ t] ≤
𝔼[X]

t2

Proposition:

If is a sum of pairwise independent random variables taking
values in , then .

X
{0,1} Var[X] ≤ 𝔼[X]

Var[X] = ∑
i

Var[Xi] = ∑
i

(𝔼[X2
i] − 𝔼[Xi]2) = ∑

i

(𝔼[Xi] − 𝔼[Xi]2)

= 𝔼[X] − ∑
i

𝔼[Xi]2 ≤ 𝔼[X]

• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Yr = ∑
x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]
Let

(linearity of expectation)

𝔼[Yr] = ∑
x∈{x1,…,xn}

Pr [zeros (h(x)) ≥ r] = z2−r

(pairwise independence) Var[Yr] ≤ 𝔼[Yr] ≤ z2−r

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}

Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

𝔼[Yr] = z2−r Var[Yr] ≤ z2−r

Let

(denote)r* = ⌈log2 Cz⌉ Pr [̂Z > Cz]
≤ Pr[Yr* > 0]

≤ 1/C

≤ Pr[R ≥ r*]

(observe)R = max{r : Yr > 0} = Pr[Yr* ≥ 1]

≤ 𝔼[Yr*] = z /2r*(Markov’s inequality)

Yr = ∑
x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}

Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

(denote)r** = ⌈log2(z /C)⌉ Pr [̂Z < z /C]
≤ Pr[Yr** = 0]

≤ Pr[R < r**]

(observe)R = max{r : Yr > 0}

(Chebyshev’s inequality) ≤ Var[Yr**]/𝔼[Yr**]2 ≤ 2r**/z
≤ 2/C

• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

𝔼[Yr] = z2−r Var[Yr] ≤ z2−r

Let
Yr = ∑

x∈{x1,…,xn}

I [zeros (h(x)) ≥ r]

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}

Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

• 2-wise independent hash function

• For , let denote # of trailing 0’s

h : [2w] → [2w]
y ∈ [2w] zeros(y) = max{i : 2i |y}

Flajolet-Martin Algorithm:

let ;

return ;

R = max
1≤i≤n

zeros(h(xi))

̂Z = 2R

Pr [̂Z <
z
C
 or ̂Z > C ⋅ z] ≤

3
C

• Space cost: bits for maintaining

• bits for storing 2-wise independent hash function

O(log log N) R
O(log N)

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N] ⊆ [2w]

z = {x1, x2, …, xn}

BJKST Algorithm
Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N]

z = {x1, x2, …, xn}
• 2-wise independent hash function h : [N] → [M] = {1,…, M}

BJKST Algorithm:

let be the smallest hash values among

;

return ;

Y1, …, Yk k
{ h(x1), h(x2)…, h(xn) }

̂Z =
kM
Yk

(Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan, 2002)

• Goal: Pr [̂Z < (1 − ϵ)z or ̂Z > (1 + ϵ)z] ≤ δ

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N]

z = {x1, x2, …, xn}
• 2-wise independent hash function h : [N] → [M] = {1,…, M}

assuming ϵ ≤ 1

Yk −
kM
z

>
ϵ
2

⋅
kM
z

BJKST Algorithm:

let be the smallest hash values among

;

return ;

Y1, …, Yk k
{ h(x1), h(x2)…, h(xn) }

̂Z =
kM
Yk

• Goal: Pr [Yk −
kM
z

>
ϵ
2

⋅
kM
z] ≤ δ

• uniform and 2-wise independent

• let be these elements in non-decreasing order

X1, …, Xn ∈ [N3]
Y1, …, Yz

V =
z

∑
i=1

I [Xi ≤ (1 −
ϵ
2) kM

z] W =
z

∑
i=1

I [Xi ≤ (1 +
ϵ
2) kM

z]Let

𝔼[V] = (1 −
ϵ
2

± o(1)) k 𝔼[W] = (1 +
ϵ
2

± o(1)) k

 Yk < (1 −
ϵ
2) k(M + 1)

z
⟹ V ≥ k Yk > (1 +

ϵ
2) k(M + 1)

z
⟹ W ≤ k

(Chebyshev’s inequality for sum of pairwise independent trials)

Pr[V ≥ k] ≤
8

kϵ2 Pr[W ≤ k] ≤
8

kϵ2

Set k = ⌈ 16
ϵ2δ ⌉

BJKST Algorithm:

let be the smallest hash values among

;

return ;

Y1, …, Yk k
{ h(x1), h(x2)…, h(xn) }

̂Z =
kM
Yk

• 2-wise independent hash function h : [N] → [N3]

Set k = ⌈16/(ϵ2δ)⌉

• Space cost: bits when O(k log N) = O(ϵ−2 log N) δ = Ω(1)

Pr [(1 − ϵ)z ≤ ̂Z ≤ (1 + ϵ)z] ≥ 1 − δ

Input: a sequence

Output: an estimation of

x1, x2, …, xn ∈ [N]

z = {x1, x2, …, xn}

• Data stream:

• for each , define frequency of as

-th frequency moments:

• Space complexity for -estimation: constant

• for : [Alon-Matias-Szegedy ’96]

• for : [Indyk-Woodruff ’05]

• Count distinct elements:

• optimal algorithm [Kane-Nelson-Woodruff ’10]: bits

x1, x2, …, xn ∈ U
x ∈ U x fx = |{i : xi = x} |

k Fk = ∑
x∈U

fk
x

(ϵ, δ) ϵ, δ
k ≤ 2 polylog(N)
k > 2 Θ̃(N1−2/k)

F0

O(ϵ−2 + log N)

Frequency Moments

Frequency Estimation

Frequency Estimation
Data: a sequence

Query: an item

Estimate the frequency of .

x1, x2, …, xn ∈ U = [N]
x ∈ U

fx = |{i : xi = x} | x

• Data stream model: input data item comes one at a time

x1 x2 xn

Algorithm

Frequency Estimation

• Data stream model: input data item comes one at a time

x1 x2 xn

Algorithm

query x

f̂x : estimation of fx
within additive error

Pr [| ̂fx − fx | ≥ ϵn] ≤ δ

• Heavy hitters: items that appears times> ϵn

Data: a sequence

Query: an item

Estimate the frequency of .

x1, x2, …, xn ∈ U = [N]
x ∈ U

fx = |{i : xi = x} | x

Count-Min Sketch

• independent 2-universal hash functions k h1, …, hk : [N] → [m]

Count-Min Sketch: (initialized to all 0’s)

Upon each : for all ;

Query : return

CMS[k][m]
xi CMS[j][hj(xi)] + + 1 ≤ j ≤ k

x ̂fx = min
1≤ j≤k

CMS[j][hj(x)]

Observation: for all CMS[j][hj(x)] ≥ fx 1 ≤ j ≤ k

fx ≤ ̂fx ≤ ?

Data: a sequence

Query: an item

Estimate the frequency of .

x1, x2, …, xn ∈ U = [N]
x ∈ U

fx = |{i : xi = x} | x

Data: sequence Query: x1, …, xn ∈ [N] x ∈ [N]
frequency of fx = |{i : xi = x} | x

CMS[j][hj(x)] = fx + ∑
y ∈ {x1, …, xn}∖{x}

hj(y) = hj(x)

fy

Count-Min Sketch: (initialized to all 0’s)

Upon each : for all ;

Query : return

CMS[k][m]
xi CMS[j][hj(xi)] + + 1 ≤ j ≤ k

x ̂fx = min
1≤ j≤k

CMS[j][hj(x)]

• for any and any :x ∈ [N] 1 ≤ j ≤ k

𝔼 [CMS[j][hj(x)]] = fx + ∑
y∈{x1,…,xn}∖{x}

fy Pr[hj(y) = hj(x)]

• independent 2-universal hash functions k h1, …, hk : [N] → [m]

Count-Min Sketch: (initialized to all 0’s)

Upon each : for all ;

Query : return

CMS[k][m]
xi CMS[j][hj(xi)] + + 1 ≤ j ≤ k

x ̂fx = min
1≤ j≤k

CMS[j][hj(x)]

𝔼 [CMS[j][hj(x)]] = fx + ∑
y∈{x1,…,xn}∖{x}

fy Pr[hj(y) = hj(x)]

≤ fx +
1
m ∑

y∈{x1,…,xn}∖{x}

fy ≤ fx +
1
m ∑

y∈{x1,…,xn}

fy = fx +
n
m

• for any and any :x ∈ [N] 1 ≤ j ≤ k

• independent 2-universal hash functions k h1, …, hk : [N] → [m]

Data: sequence Query: x1, …, xn ∈ [N] x ∈ [N]
frequency of fx = |{i : xi = x} | x

Count-Min Sketch: (initialized to all 0’s)

Upon each : for all ;

Query : return

CMS[k][m]
xi CMS[j][hj(xi)] + + 1 ≤ j ≤ k

x ̂fx = min
1≤ j≤k

CMS[j][hj(x)]

:

∀x, ∀j CMS[j][hj(x)] ≥ fx
𝔼 [CMS[j][hj(x)]] ≤ fx +

n
m

(Markov’s inequality) Pr [CMS[j][hj(x)] − fx ≥ ϵn] ≤
1

ϵm

Pr [| ̂fx − fx | ≥ ϵn] = Pr [∀1 ≤ j ≤ k : CMS[j][hj(x)] − fx ≥ ϵn] ≤ (1
ϵm)

k

• independent 2-universal hash functions k h1, …, hk : [N] → [m]

Data: sequence Query: x1, …, xn ∈ [N] x ∈ [N]
frequency of fx = |{i : xi = x} | x

Count-Min Sketch: (initialized to all 0’s)

Upon each : for all ;

Query : return

CMS[k][m]
xi CMS[j][hj(xi)] + + 1 ≤ j ≤ k

x ̂fx = min
1≤ j≤k

CMS[j][hj(x)]

Pr [| ̂fx − fx | ≥ ϵn] ≤ (1
ϵm)

k

• choose and

• space cost: bits

• bits for hash functions

• time cost for query:

m = ⌈e/ϵ⌉ k = ⌈ln(1/δ)⌉
O (1

ϵ
log (1/δ) log n)

O (log (1/δ) log N)
O (log (1/δ))

≤ δ

• independent 2-universal hash functions k h1, …, hk : [N] → [m]

Data: a sequence

Query: an item

Estimate the frequency of .

x1, x2, …, xn ∈ U = [N]
x ∈ U

fx = |{i : xi = x} | x

