Advanced Algorithms（Fall 2023）
 Linear Programming Rounding

Lecturers：尹一通，刘景铖，栗师
Nanjing University

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Algorithm Design Based on Linear Programming (LP)

- Opti. Problem $X \Longleftrightarrow$ Integer Program (IP) $\xlongequal{\text { relax }}$ LP
- Integer programming is NP-hard; linear programming is in P
- For some problems LP $\equiv \mathrm{IP} \Longrightarrow$ exact algorithms
- For some problems, LP $\not \equiv \mathrm{IP}$
- solve LP to obtain a fractional solution,
- round it to an integral solution
\Longrightarrow approximation algorithms

Linear Programming (LP), Linear Program (LP)

$$
\begin{aligned}
\min 7 x_{1} & +4 x_{2} \\
x_{1}+x_{2} & \geq 5 \\
x_{1}+2 x_{2} & \geq 6 \\
4 x_{1}+x_{2} & \geq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- optimum solution:

$$
x_{1}=1, x_{2}=4
$$

- optimum value $=$

$$
7 \times 1+4 \times 4=23
$$

- general case: many variables
 and constraints, but objective and constraints are linear

Standard Form of Linear Programs

$$
\begin{gathered}
\min \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \geq b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \geq b_{2} \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n} \geq b_{m} \\
x_{1}, x_{2}, \cdots, x_{n} \geq 0
\end{gathered}
$$

- n : number of variables m : number of constraints
- \leq constraints? equlities?
- variables can be negative? maximization problem?

Standard Form of Linear Programs

$$
\begin{aligned}
x:=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}, & c:=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \in \mathbb{R}^{n}, \\
A & :=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right) \in \mathbb{R}^{n \times m}, \quad b:=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) \in \mathbb{R}^{m} .
\end{aligned}
$$

$$
\begin{gathered}
\min \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \geq b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \geq b_{2} \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n} \geq b_{m} \\
x_{1}, x_{2}, \cdots, x_{n} \geq 0
\end{gathered}
$$

Standard Form of Linear Program

$$
\begin{aligned}
\min & c^{\mathrm{T}} x \\
A x & \geq b \\
x & \geq 0
\end{aligned}
$$

- \geq : coordinate-wise less than or equal to

History

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem
- [Dantzig 1946]: simplex method
- [Khachiyan 1979]: ellipsoid method, polynomial time, proved linear programming is in P
- [Karmarkar, 1984]: interior-point method, polynomial time, algorithm is pratical

Preliminaries

- feasible region: the set of x 's satisfying $A x \geq b, x \geq 0$
- feasible region is a polyhedron
- if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope

Preliminaries

- x is a convex combination of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ if the following condition holds: there exist $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{t} \in[0,1]$ such that
$\lambda_{1}+\lambda_{2}+\cdots+\lambda_{t}=1, \quad \lambda_{1} x^{(1)}+\lambda_{2} x^{(2)}+\cdots+\lambda_{t} x^{(t)}=x$
- the set of convex combinations of $x^{(1)}, x^{(2)}, \cdots, x^{(t)}$ is called the convex hull of these points

Preliminaries

- let P be polytope, $x \in P$. If there are no other points $x^{\prime}, x^{\prime \prime} \in P$ such that x is a convex combination of x^{\prime} and $x^{\prime \prime}$, then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

$$
P=\operatorname{convex}-h u l l\left(\left\{x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right\}\right)
$$

Preliminaries

Lemma Let $x \in \mathbb{R}^{n}$ be an extreme point in a n-dimensional polytope. Then, there are n constraints in the definition of the polytope, such that x is the unique solution to the linear system obtained from the n constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

- if feasible region is empty, then its value is ∞
- if the feasible region is unbounded, then its value can be $-\infty$

Algorithms for Linear Programming

algorithm	running time	practice
Simplex Method	exponential time	fast
Ellipsoid Method	polynomial time	slow
Interior Point Method	polynomial time	fast

Simplex Method

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- the number of iterations might be expoentially large; but algorithm runs fast in practice
- [Spielman-Teng,2002]: smoothed analysis

Interior Point Method

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution
- polynomial time

Ellipsoid Method

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
- yes: then the feasible region is not empty
- no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat
- polynomial time, but impractical

Q: The exact running time of these algorithms?

- it depends on many parameters: \#variables, \#constraints, \#(non-zero coefficients), magnitude of integers
- precision issue

Open Problem
Can linear programming be solved in strongly polynomial time algorithm?

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound metheod for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms

Simple Example: Brewery Problem

- Small brewery produces ale and beer.
- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (pounds)	Hops (pounds)	Malt (pounds)	Profit $(\$)$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Constraint	480	160	1190	

- How can brewer maximize profits?

[^0]Brewery Problem

Beverage	Corn (pounds)	Hops (pounds)	Malt (pounds)	Profit $(\$)$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Constraint	480	160	1190	

$$
\begin{aligned}
\max \quad 13 x & +23 y & & \text { Profit } \\
5 x+15 y & \leq 480 & & \text { Corn } \\
4 x+4 y & \leq 160 & & \text { Hops } \\
35 x+20 y & \leq 1190 & & \text { Malt } \\
x, y & \geq 0 & &
\end{aligned}
$$

[^1]
Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Def. A polytope $P \subseteq \mathbb{R}^{n}$ is said to be integral, if all vertices of P are in \mathbb{Z}^{n}.

- For some combinatorial optimization problems, a polynomial-sized LP $A x \leq b$ already defines an integral polytope, whose vertices correspond to valid integral solutions.
- Such a problem can be solved directly using the LP:

$$
\max / \min \quad c^{\mathrm{T}} x \quad A x \leq b
$$

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching
Input: bipartite graph $G=(L \uplus R, E)$ edge weights $w \in \mathbb{Z}_{>0}^{E}$
Output: a matching $M \subseteq E$ so as to maximize $\sum_{e \in M} w_{e}$

LP Relaxation

$$
\max \sum_{e \in E} w_{e} x_{e}
$$

$\sum_{e \in \delta(v)} x_{e} \leq 1 \quad \forall v \in L \cup R$

$$
x_{e} \geq 0 \quad \forall e \in E
$$

- In IP: $x_{e} \in\{0,1\}: e \in M$?
- $\chi^{M} \in\{0,1\}^{E}: \chi_{e}^{M}=1$ iff $e \in M$

Theorem The LP polytope is integral: It is the convex hull of $\left\{\chi^{M}: M\right.$ is a matching $\}$.

Theorem The LP polytope is integral: It is the convex hull of $\left\{\chi^{M}: M\right.$ is a matching $\}$.

Proof.

- take x in the polytope P
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x^{\prime}, x^{\prime \prime} \in P: x^{\prime} \neq x^{\prime \prime}, x=\frac{1}{2}\left(x^{\prime}+x^{\prime \prime}\right)$
- case 1: fractional edges contain a cycle
- color edges in cycle blue and red
- $x^{\prime}:+\epsilon$ for blue edges, $-\epsilon$ for red edges
- $x^{\prime \prime}:-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
- color edges in a leaf-leaf path blue and red
- $x^{\prime}:+\epsilon$ for blue edges, $-\epsilon$ for red edges
- $x^{\prime \prime}:-\epsilon$ for blue edges, $+\epsilon$ for red edges

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s - t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Example: $s-t$ Flow Polytope

Flow Network

- directed graph $G=(V, E)$, source $s \in V$, sink $t \in V$, edge capacities $c_{e} \in \mathbb{Z}_{>0}, \forall e \in E$
- s has no incoming edges, t has no outgoing edges

Def. A s-t flow is a vector $f \in \mathbb{R}_{\geq 0}^{E}$ satisfying the following conditions:

- $\forall e \in E, 0 \leq f_{e} \leq c_{e}$
(capacity constraints)
- $\forall v \in V \backslash\{s, t\}$,
(flow conservation)

The value of flow f is defined as:

$$
\operatorname{val}(f):=\sum_{e \in \delta \delta^{\mathrm{ou}}(s)} f_{e}=\sum_{e \in \delta^{\mathrm{in}}(t)} f_{e}
$$

Maximum Flow Problem

Input: flow network $(G=(V, E), c, s, t)$
Output: maximum value of a $s-t$ flow f

- Ford-Fulkerson method
- Maximum-Flow Min-Cut Theorem: value of the maximum flow is equal to the value of the minimum s - t cut
- [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022]: nearly linear-time algorithm

LP for Maximum Flow

$$
\begin{aligned}
& \max \sum_{e \in \delta^{\text {in }}(t)} x_{e} \\
& x_{e} \leq c_{e} \quad \forall e \in E \\
& \sum_{e \in \delta^{\text {out }}(v)} x_{e}-\sum_{e \in \delta^{\text {in }}(v)} x_{e}=0 \forall v \in V \backslash\{s, t\} \\
& x_{e} \geq 0 \forall e \in E
\end{aligned}
$$

Theorem The LP polytope is integral.

Sketch of Proof.

- Take any s-t flow x; consider fractional edges E^{\prime}
- Every $v \notin\{s, t\}$ must be incident to 0 or ≥ 2 edges in E^{\prime}
- Ignoring the directions of E^{\prime}, it contains a cycle, or a s - t path
- We can increase/decrease flow values along cyle/path

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time s_{i}, finishes at time f_{i}, and has weight $w_{i}>0$
i and j can be scheduled together iff $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: maximum weight subset of jobs that can be scheduled

- optimum value $=220$
- Classic Problem for Dynamic Programming

Weighted Interval Scheduling Problem

Linear Program

$$
\max \sum_{j \in[n]} x_{j} w_{j}
$$

$$
\begin{aligned}
\sum_{j \in[n]: t \in\left[s_{j}, f_{j}\right)} x_{j} \leq 1 & \forall t \in[T] \\
x_{j} & \geq 0
\end{aligned} \quad \forall j \in[n] ~ \$
$$

Theorem The LP polytope is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be tototally unimodular (TUM), if every sub-square of A has determinant in $\{-1,0,1\}$.

Theorem If a polytope P is defined by $A x \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix $A \in\{0,1\}^{m \times n}$ where the 1 's on every column form an interval is TUM.

- So, the matrix for the LP is TUM, and the polytope is integral.

Theorem If a polytope P is defined by $A x \geq b, x \geq 0$ with a totally unimodular matrix A and integral b, then P is integral.

Proof.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\left(\begin{array}{cc}A^{\prime} & 0 \\ 0 & I\end{array}\right) x=\binom{b^{\prime}}{0}$, where
- A^{\prime} is a square submatrix of A with $\operatorname{det}\left(A^{\prime}\right)= \pm 1, b^{\prime}$ is a sub-vector of b,
- and the rows for b^{\prime} are the same as the rows for A^{\prime}.
- Let $x=\binom{x^{1}}{x^{2}}$, so that $A^{\prime} x^{1}=b^{\prime}$ and $x^{2}=0$.
- Cramer's rule: $x_{i}^{1}=\frac{\operatorname{det}\left(A_{i}^{\prime} \mid b\right)}{\operatorname{det}\left(A^{\prime}\right)}$ for every $i \Longrightarrow x_{i}^{1}$ is integer $A_{i}^{\prime} \mid b$: the matrix of A^{\prime} with the i-th column replaced by b

Example for the Proof

$$
\begin{array}{r}
\left(\begin{array}{rrrrr}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \geq\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

The following equation system may give a vertex:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Example for the Proof

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Equivalently, the vertex satisfies

$$
\left(\begin{array}{ccccc}
a_{1,2} & a_{1,3} & 0 & 0 & 0 \\
a_{3,2} & a_{3,3} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{3} \\
0 \\
0 \\
0
\end{array}\right)
$$

Lemma Let $A^{\prime} \in\{0, \pm 1\}^{n \times n}$ such that every row of A^{\prime} contains at most one 1 and one -1 . Then $\operatorname{det}\left(A^{\prime}\right) \in\{0, \pm 1\}$.

Proof.

- wlog assume every row of A^{\prime} contains one 1 and one -1
- otherwise, we can reduce the matrix
- treat A^{\prime} as a directed graph: columns \equiv vertices, rows \equiv arcs
- \#edges $=$ \#vertices \Longrightarrow underlying undirected graph contains a cycle $\Longrightarrow \operatorname{det}\left(A^{\prime}\right)=0$

Lemma Let $A \in\{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1 . Then A is TUM.

Coro. The matrix for s - t flow polytope is TUM; thus, the polytope is integral.

Example for the Proof

$$
\left.\begin{array}{rl}
\left(\begin{array}{ccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
1 & 0 & 0 & -4 & 0 & 0
\end{array}\right) \\
& -\left(\begin{array}{lllll}
0 & -1 & 1 & 0 & 0
\end{array}\right) \\
& +\left(\begin{array}{lllll}
1 & 0 & 1 & -1 & 0
\end{array}\right) \\
03 & -1 \\
0 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 0 \\
5 & 0
\end{array}\right)
$$

Lemma A matrix $A \in\{0,1\}^{m \times n}$ where the 1 's on every row form an interval is TUM.

Proof.

- take any square submatrix A^{\prime} of A,
- the 1's on every row of A^{\prime} form an interval.
- $A^{\prime} M$ is a matrix satisfying condition of first lemma, where

$$
M=\left(\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) \cdot \operatorname{det}(M)=1 .
$$

- $\operatorname{det}\left(A^{\prime} M\right) \in\{0, \pm 1\} \Longrightarrow \operatorname{det}\left(A^{\prime}\right) \in\{0, \pm 1\}$.

Example for the Proof

$\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0\end{array}\right)\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1\end{array}\right) \Longrightarrow\left(\begin{array}{llllc}0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$

- ($\operatorname{col} 1, \operatorname{col} 2-\operatorname{col} 1, \operatorname{col} 3-\operatorname{col} 2, \operatorname{col} 4-\operatorname{col} 3, \operatorname{col} 5-\operatorname{col} 4)$
- every row has at most one 1 , at most one -1

Lemma The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular.

Proof.

- $G=(L \uplus R, E)$: the bipartite graph
- A^{\prime} : obtained from A by negating columns correspondent to R
- each row of A^{\prime} has exactly one +1 , and exactly one -1
- $\Longrightarrow A^{\prime}$ is TUM $\Longleftrightarrow A$ is TUM

Example

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

- remark: bipartiteness is needed. The edge-vertex incidence matrix $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ of a triangle has determinent 2.

Coro. Bipartite matching polytope is integral.

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Approximation Algorithm based on LP Rounding

- Opti. Problem $X \Longleftrightarrow 0 / 1$ Integer Program (IP) $\xlongequal{\text { relax }} \mathrm{LP}$

0/1 Integer Program

$$
\min \quad c^{\mathrm{T}} x
$$

$$
\begin{aligned}
A x & \geq b \\
x & \in\{0,1\}^{n}
\end{aligned}
$$

Linear Program Relaxation

$$
\begin{gathered}
\min \quad c^{\mathrm{T}} x \\
A x \geq b \\
x \in[0,1]^{n}
\end{gathered}
$$

- LP $\leq \mathrm{IP}$
- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in[0,1]^{n}$.
- Round it to an integral $\tilde{x} \in\{0,1\}^{n} \Longleftrightarrow$ solution for X
- Prove $c^{\mathrm{T}} \tilde{x} \leq \alpha \cdot c^{\mathrm{T}} x$, then $c^{\mathrm{T}} \cdot \tilde{x} \leq \alpha \cdot \mathrm{LP} \leq \alpha \cdot \mathrm{IP}=\alpha \cdot$ opt
- $\Longrightarrow \alpha$-approximation

LP Relaxation

$$
\begin{aligned}
\min & c^{\mathrm{T}} x \\
A x & \geq b \\
x & \in[0,1]^{n}
\end{aligned}
$$

Def. The ratio between IP = opt and LP is called the integrality gap of the LP relaxation.

- The approximation ratio based on this analysis can not be better than the worst integrality gap.

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Weighted Vertex Cover Problem

Input: graph $G=(V, E)$, vertex weights $w \in \mathbb{Z}_{>0}^{V}$
Output: vertex cover S of G, to minimize $\sum_{v \in S} w_{v}$

- $x_{v} \in\{0,1\}, \forall v \in V$: indicate if we include v in the vertex cover

Integer Program
 $\min \sum_{v \in V} w_{v} x_{v}$

LP Relaxation
$\min \sum_{v \in V} w_{v} x_{v}$

$$
\begin{aligned}
x_{u}+x_{v} & \geq 1 & & \forall(u, v) \\
x_{v} & \in[0,1] & & \forall v \in V
\end{aligned}
$$

- IP $:=$ value of integer program, $L P:=$ value of linear program
- $\mathrm{LP} \leq \mathrm{IP}=\mathrm{opt}$

Rounding Algorithm

1: Solve LP to obtain solution $\left\{x_{u}^{*}\right\}_{u \in V}$

$$
\triangleright \text { So, } \mathrm{LP}=\sum_{u \in V} w_{u} x_{u}^{*} \leq \mathrm{IP}
$$

2: return $S:=\left\{u \in V: x_{u} \geq 1 / 2\right\}$
Lemma S is a vertex cover of G.

Proof.

- Consider any $(u, v) \in E$: we have $x_{u}^{*}+x_{v}^{*} \geq 1$
- So, $x_{u}^{*} \geq 1 / 2$ or $x_{v}^{*} \geq 1 / 2 \quad \Longrightarrow \quad u \in S$ or $v \in S$.

Rounding Algorithm

1: Solve LP to obtain solution $\left\{x_{u}^{*}\right\}_{u \in V}$

$$
\triangleright \text { So, } \mathrm{LP}=\sum_{u \in V} w_{u} x_{u}^{*} \leq \mathrm{IP}
$$

2: return $S:=\left\{u \in V: x_{u} \geq 1 / 2\right\}$
Lemma S is a vertex cover of G.
Lemma $\operatorname{cost}(S):=\sum_{u \in S} w_{u} \leq 2 \cdot$ LP.
Proof.

$$
\begin{aligned}
\operatorname{cost}(S) & =\sum_{u \in S} w_{u} \leq \sum_{u \in S} w_{u} \cdot 2 x_{u}^{*}=2 \sum_{u \in S} w_{u} \cdot x_{u}^{*} \\
& \leq 2 \sum_{u \in V} w_{u} \cdot x_{u}^{*}=2 \cdot \mathrm{LP}
\end{aligned}
$$

Theorem The algorithm is a 2-approximation algorithm for weighted vertex cover.

Outline

(1) Linear Programming and Rounding
(2) Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
(3) Approximation Algorithms Using LP: LP Rounding
- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

Unrelated Machine Scheduling
Input: $J,|J|=n$: jobs
$M,|M|=m$: machines $p_{i j}$: processing time of job j on machine i
Output: assignment $\sigma: J \mapsto M$:, so as to minimize makespan:

$$
\max _{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{i j}
$$

maximum load=14

- Assumption: we are given a target makespan T, and $p_{i j} \in[0, T] \cup\{\infty\}$
- $x_{i j}$: fraction of j assigned to i

$$
\begin{aligned}
\sum_{i} x_{i j}=1 & \forall j \in J \\
\sum_{j} p_{i j} x_{i j} \leq T & \forall i \in M \\
x_{i j} \geq 0 & \forall i j
\end{aligned}
$$

2-Approximate Rounding Algorithm of

 Shmoys-Tardos

Obs. x between J and sub-machines is a point in the bipartite-matching polytope, where all jobs in J are matched.

- Recall bipartite matching polytope is integral.
- x is a convex combination of matchings.
- Any matching in the combination covers all jobs J.

Lemma Any matching in the combination gives an schedule of makespan $\leq 2 T$.

Lemma Any matching in the combination gives an schedule of makespan $\leq 2 T$.

sub-machines for i

Proof.

- focus on machine i, let $i_{1}, i_{2}, \cdots, i_{a}$ be the sub-machines for i
- assume job k_{t} is assigned to sub-machine i_{t}.

$$
\begin{aligned}
& \quad(\text { load on } i)=\sum_{t=1}^{a} p_{i k_{t}} \leq p_{i k_{1}}+\sum_{t=2}^{a} \sum_{j} x_{i_{t-1} j} \cdot p_{i j} \\
& \leq \\
& p_{i k_{1}}+\sum_{j} x_{i j} p_{i j} \leq T+T=2 T .
\end{aligned}
$$

- fix i, use p_{j} for $p_{i j}$
- $p_{1} \geq p_{2} \geq \cdots \geq p_{7}$
- worst case:
- $1 \rightarrow i 1,2 \rightarrow i 2$
- $4 \rightarrow i 3,7 \rightarrow i 4$

$$
\begin{aligned}
& p_{1} \leq T \\
& p_{2} \leq 0.7 p_{1}+0.3 p_{2} \\
& p_{4} \leq 0.3 p_{2}+0.5 p_{3}+0.2 p_{4} \\
& p_{7} \leq 0.1 p_{4}+0.5 p_{5}+0.2 p_{6}+0.2 p_{7}
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}+p_{2}+p_{4}+p_{7} \leq T+\left(0.7 p_{1}+0.3 p_{2}\right)+\left(0.3 p_{2}+0.5 p_{3}+0.2 p_{4}\right) \\
& +\left(0.1 p_{4}+0.5 p_{5}+0.2 p_{6}+0.2 p_{7}\right) \\
\leq & T+\left(0.7 p_{1}+0.6 p_{2}+0.5 p_{3}+0.3 p_{4}+0.5 p_{5}+0.2 p_{6}+0.4 p_{7}\right) \\
\leq & T+T=2 T
\end{aligned}
$$

Summary

- linear programming, simplex method, interior point method, ellipsoid method
- integral LP polytopes: bipartite matching polytope, s-t flow polytope, weighted interval scheduling polytope
- approximation algorithm using LP rounding
- 2-approximation algorithm for weighted vertex cover
- 2-approximation for unrelated machine scheduling

English－Chinese Translation

Linear Program ：线性规划
Integer Program ：整数规划

Feasible Region ：解域
Polyhedron：凸多面体
Polytope ：有界凸多面体
Vertex／Extreme Point ：顶点
Convex Combination ：凸组合
Convex Hull ：凸包
Dual：对偶
Totally Unimodular ：完全单位模的

[^0]: * http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ LinearProgrammingI.pdf

[^1]: * http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ LinearProgrammingI.pdf

