Advanced Algorithms (Fall 2023)

Linear Programming Rounding

Lecturers: 尹一通, 刘景铖, 栗师

Nanjing University
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Algorithm Design Based on Linear Programming (LP)

Opti. Problem $X \iff$ Integer Program (IP) $\overset{\text{relax}}{\implies}$ LP

Integer programming is NP-hard; linear programming is in P

For some problems $LP \equiv IP \implies$ exact algorithms

For some problems, $LP \neq IP$

- solve LP to obtain a fractional solution,
- **round** it to an integral solution

\implies approximation algorithms
min \ 7x_1 + 4x_2
\[x_1 + x_2 \geq 5 \]
\[x_1 + 2x_2 \geq 6 \]
\[4x_1 + x_2 \geq 8 \]
\[x_1 , x_2 \geq 0 \]

- optimum solution:
 \[x_1 = 1 , x_2 = 4 \]
- optimum value =
 \[7 \times 1 + 4 \times 4 = 23 \]
- general case: many variables and constraints, but objective and constraints are linear
Standard Form of Linear Programs

\[
\begin{align*}
\text{min} & \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{s.t.} & \quad a_{1,1} x_1 + a_{1,2} x_2 + \cdots + a_{1,n} x_n \geq b_1 \\
& \quad a_{2,1} x_1 + a_{2,2} x_2 + \cdots + a_{2,n} x_n \geq b_2 \\
& \quad \vdots \quad \vdots \quad \vdots \\
& \quad a_{m,1} x_1 + a_{m,2} x_2 + \cdots + a_{m,n} x_n \geq b_m \\
& \quad x_1, x_2, \cdots, x_n \geq 0
\end{align*}
\]

- \(n \): number of variables
- \(m \): number of constraints
- \(\leq \): constraints? equalities?
- Variables can be negative? maximization problem?
Standard Form of Linear Programs

\[x := \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad c := \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n, \]

\[A := \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \in \mathbb{R}^{n \times m}, \quad b := \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m. \]
\[
\begin{align*}
\text{min} & \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{subject to} & \quad a_{1,1} x_1 + a_{1,2} x_2 + \cdots + a_{1,n} x_n \geq b_1 \\
& \quad a_{2,1} x_1 + a_{2,2} x_2 + \cdots + a_{2,n} x_n \geq b_2 \\
& \quad \vdots \quad \vdots \quad \vdots \\
& \quad a_{m,1} x_1 + a_{m,2} x_2 + \cdots + a_{m,n} x_n \geq b_m \\
& \quad x_1, x_2, \ldots, x_n \geq 0
\end{align*}
\]

• \(\geq\): coordinate-wise less than or equal to

\[
\begin{align*}
\text{Standard Form of Linear Program} \\
\text{min} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]
[Fourier, 1827]: Fourier-Motzkin elimination method

[Kantorovich, Koopmans 1939]: formulated the general linear programming problem

[Dantzig 1946]: simplex method

[Khachiyan 1979]: ellipsoid method, polynomial time, proved linear programming is in P

[Karmarkar, 1984]: interior-point method, polynomial time, algorithm is practical
feasible region: the set of \(x \)'s satisfying \(Ax \geq b, x \geq 0 \)

feasible region is a polyhedron

if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope

\(x \) is a convex combination of \(x^{(1)}, x^{(2)}, \ldots, x^{(t)} \) if the following condition holds: there exist \(\lambda_1, \lambda_2, \ldots, \lambda_t \in [0, 1] \) such that

\[
\lambda_1 + \lambda_2 + \cdots + \lambda_t = 1, \quad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \cdots + \lambda_t x^{(t)} = x
\]

the set of convex combinations of \(x^{(1)}, x^{(2)}, \ldots, x^{(t)} \) is called the convex hull of these points

let \(P \) be polytope, \(x \in P \). If there are no other points \(x', x'' \in P \) such that \(x \) is a convex combination of \(x' \) and \(x'' \), then \(x \) is called a vertex/extreme point of \(P \)
Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

Lemma Let \(x \in \mathbb{R}^n \) be an extreme point in a \(n \)-dimensional polytope. Then, there are \(n \) constraints in the definition of the polytope, such that \(x \) is the unique solution to the linear system obtained from the \(n \) constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the optimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):
- if feasible region is empty, then its value is \(\infty \)
- if the feasible region is unbounded, then its value can be \(-\infty \)
Algorithms for Linear Programming

<table>
<thead>
<tr>
<th>algorithm</th>
<th>running time</th>
<th>practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplex Method</td>
<td>exponential time</td>
<td>fast</td>
</tr>
<tr>
<td>Ellipsoid Method</td>
<td>polynomial time</td>
<td>slow</td>
</tr>
<tr>
<td>Interior Point Method</td>
<td>polynomial time</td>
<td>fast</td>
</tr>
</tbody>
</table>
Simplex Method

- [Dantzig, 1946]

- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- the number of iterations might be exponentially large; but algorithm runs fast in practice
- [Spielman-Teng, 2002]: smoothed analysis
Interior Point Method

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution
- polynomial time
Ellipsoid Method

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not

- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsoid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the ellipsoid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- polynomial time, but impractical
Q: The exact running time of these algorithms?

- it depends on many parameters: \#variables, \#constraints, \#(non-zero coefficients), magnitude of integers
- precision issue

Open Problem
Can linear programming be solved in strongly polynomial time algorithm?
Applications of Linear Programming

- **domain**: computer science, mathematics, operations research, economics
- **types of problems**: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound method for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms
Simple Example: Brewery Problem *

- Small brewery produces ale and beer.
- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

<table>
<thead>
<tr>
<th>Beverage</th>
<th>Corn (pounds)</th>
<th>Hops (pounds)</th>
<th>Malt (pounds)</th>
<th>Profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ale (barrel)</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Beer (barrel)</td>
<td>15</td>
<td>4</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Constraint</td>
<td>480</td>
<td>160</td>
<td>1190</td>
<td></td>
</tr>
</tbody>
</table>

- How can brewer maximize profits?

Brewery Problem

<table>
<thead>
<tr>
<th>Beverage</th>
<th>Corn (pounds)</th>
<th>Hops (pounds)</th>
<th>Malt (pounds)</th>
<th>Profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ale (barrel)</td>
<td>5</td>
<td>4</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Beer (barrel)</td>
<td>15</td>
<td>4</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Constraint</td>
<td>480</td>
<td>160</td>
<td>1190</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{max} \quad 13x + 23y \\
5x + 15y \leq 480 \\
4x + 4y \leq 160 \\
35x + 20y \leq 1190 \\
x, y \geq 0
\]
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n.

- For some combinatorial optimization problems, a polynomial-sized LP $Ax \leq b$ already defines an integral polytope, whose vertices correspond to valid integral solutions.
- Such a problem can be solved directly using the LP:

$$\max / \min \quad c^T x \quad Ax \leq b.$$
1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - \(s-t \) Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Example: Bipartite Matching Polytope

Maximum Weight Bipartite Matching

Input: bipartite graph $G = (L \cup R, E)$
edge weights $w \in \mathbb{Z}_E > 0$

Output: a matching $M \subseteq E$ so as to maximize $\sum_{e \in M} w_e$

LP Relaxation

$max \sum_{e \in E} w_e x_e$

$\sum_{e \in \delta(v)} x_e \leq 1 \quad \forall v \in L \cup R$

$x_e \geq 0 \quad \forall e \in E$

$\sum_j x_{ij} \leq 1 \quad \sum_i x_{ij} \leq 1$

- In IP: $x_e \in \{0, 1\}: e \in M$?
- $\chi^M \in \{0, 1\}^E$: $\chi^M_e = 1$ iff $e \in M$

Theorem The LP polytope is integral: It is the convex hull of $\{\chi^M : M \text{ is a matching}\}$.
Theorem: The LP polytope is integral: It is the convex hull of \(\{ \chi^M : M \text{ is a matching} \} \).

Proof.

- Take \(x \) in the polytope \(P \).
- Prove: \(x \) non integral \(\implies \) \(x \) non-vertex.
- Find \(x', x'' \in P: x' \neq x'', x = \frac{1}{2}(x' + x'') \).
- Case 1: Fractional edges contain a cycle.
 - Color edges in cycle blue and red.
 - \(x' \): +\(\epsilon \) for blue edges, -\(\epsilon \) for red edges.
 - \(x'' \): -\(\epsilon \) for blue edges, +\(\epsilon \) for red edges.
- Case 2: Fractional edges form a forest.
 - Color edges in a leaf-leaf path blue and red.
 - \(x' \): +\(\epsilon \) for blue edges, -\(\epsilon \) for red edges.
 - \(x'' \): -\(\epsilon \) for blue edges, +\(\epsilon \) for red edges.
Outline

1 Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Example: s-t Flow Polytope

Flow Network

- directed graph $G = (V, E)$, source $s \in V$, sink $t \in V$, edge capacities $c_e \in \mathbb{Z}_{>0}$, $\forall e \in E$
- s has no incoming edges, t has no outgoing edges
Def. A \textit{s-t flow} is a vector $f \in \mathbb{R}^E_{\geq 0}$ satisfying the following conditions:

- $\forall e \in E, 0 \leq f_e \leq c_e$ \hspace{1cm} (capacity constraints)
- $\forall v \in V \setminus \{s, t\}$,

$$\sum_{e \in \delta^{\text{in}}(v)} f_e = \sum_{e \in \delta^{\text{out}}(v)} f_e$$ \hspace{1cm} (flow conservation)

The value of flow f is defined as:

$$\text{val}(f) := \sum_{e \in \delta^{\text{out}}(s)} f_e = \sum_{e \in \delta^{\text{in}}(t)} f_e$$
Maximum Flow Problem

Input: flow network \((G = (V, E), c, s, t)\)

Output: maximum value of a \(s-t\) flow \(f\)

- Ford-Fulkerson method
- **Maximum-Flow Min-Cut Theorem:** value of the maximum flow is equal to the value of the minimum \(s-t\) cut
- [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022]: nearly linear-time algorithm
LP for Maximum Flow

\[
\begin{align*}
\text{max} & \quad \sum_{e \in \delta^{\text{in}}(t)} x_e \\
& \quad \sum_{e \in \delta^{\text{out}}(v)} x_e - \sum_{e \in \delta^{\text{in}}(v)} x_e = 0 \quad \forall v \in V \setminus \{s, t\} \\
& \quad x_e \geq 0 \quad \forall e \in E
\end{align*}
\]

Theorem The LP polytope is integral.

Sketch of Proof.

- Take any \(s-t \) flow \(x \); consider fractional edges \(E' \)
- Every \(v \notin \{s, t\} \) must be incident to 0 or \(\geq 2 \) edges in \(E' \)
- Ignoring the directions of \(E' \), it contains a cycle, or a \(s-t \) path
- We can increase/decrease flow values along cycle/path

\[\Box\]
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Weighted Interval Scheduling Problem

Input: n activities, activity i starts at time s_i, finishes at time f_i, and has weight $w_i > 0$

i and j can be scheduled together iff $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled

- optimum value = 220
- Classic Problem for Dynamic Programming
Weighted Interval Scheduling Problem

Linear Program

\[
\begin{align*}
\text{max } & \sum_{j \in [n]} x_j w_j \\
\sum_{j \in [n]: t \in [s_j, f_j]} x_j & \leq 1 \quad \forall t \in [T] \\
x_j & \geq 0 \quad \forall j \in [n]
\end{align*}
\]

Theorem The LP polytope is integral.

Def. A matrix \(A \in \mathbb{R}^{m \times n} \) is said to be totally unimodular (TUM), if every sub-square of \(A \) has determinant in \(\{-1, 0, 1\} \).

Theorem If a polytope \(P \) is defined by \(Ax \leq b, x \geq 0 \) with a totally unimodular matrix \(A \) and integral \(b \), then \(P \) is integral.

Lemma A matrix \(A \in \{0, 1\}^{m \times n} \) where the 1’s on every column form an interval is TUM.

- So, the matrix for the LP is TUM, and the polytope is integral.
Theorem If a polytope \(P \) is defined by \(Ax \leq b, x \geq 0 \) with a totally unimodular matrix \(A \) and integral \(b \), then \(P \) is integral.

Proof.
- Every vertex \(x \in P \) is the unique solution to the linear system (after permuting coordinates): \[
\begin{pmatrix}
A' & 0 \\
0 & I
\end{pmatrix}
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =
\begin{pmatrix} b' \\
0
\end{pmatrix},
\]
- \(A' \) is a square submatrix of \(A \) with \(\det(A') = \pm 1 \), \(b' \) is a sub-vector of \(b \),
- and the rows for \(b' \) are the same as the rows for \(A' \).
- Let \(x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \), so that \(A'x_1 = b' \) and \(x_2 = 0 \).
- Cramer’s rule: \(x_i^1 = \frac{\det(A_i'|b)}{\det(A')} \) for every \(i \implies x_i^1 \) is integer
- \(A_i'|b \): the matrix of \(A' \) with the \(i \)-th column replaced by \(b \)

Obs. If \(A \) is TUM, then \(A^T \) is also TUM.
Lemma Let $A' \in \{0, \pm 1\}^{n \times n}$ such that every row of A' contains at most one 1 and one -1. Then $\det(A') \in \{0, \pm 1\}$.

Proof.

- wlog assume every row of A' contains one 1 and one -1
- otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- $\#\text{edges} = \#\text{vertices} \implies$ underlying undirected graph contains a cycle $\implies \det(A') = 0$

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Coro. The matrix for $s-t$ flow polytope is TUM; thus, the polytope is integral.
Lemma Let $A' \in \{0, \pm 1\}^{n \times n}$ such that every row of A' contains at most one 1 and one -1. Then $\det(A') \in \{0, \pm 1\}$.

Lemma A matrix $A \in \{0, 1\}^{m \times n}$ where the 1's on every row form an interval is TUM.

Proof.
- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- $A'M$ is a matrix satisfying condition of first lemma, where
 \[
 M = \begin{pmatrix}
 1 & -1 & 0 & \cdots & 0 \\
 0 & 1 & -1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 & -1 \\
 0 & 0 & \cdots & 0 & 1
 \end{pmatrix}.
 \]
 $\det(M) = 1$.
- $\det(A'M) \in \{0, \pm 1\} \implies \det(A') \in \{0, \pm 1\}$.

}\]
Lemma The edge-vertex incidence matrix A of a bipartite graph is totally-unimodular.

Proof.
- $G = (L \cup R, E)$: the bipartite graph
- A': obtained from A by negating columns correspondent to R
- each row of A' has exactly one $+1$, and exactly one -1
- $\implies A'$ is TUM \iff A is TUM

remark: bipartiteness is needed. The edge-vertex incidence matrix
\[
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]
of a triangle has determinant 2.

Coro. Bipartite matching polytope is integral.
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - $s-t$ Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Approximation Algorithm based on LP Rounding

- Opti. Problem $X \iff$ 0/1 Integer Program (IP) $\xrightarrow{\text{relax}}$ LP

0/1 Integer Program

\[
\begin{align*}
\text{min} & \quad c^T x \\
Ax & \geq b \\
x & \in \{0, 1\}^n
\end{align*}
\]

Linear Program Relaxation

\[
\begin{align*}
\text{min} & \quad c^T x \\
Ax & \geq b \\
x & \in [0, 1]^n
\end{align*}
\]

- LP \leq IP
- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in [0, 1]^n$.
- Round it to an integral $\tilde{x} \in \{0, 1\}^n \iff$ solution for X
- Prove $c^T \tilde{x} \leq \alpha \cdot c^T x$, then $c^T \cdot \tilde{x} \leq \alpha \cdot \text{LP} \leq \alpha \cdot \text{IP} = \alpha \cdot \text{opt}$
- $\implies \alpha$-approximation
Def. The ratio between \(\text{IP} = \text{opt} \) and LP is called the **integrality gap** of the LP relaxation.

- The approximation ratio based on this analysis can not be better than the worst integrality gap.
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Weighted Vertex Cover Problem

Input: graph $G = (V, E)$, vertex weights $w \in \mathbb{Z}^V_{>0}$

Output: vertex cover S of G, to minimize $\sum_{v \in S} w_v$
\(x_v \in \{0, 1\}, \forall v \in V \): indicate if we include \(v \) in the vertex cover

Integer Program

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} w_v x_v \\
x_u + x_v & \geq 1 \quad \forall (u,v) \in E \\
x_v & \in \{0, 1\} \quad \forall v \in V
\end{align*}
\]

LP Relaxation

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} w_v x_v \\
x_u + x_v & \geq 1 \quad \forall (u,v) \in E \\
x_v & \in [0, 1] \quad \forall v \in V
\end{align*}
\]

- \(\text{IP} := \text{value of integer program}, \text{LP} := \text{value of linear program} \)
- \(\text{LP} \leq \text{IP} = \text{opt} \)
Rounding Algorithm

1: Solve LP to obtain solution \(\{x^*_u\}_{u \in V} \)
\[\therefore \text{So, } \text{LP} = \sum_{u \in V} w_u x^*_u \leq \text{IP} \]
2: return \(S := \{u \in V : x_u \geq 1/2\} \)

Lemma \(S \) is a vertex cover of \(G \).

Proof.
- Consider any \((u, v) \in E\): we have \(x^*_u + x^*_v \geq 1 \)
- So, \(x^*_u \geq 1/2 \) or \(x^*_v \geq 1/2 \) \(\implies \) \(u \in S \) or \(v \in S \). \(\square \)
Rounding Algorithm

1: Solve LP to obtain solution \(\{x_u^*\}_{u \in V} \)
\[\triangleright \text{So, } \text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP} \]
2: return \(S := \{ u \in V : x_u \geq 1/2 \} \)

Lemma \(S \) is a vertex cover of \(G \).

Lemma \(\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP} \).

Proof.
\[
\text{cost}(S) = \sum_{u \in S} w_u \leq \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^*
\leq 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot \text{LP}.
\]

Theorem The algorithm is a 2-approximation algorithm for weighted vertex cover.
Outline

1. Linear Programming and Rounding

2. Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - s-t Flow Polytope
 - Weighted Interval Scheduling Problem

3. Approximation Algorithms Using LP: LP Rounding
 - 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling
Unrelated Machine Scheduling

Input: \(J, |J| = n \): jobs
\(M, |M| = m \): machines
\(p_{ij} \): processing time of job \(j \) on machine \(i \)

Output: assignment \(\sigma : J \mapsto M \):, so as to minimize makespan:

\[
\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}
\]
Assumption: we are given a target makespan T, and $p_{ij} \in [0, T] \cup \{\infty\}$

x_{ij}: fraction of j assigned to i

$$
\sum_{i} x_{ij} = 1 \quad \forall j \in J \\
\sum_{j} p_{ij} x_{ij} \leq T \quad \forall i \in M \\
\quad \quad x_{ij} \geq 0 \quad \forall ij
$$
2-Approximate Rounding Algorithm of Shmoys-Tardos

\[\sum_{g} x_{gj} = 1 \]
\[\sum_{j} x_{gj} \leq 1 \]

Obs. \(x \) between \(J \) and sub-machines is a point in the bipartite-matching polytope, where all jobs in \(J \) are matched.
Recall bipartite matching polytope is integral.

- \(x \) is a **convex combination** of matchings.
- Any matching in the combination covers all jobs \(J \).

Lemma Any matching in the combination gives an schedule of makespan \(\leq 2T \).
Lemma Any matching in the combination gives an schedule of makespan $\leq 2T$.

Proof.
- focus on machine i, let i_1, i_2, \cdots, i_a be the sub-machines for i
- assume job k_t is assigned to sub-machine i_t.

$$(\text{load on } i) = \sum_{t=1}^{a} p_{ik_t} \leq p_{ik_1} + \sum_{t=2}^{a} \sum_{j} x_{i_{t-1}j} \cdot p_{ij}$$

$$\leq p_{ik_1} + \sum_{j} x_{ij} p_{ij} \leq T + T = 2T.$$
linear programming, simplex method, interior point method, ellipsoid method

integral LP polytopes: bipartite matching polytope, $s-t$ flow polytope, weighted interval scheduling polytope

approximation algorithm using LP rounding
 - 2-approximation algorithm for weighted vertex cover
 - 2-approximation for unrelated machine scheduling
<table>
<thead>
<tr>
<th>English</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Program</td>
<td>线性规划</td>
</tr>
<tr>
<td>Integer Program</td>
<td>整数规划</td>
</tr>
<tr>
<td>Feasible Region</td>
<td>解域</td>
</tr>
<tr>
<td>Polyhedron</td>
<td>凸多面体</td>
</tr>
<tr>
<td>Polytope</td>
<td>有界凸多面体</td>
</tr>
<tr>
<td>Vertex/Extreme Point</td>
<td>顶点</td>
</tr>
<tr>
<td>Convex Combination</td>
<td>凸组合</td>
</tr>
<tr>
<td>Convex Hull</td>
<td>凸包</td>
</tr>
<tr>
<td>Dual</td>
<td>对偶</td>
</tr>
<tr>
<td>Totally Unimodular</td>
<td>完全单位模的</td>
</tr>
</tbody>
</table>