Advanced Algorithms (Fall 2023) Linear Programming Rounding

Lecturers: 尹一通, 刘景铖, 栗师 Nanjing University

Outline

1 Linear Programming and Rounding

- 2 Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 2 Approximation Algorithm for Unrelated Machine
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

• Opti. Problem $X \iff$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

- Opti. Problem $X \iff$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP
- Integer programming is NP-hard; linear programming is in P

- Opti. Problem $X \iff$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP
- Integer programming is NP-hard; linear programming is in P
- \bullet For some problems LP \equiv IP \Longrightarrow exact algorithms

- Opti. Problem $X \iff$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP
- Integer programming is NP-hard; linear programming is in P
- $\bullet\,$ For some problems LP $\equiv\,$ IP \Longrightarrow exact algorithms
- $\bullet~\mbox{For some problems, LP} \not\equiv \mbox{IP}$
 - solve LP to obtain a fractional solution,
 - round it to an integral solution
 - \implies approximation algorithms

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

$$\min \quad 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0$$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

- optimum solution: $x_1 = 1, x_2 = 4$
- optimum value = $7 \times 1 + 4 \times 4 = 23$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 \\ x_1 + x_2 \ge 5 \\ x_1 + 2x_2 \ge 6 \\ 4x_1 + x_2 \ge 8 \\ x_1, x_2 \ge 0 \end{array}$$

- optimum solution: $x_1 = 1, x_2 = 4$
- optimum value = $7 \times 1 + 4 \times 4 = 23$
- general case: many variables and constraints, but objective and constraints are linear

 $\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ $a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$ $a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$ $\vdots \quad \vdots \quad \vdots \quad \vdots$ $a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$ $x_1, x_2, \dots, x_n \ge 0$

• n: number of variables m: number of constraints

$$\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

- *n*: number of variables *m*: number of constraints
- < constraints? equiites?

$$\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

- *n*: number of variables *m*: number of constraints
- \leq constraints? equiites?
- variables can be negative? maximization problem?

$$\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \ge b_2$$

$$\vdots \quad \vdots \quad \vdots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \ge b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

Standard Form of
Linear Programmin $c^{\mathrm{T}}x$ $Ax \ge b$ $x \ge 0$

 $\bullet \geq$: coordinate-wise less than or equal to

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem

- [Fourier, 1827]: Fourier-Motzkin elimination method
- [Kantorovich, Koopmans 1939]: formulated the general linear programming problem
- [Dantzig 1946]: simplex method
- [Khachiyan 1979]: ellipsoid method, polynomial time, proved linear programming is in P
- [Karmarkar, 1984]: interior-point method, polynomial time, algorithm is pratical

• feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$

- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- feasible region is a polyhedron

- feasible region: the set of x's satisfying $Ax \ge b, x \ge 0$
- feasible region is a polyhedron
- if every coordinate has an upper and lower bound in the polyhedron, then the polyhedron is a polytope

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• x is a convex combination of $x^{(1)}, x^{(2)}, \dots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \dots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• x is a convex combination of $x^{(1)}, x^{(2)}, \dots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \dots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• x is a convex combination of $x^{(1)}, x^{(2)}, \dots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \dots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• x is a convex combination of $x^{(1)}, x^{(2)}, \dots, x^{(t)}$ if the following condition holds: there exist $\lambda_1, \lambda_2, \dots, \lambda_t \in [0, 1]$ such that

$$\lambda_1 + \lambda_2 + \dots + \lambda_t = 1, \qquad \lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \dots + \lambda_t x^{(t)} = x$$

• let P be polytope, $x \in P$. If there are no other points $x', x'' \in P$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

• let P be polytope, $x \in P$. If there are no other points $x', x'' \in P$ such that x is a convex combination of x' and x'', then x is called a vertex/extreme point of P

Lemma A polytope has finite number of vertices, and it is the convex hull of the vertices.

 $P = \text{convex-hull}(\{x^1, x^2, x^3, x^4, x^5\})$

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Lemma Let $x \in \mathbb{R}^n$ be an extreme point in a *n*-dimensional polytope. Then, there are *n* constraints in the definition of the polytope, such that *x* is the unique solution to the linear system obtained from the *n* constraints by replacing inequalities to equalities.

Lemma If the feasible region of a linear program is a polytope, then the opimum value can be attained at some vertex of the polytope.

Special cases (for minimization linear programs):

- \bullet if feasible region is empty, then its value is ∞
- ullet if the feasible region is unbounded, then its value can be $-\infty$

Algorithms for Linear Programming

algorithm	running time	practice
Simplex Method	exponential time	fast
Ellipsoid Method	polynomial time	slow
Interior Point Method	polynomial time	fast

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

• the number of iterations might be expoentially large; but algorithm runs fast in practice

- [Dantzig, 1946]
- move from one vertex to another, so as to improve the objective
- repeat until we reach an optimum vertex

- the number of iterations might be expoentially large; but algorithm runs fast in practice
- [Spielman-Teng,2002]: smoothed analysis

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution

- [Karmarkar, 1984]
- keep the solution inside the polytope
- design penalty function so that the solution is not too close to the boundary
- the final solution will be arbitrarily close to the optimum solution
- polynomial time

• [Khachiyan, 1979]

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region

• [Khachiyan, 1979]

- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat

- [Khachiyan, 1979]
- used to decide if the feasible region is empty or not
- maintain an ellipsoid that contains the feasible region
- query a separation oracle if the center of ellipsid is in the feasible region:
 - yes: then the feasible region is not empty
 - no: cut the elliposid in half, find smaller ellipsoid to enclose the half-ellipsoid, and repeat
- polynomial time, but impractical

Q: The exact running time of these algorithms?

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Q: The exact running time of these algorithms?

- it depends on many parameters: #variables, #constraints, #(non-zero coefficients), magnitude of integers
- precision issue

Open Problem

Can linear programming be solved in strongly polynomial time algorithm?

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Applications of Linear Programming

- domain: computer science, mathematics, operations research, economics
- types of problems: transportation, scheduling, clustering, network routing, resource allocation, facility location

Research Directions

- polynomial time exact algorithm
- polynomial time approximation algorithm
- sub-routines for the branch-and-bound metheod for integer programming
- other algorithmic models: online algorithm, distributed algorithms, dynamic algorithms, fast algorithms

Simple Example: Brewery Problem *

- Small brewery produces ale and beer.
 - Production limited by scarce resources: corn, hops, barley malt.
 - Recipes for ale and beer require different proportions of resources.

Simple Example: Brewery Problem *

- Small brewery produces ale and beer.
 - Production limited by scarce resources: corn, hops, barley malt.
 - Recipes for ale and beer require different proportions of resources.

Beverage	Corn	Hops	Malt	Profit	
	(pounds)	(pounds)	(pounds)	(\$)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	15 4 20		23	
Constraint	480	160	1190		

Simple Example: Brewery Problem *

- Small brewery produces ale and beer.
 - Production limited by scarce resources: corn, hops, barley malt.
 - Recipes for ale and beer require different proportions of resources.

Beverage	Corn	Hops	Malt	Profit	
	(pounds)	(pounds)	(pounds)	(\$)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	15 4 20		23	
Constraint	480	160	1190		

• How can brewer maximize profits?

^{*} http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ LinearProgrammingI.pdf

Brewery Problem *

Beverage	Corn	Hops	Malt	t Profit	
	(pounds)	(pounds)	(pounds)	(\$)	
Ale (barrel)	5	4	35	13	
Beer (barrel)	15	4	4 20		
Constraint	480	160	1190		

Brewery Problem *

Beverage	Corn	Hops	Malt	Profit
	(pounds)	(pounds)	(pounds)	(\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	15 4 20		23
Constraint	480	160	1190	

- $\max \quad 13x + 23y \qquad \qquad \mathsf{Profit}$
 - $5x + 15y \le 480 \qquad \qquad \mathsf{Corn}$
 - $4x + 4y \le 160 \qquad \qquad \mathsf{Hops}$
- $35x + 20y \le 1190 \qquad \qquad \mathsf{Malt}$

 $x, y \ge 0$

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/ LinearProgrammingI.pdf

Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

Def. A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

 For some combinatorial optimization problems, a polynomial-sized LP Ax ≤ b already defines an integral polytope, whose vertices correspond to valid integral solutions. **Def.** A polytope $P \subseteq \mathbb{R}^n$ is said to be integral, if all vertices of P are in \mathbb{Z}^n .

- For some combinatorial optimization problems, a polynomial-sized LP $Ax \leq b$ already defines an integral polytope, whose vertices correspond to valid integral solutions.
- Such a problem can be solved directly using the LP:

$$\max / \min \quad c^{\mathrm{T}}x \quad Ax \le b.$$

Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

LP Relaxation	
max	$\sum_{e \in E} w_e x_e$
$\sum_{e \in \delta(v)} x_e \le 1$	$\forall v \in L \cup R$
$x_e \ge 0$	$\forall e \in E$

• In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation	
max 2	$\sum_{e \in E} w_e x_e$
	$\forall v \in L \cup R$
$x_e \ge 0$	$\forall e \in E$

• In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation

$$\max \sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$$

$$x_e \ge 0 \quad \forall e \in E$$

• In IP: $x_e \in \{0, 1\}$: $e \in M$?

LP Relaxation

$$\max \sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in L \cup R$$

$$x_e \ge 0 \quad \forall e \in E$$

- In IP: $x_e \in \{0, 1\}$: $e \in M$?
- $\chi^M \in \{0,1\}^E$: $\chi^M_e = 1$ iff $e \in M$

Theorem The LP polytope is integral: It is the convex hull of $\{\chi^M : M \text{ is a matching}\}.$

Proof.		

Proof.

• take x in the polytope P

- take x in the polytope P
- prove: x non integral $\Longrightarrow x$ non-vertex

- take x in the polytope P
- prove: x non integral $\Longrightarrow x$ non-vertex
- find $x', x'' \in P$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in P$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex
- find $x', x'' \in P$: $x' \neq x'', x = \frac{1}{2}(x' + x'')$
- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

• find
$$x', x'' \in P$$
: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $x'{:}~+\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

• find
$$x', x'' \in P$$
: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $\bullet \ x' \colon + \epsilon \mbox{ for blue edges, } -\epsilon \mbox{ for red edges}$
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

• find
$$x', x'' \in P$$
: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $\bullet \ x'{:} \ +\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in a leaf-leaf path blue and red

- take x in the polytope P
- prove: x non integral $\implies x$ non-vertex

• find
$$x', x'' \in P$$
: $x' \neq x'', x = \frac{1}{2}(x' + x'')$

- case 1: fractional edges contain a cycle
 - color edges in cycle blue and red
 - $\bullet \ x'{:} \ +\epsilon$ for blue edges, $-\epsilon$ for red edges
 - x'': $-\epsilon$ for blue edges, $+\epsilon$ for red edges
- case 2: fractional edges form a forest
 - color edges in a leaf-leaf path blue and red
 - $\bullet \ x' \colon + \epsilon \mbox{ for blue edges, } -\epsilon \mbox{ for red edges}$
 - $x^{\prime\prime}\!\!:\,-\epsilon$ for blue edges, $+\epsilon$ for red edges

Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- *s*-*t* Flow Polytope
- Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 Assuming the above for the second secon
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

Example: *s*-*t* Flow Polytope

Flow Network

- directed graph G = (V, E), source $s \in V$, sink $t \in V$, edge capacities $c_e \in \mathbb{Z}_{>0}, \forall e \in E$
 - s has no incoming edges, t has no outgoing edges

Def. A *s*-*t* flow is a vector $f \in \mathbb{R}^{E}_{\geq 0}$ satisfying the following conditions:

•
$$\forall e \in E, 0 \leq f_e \leq c_e$$
 (capacity constraints)
• $\forall v \in V \setminus \{s, t\}$,

$$\sum_{e \in \delta^{in}(v)} f_e = \sum_{e \in \delta^{out}(v)} f_e$$
 (flow conservation)
The value of flow f is defined as:

$$\operatorname{val}(f) := \sum_{e \in \delta^{\operatorname{out}}(s)} f_e = \sum_{e \in \delta^{\operatorname{in}}(t)} f_e$$

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

• Ford-Fulkerson method

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

- Ford-Fulkerson method
- Maximum-Flow Min-Cut Theorem: value of the maximum flow is equal to the value of the minimum *s*-*t* cut

Input: flow network (G = (V, E), c, s, t)

Output: maximum value of a s-t flow f

- Ford-Fulkerson method
- Maximum-Flow Min-Cut Theorem: value of the maximum flow is equal to the value of the minimum *s*-*t* cut
- [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva, 2022]: nearly linear-time algorithm

LP for Maximum Flow

LP for Maximum Flow

Theorem The LP polytope is integral.

LP for Maximum Flow

Theorem The LP polytope is integral.

Sketch of Proof.

- Take any s-t flow x; consider fractional edges E'
- \bullet Every $v \notin \{s,t\}$ must be incident to $0 \text{ or } \geq 2 \text{ edges in } E'$
- \bullet Ignoring the directions of $E^\prime\textsc{,}$ it contains a cycle, or a s-t path
- We can increase/decrease flow values along cyle/path

Linear Programming and Rounding

2 Exact Algorithms Using LP: Integral Polytopes

- Bipartite Matching Polytope
- s-t Flow Polytope
- Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 2-Approximation Algorithm for Unrelated Machine
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$

i and j can be scheduled together iff $\left[s_{i},f_{i}\right)$ and $\left[s_{j},f_{j}\right)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled

• optimum value= 220

Input: n activities, activity i starts at time s_i , finishes at time f_i , and has weight $w_i > 0$

i and j can be scheduled together iff $\left[s_{i},f_{i}\right)$ and $\left[s_{j},f_{j}\right)$ are disjoint

Output: maximum weight subset of jobs that can be scheduled

- optimum value= 220
- Classic Problem for Dynamic Programming

Theorem The LP polytope is integral.

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1 \quad \forall t \in [T]$ $x_j \ge 0 \quad \forall j \in [n]$ **Theorem** The LP polytope is integral.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to be tototally unimodular (TUM), if every sub-square of Ahas determinant in $\{-1, 0, 1\}$.

Linear ProgramTheorem The LP polytope is
integral. $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1$ $\forall t \in [T]$ $x_j \ge 0$ $\forall j \in [n]$ Def. A matrix $A \in \mathbb{R}^{m \times n}$ is
said to be tototally unimodular
(TUM), if every sub-square of A
has determinant in $\{-1, 0, 1\}$.

Theorem If a polytope P is defined by $Ax \ge b, x \ge 0$ with a totally unimodular matrix A and integral b, then P is integral.

Linear Program $\max \sum_{j \in [n]} x_j w_j$ $\sum_{j \in [n]: t \in [s_j, f_j)} x_j \le 1$ $\forall t \in [T]$ $x_j \ge 0$ $\forall j \in [n]$

Theorem If a polytope P is defined by $Ax \ge b, x \ge 0$ with a totally unimodular matrix A and integral b, then P is integral.

Lemma A matrix $A \in \{0, 1\}^{m \times n}$ where the 1's on every column form an interval is TUM.

• So, the matrix for the LP is TUM, and the polytope is integral.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A') = \pm 1$, b' is a sub-vector of b,
 - $\bullet\,$ and the rows for b' are the same as the rows for A'.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A')=\pm 1,\ b'$ is a sub-vector of b,
 - $\bullet\,$ and the rows for b' are the same as the rows for A'.

• Let
$$x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$$
, so that $A'x^1 = b'$ and $x^2 = 0$.

- Every vertex $x \in P$ is the unique solution to the linear system (after permuting coordinates): $\begin{pmatrix} A' & 0 \\ 0 & I \end{pmatrix} x = \begin{pmatrix} b' \\ 0 \end{pmatrix}$, where
 - A' is a square submatrix of A with $\det(A')=\pm 1,\ b'$ is a sub-vector of b,
 - $\bullet\,$ and the rows for b' are the same as the rows for A'.
- Let $x = \begin{pmatrix} x^1 \\ x^2 \end{pmatrix}$, so that $A'x^1 = b'$ and $x^2 = 0$.
- Cramer's rule: $x_i^1 = \frac{\det(A'_i|b)}{\det(A')}$ for every $i \implies x_i^1$ is integer $A'_i|b$: the matrix of A' with the *i*-th column replaced by b

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \ge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The following equation system may give a vertex:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

35/59

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equivalently, the vertex satisfies

$$\begin{pmatrix} a_{1,2} & a_{1,3} & 0 & 0 & 0 \\ a_{3,2} & a_{3,3} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Proof.

• wlog assume every row of A^\prime contains one 1 and one -1

- $\bullet\,$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix

- wlog assume every row of A^\prime contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs

- $\bullet\,$ wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Lemma Let $A' \in \{0, \pm 1\}^{n \times n}$ such that every row of A' contains at most one 1 and one -1. Then $det(A') \in \{0, \pm 1\}$.

Proof.

- wlog assume every row of A^\prime contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Lemma Let $A' \in \{0, \pm 1\}^{n \times n}$ such that every row of A' contains at most one 1 and one -1. Then $det(A') \in \{0, \pm 1\}$.

Proof.

- wlog assume every row of A' contains one 1 and one -1
 - otherwise, we can reduce the matrix
- treat A' as a directed graph: columns \equiv vertices, rows \equiv arcs
- #edges = #vertices \implies underlying undirected graph contains a cycle \implies det(A') = 0

Lemma Let $A \in \{0, \pm 1\}^{m \times n}$ such that every row of A contains at most one 1 and one -1. Then A is TUM.

Coro. The matrix for s-t flow polytope is TUM; thus, the polytope is integral.

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$= (0 \quad 0 \quad 0 \quad 0 \quad 0)$$

Proof.

• take any square submatrix A' of A,

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- A'M is a matrix satisfying condition of first lemma, where $M = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}. \det(M) = 1.$

- take any square submatrix A' of A,
- the 1's on every row of A' form an interval.
- A'M is a matrix satisfying condition of first lemma, where $M = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}. \det(M) = 1.$ • $\det(A'M) \in \{0, \pm 1\} \implies \det(A') \in \{0, \pm 1\}.$

• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$

• (col 1, col 2 - col 1, col 3 - col 2, col 4 - col 3, col 5 - col 4)

• every row has at most one 1, at most one -1

Proof.

Proof.

• $G = (L \uplus R, E)$: the bipartite graph

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A^\prime:$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A':$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- \implies A' is TUM \iff A is TUM

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A':$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- \implies A' is TUM \iff A is TUM

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A':$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1
- $\bullet \implies A' \text{ is TUM} \Longleftrightarrow A \text{ is TUM}$

Example 1 - 4

Proof.

- $G = (L \uplus R, E)$: the bipartite graph
- $\bullet~A':$ obtained from A by negating columns correspondent to R
- $\bullet\,$ each row of A' has exactly one +1, and exactly one -1

$$\bullet \implies A' \text{ is TUM} \Longleftrightarrow A \text{ is TUM}$$

• remark: bipartiteness is needed. The edge-vertex incidence matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of a triangle has determinent 2.

• remark: bipartiteness is needed. The edge-vertex incidence matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of a triangle has determinent 2.

Coro. Bipartite matching polytope is integral.

Linear Programming and Rounding

- 2 Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem

3 Approximation Algorithms Using LP: LP Rounding

- 2-Approximation Algorithm for Weighted Vertex Cover
- 2-Approximation Algorithm for Unrelated Machine Scheduling

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \begin{array}{ll} \min & c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0, 1]^{n} \end{array} $

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0,1\}^{n}$	$ \min c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0, 1]^{n} $

• LP \leq IP

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \begin{array}{ll} \min & c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0,1]^n \end{array} $

• LP \leq IP

• Integer programming is NP-hard, linear programming is in P

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \begin{array}{ll} \min & c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0, 1]^{n} \end{array} $

- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in [0, 1]^n$.

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \begin{array}{ll} \min & c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0,1]^n \end{array} $

- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in [0, 1]^n$.
- Round it to an integral $\tilde{x} \in \{0,1\}^n \iff$ solution for X

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \min c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0, 1]^{n} $

- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in [0, 1]^n$.
- Round it to an integral $\tilde{x} \in \{0,1\}^n \iff$ solution for X
- Prove $c^{\mathrm{T}}\tilde{x} \leq \alpha \cdot c^{\mathrm{T}}x$, then $c^{\mathrm{T}} \cdot \tilde{x} \leq \alpha \cdot \mathrm{LP} \leq \alpha \cdot \mathrm{IP} = \alpha \cdot \mathrm{opt}$

• Opti. Problem $X \iff 0/1$ Integer Program (IP) $\stackrel{\text{relax}}{\Longrightarrow}$ LP

0/1 Integer Program	Linear Program Relaxation
$\min c^{\mathrm{T}}x$ $Ax \ge b$ $x \in \{0, 1\}^{n}$	$ \min c^{\mathrm{T}}x \\ Ax \ge b \\ x \in [0, 1]^{n} $

- Integer programming is NP-hard, linear programming is in P
- Solve LP to obtain a fractional $x \in [0, 1]^n$.
- Round it to an integral $\tilde{x} \in \{0,1\}^n \iff$ solution for X
- Prove $c^{\mathrm{T}}\tilde{x} \leq \alpha \cdot c^{\mathrm{T}}x$, then $c^{\mathrm{T}} \cdot \tilde{x} \leq \alpha \cdot \mathrm{LP} \leq \alpha \cdot \mathrm{IP} = \alpha \cdot \mathrm{opt}$
- $\implies \alpha$ -approximation

 $x \in [0,1]^n$

45/59

Def. The ratio between IP = opt and LP is called the integrality gap of the LP relaxation.

Def. The ratio between IP = opt and LP is called the integrality gap of the LP relaxation.

Def. The ratio between IP = opt and LP is called the integrality gap of the LP relaxation.

Linear Programming and Rounding

- 2 Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem
- Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 2-Approximation Algorithm for Unrelated Machine

Weighted Vertex Cover Problem Input: graph G = (V, E), vertex weights $w \in \mathbb{Z}_{>0}^V$ Output: vertex cover S of G, to minimize $\sum_{v \in S} w_v$ • $x_v \in \{0,1\}, \forall v \in V$: indicate if we include v in the vertex cover

Integer Program	LP Relaxation
$\min \sum_{v \in V} w_v x_v$	$\min \sum_{v \in V} w_v x_v$
$x_u + x_v \ge 1 \qquad \qquad \forall (u, v) \in E$	$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$
$x_v \in \{0, 1\} \qquad \forall v \in V$	$x_v \in [0, 1] \qquad \forall v \in V$

• $x_v \in \{0,1\}, \forall v \in V$: indicate if we include v in the vertex cover

Integer Program	LP Relaxation
$\min \sum_{v \in V} w_v x_v$	$\min \sum_{v \in V} w_v x_v$
$x_u + x_v \ge 1 \qquad \qquad \forall (u, v) \in E$	$x_u + x_v \ge 1 \qquad \qquad \forall (u, v) \in E$
$x_v \in \{0, 1\} \qquad \forall v \in V$	$x_v \in [0, 1] \qquad \forall v \in V$

• IP := value of integer program, LP := value of linear program • LP < IP = opt

1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$

$$\triangleright$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq$ IP

1: Solve LP to obtain solution $\{x_u^*\}_{u\in V}$

$$\triangleright$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq$ IP

2: return $S := \{ u \in V : x_u \ge 1/2 \}$

1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$

$$\triangleright$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq$ IP

2: return $S := \{ u \in V : x_u \ge 1/2 \}$

Lemma S is a vertex cover of G.

- 1: Solve LP to obtain solution $\{x_u^*\}_{u\in V}$
 - \triangleright So, LP = $\sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$
- 2: return $S := \{ u \in V : x_u \ge 1/2 \}$

Lemma S is a vertex cover of G.

• Consider any
$$(u,v) \in E$$
: we have $x_u^* + x_v^* \ge 1$

- 1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$
- $\triangleright \text{ So, } \mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$ 2: return $S := \{ u \in V : x_u \geq 1/2 \}$

Lemma S is a vertex cover of G.

- Consider any $(u, v) \in E$: we have $x_u^* + x_v^* \ge 1$
- So, $x_u^* \ge 1/2$ or $x_v^* \ge 1/2 \qquad \Longrightarrow \qquad u \in S$ or $v \in S$.

1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$

$$\triangleright$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq IP$

2: return $S := \{ u \in V : x_u \ge 1/2 \}$

Lemma S is a vertex cover of G.

1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$

$$\triangleright$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq$ IP

2: return $S := \{ u \in V : x_u \ge 1/2 \}$

Lemma S is a vertex cover of G.

Lemma $\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$

1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$

$$\overset{\mathcal{A}_{u} \cup u \in V}{\triangleright}$$
 So, LP = $\sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$

2: return $S := \{ u \in V : x_u \ge 1/2 \}$

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

$$\operatorname{cost}(S) = \sum_{u \in S} w_u \le \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^*$$
$$\le 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot \mathsf{LP}.$$

- 1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$
- $\triangleright \text{ So, } \mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$ 2: return $S := \{ u \in V : x_u \geq 1/2 \}$

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

Theorem The algorithm is a 2-approximation algorithm for weighted vertex cover.

- 1: Solve LP to obtain solution $\{x_u^*\}_{u \in V}$
- $\triangleright \text{ So, } \mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$ 2: return $S := \{ u \in V : x_u \geq 1/2 \}$

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

Theorem The algorithm is a 2-approximation algorithm for weighted vertex cover.

Proof.

 $\mathsf{cost}(S) \le 2 \cdot \mathsf{LP} \le 2 \cdot \mathsf{IP} = 2 \cdot (\mathsf{optimum value})$

Linear Programming and Rounding

- 2 Exact Algorithms Using LP: Integral Polytopes
 - Bipartite Matching Polytope
 - *s*-*t* Flow Polytope
 - Weighted Interval Scheduling Problem
 - Approximation Algorithms Using LP: LP Rounding
 2-Approximation Algorithm for Weighted Vertex Cover
 - 2-Approximation Algorithm for Unrelated Machine Scheduling

$$\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}$$

$$\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}$$

$$\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}$$

$$\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_{ij}$$

• Assumption: we are given a target makespan T, and $p_{ij} \in [0,T] \cup \{\infty\}$

- Assumption: we are given a target makespan T, and $p_{ij} \in [0,T] \cup \{\infty\}$
- x_{ij} : fraction of j assigned to i

$$\sum_{i} x_{ij} = 1 \qquad \forall j \in J$$
$$\sum_{j} p_{ij} x_{ij} \leq T \qquad \forall i \in M$$
$$x_{ij} \geq 0 \qquad \forall ij$$

- Assumption: we are given a target makespan T, and $p_{ij} \in [0,T] \cup \{\infty\}$
- x_{ij} : fraction of j assigned to i

$$\sum_{i} x_{ij} = 1 \qquad \forall j \in J$$
$$\sum_{j} p_{ij} x_{ij} \leq T \qquad \forall i \in M$$
$$x_{ij} \geq 0 \qquad \forall ij$$

2-Approximate Rounding Algorithm of Shmoys-Tardos

2-Approximate Rounding Algorithm of Shmoys-Tardos

2-Approximate Rounding Algorithm of Shmoys-Tardos

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

 $p_{ij_1} \ge p_{ij_2} \ge \cdots \ge p_{ij_5}$

sub-machines

 x_{ij}

sub-machines

sub-machines

Obs. x between J and sub-machines is a point in the bipartite-matching polytope, where all jobs in J are matched.

• Recall bipartite matching polytope is integral.

- Recall bipartite matching polytope is integral.
- x is a convex combination of matchings.

- Recall bipartite matching polytope is integral.
- x is a convex combination of matchings.
- Any matching in the combination covers all jobs J.

- Recall bipartite matching polytope is integral.
- x is a convex combination of matchings.
- Any matching in the combination covers all jobs J.

Proof.

Proof.

Proof.

ullet focus on machine i_{i} let i_1,i_2,\cdots,i_a be the sub-machines for i

Proof.

- ullet focus on machine i_{i} let i_1,i_2,\cdots,i_a be the sub-machines for i
- assume job k_t is assigned to sub-machine i_t .

Proof.

- ullet focus on machine i_{i} let i_1,i_2,\cdots,i_a be the sub-machines for i
- assume job k_t is assigned to sub-machine i_t .

$$(\text{load on } i) = \sum_{t=1}^{a} p_{ik_t} \le p_{ik_1} + \sum_{t=2}^{a} \sum_{j} x_{i_{t-1}j} \cdot p_{ij}$$
$$\le p_{ik_1} + \sum_{j} x_{i_j} p_{i_j} \le T + T = 2T.$$

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

>i2

→ i3

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$

• worst case:

- $1 \rightarrow i1, 2 \rightarrow i2$
- $\bullet \ 4 \rightarrow i3, 7 \rightarrow i4$

i1

i2

i3

•*i*4

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$

• worst case:

- $1 \rightarrow i1, 2 \rightarrow i2$
- $\bullet \ 4 \rightarrow i3, 7 \rightarrow i4$

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:
 - $\bullet \ 1 \to i1, 2 \to i2$
 - $4 \rightarrow i3, 7 \rightarrow i4$

 $p_1 \leq T$ $p_2 \leq 0.7p_1 + 0.3p_2$ $p_4 \leq 0.3p_2 + 0.5p_3 + 0.2p_4$ $p_7 \leq 0.1p_4 + 0.5p_5 + 0.2p_6 + 0.2p_7$

- fix i, use p_j for p_{ij}
- $p_1 \ge p_2 \ge \cdots \ge p_7$
- worst case:
 - $\bullet \ 1 \to i1, 2 \to i2$
 - $4 \rightarrow i3, 7 \rightarrow i4$

 $\begin{array}{l} p_1 \leq T \\ p_2 \leq 0.7 p_1 + 0.3 p_2 \\ p_4 \leq 0.3 p_2 + 0.5 p_3 + 0.2 p_4 \\ p_7 \leq 0.1 p_4 + 0.5 p_5 + 0.2 p_6 + 0.2 p_7 \end{array}$

 $p_1 + p_2 + p_4 + p_7 \le T + (0.7p_1 + 0.3p_2) + (0.3p_2 + 0.5p_3 + 0.2p_4)$ $+ (0.1p_4 + 0.5p_5 + 0.2p_6 + 0.2p_7)$ $\le T + (0.7p_1 + 0.6p_2 + 0.5p_3 + 0.3p_4 + 0.5p_5 + 0.2p_6 + 0.4p_7)$ $\le T + T = 2T$ 57/59

- linear programming, simplex method, interior point method, ellipsoid method
- integral LP polytopes: bipartite matching polytope, *s*-*t* flow polytope, weighted interval scheduling polytope

- linear programming, simplex method, interior point method, ellipsoid method
- integral LP polytopes: bipartite matching polytope, *s*-*t* flow polytope, weighted interval scheduling polytope
- approximation algorithm using LP rounding
 - 2-approximation algorithm for weighted vertex cover
 - 2-approximation for unrelated machine scheduling

English-Chinese Translation

Linear Program	:	线性规划
Integer Program	:	整数规划
Feasible Region	:	解域
Polyhedron	:	凸多面体
Polytope	:	有界凸多面体
Vertex/Extreme Point	:	顶点
Convex Combination	:	凸组合
Convex Hull	:	凸包
Dual	:	对偶
Totally Unimodular	:	完全单位模的