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Advanced Algorithms
Dimension Reduction



Metric Embedding

low-distortion: for small  α ≥ 1

∀x1, x2 ∈ X :
1
α

dX(x1, x2) ≤ dY(ϕ(x1), ϕ(x2)) ≤ αdX(x1, x2)

ϕ

(X, dX) (Y, dY)
• Two metric spaces:  and (X, dX) (Y, dY)



• Usually we want .


• How small can  be?


• For what distance ?


• The embedding should be efficiently constructible.

k ≪ d

k

∥ ⋅ ∥

Dimension Reduction

Input:   points  

Output:   points  s.t. 


 

n x1, x2, …, xn ∈ ℝd

n y1, y2, …, yn ∈ ℝk ∀1 ≤ i, j ≤ n :
(1 − ϵ)∥xi − xj∥ ≤ ∥yi − yj∥ ≤ (1 + ϵ)∥xi − xj∥



Johonson-Linenstrauss 
Theorem/Transformation 
(JLT)



(Johnson-Lindenstrauss 1984)
Johonson-Linenstrauss Theorem

Theorem (Johnson-Lindenstrauss 1984): 

, for any set  of  points from , there is a 
 with , such that 


∀0 < ϵ < 1 S n ℝd

ϕ : ℝd → ℝk k = O(ϵ−2 log n) ∀x, y ∈ S :

(1 − ϵ)∥x − y∥2
2 ≤ ∥ϕ(x) − ϕ(y)∥2

2 ≤ (1 + ϵ)∥x − y∥2
2

“In Euclidian space, it is always possible to embed 
a set of n points in arbitrary dimension to


 O(log n) dimension with constant distortion.”



(Johnson-Lindenstrauss 1984)
Johonson-Linenstrauss Theorem

Theorem (Johnson-Lindenstrauss 1984): 

, for any set  of  points from , there is a 

 with , such that 

∀0 < ϵ < 1 S n ℝd

A ∈ ℝk×d k = O(ϵ−2 log n) ∀x, y ∈ S :

(1 − ϵ)∥x − y∥2
2 ≤ ∥Ax − Ay∥2

2 ≤ (1 + ϵ)∥x − y∥2
2

“In Euclidian space, it is always possible to embed 
a set of n points in arbitrary dimension to


 O(log n) dimension with constant distortion.”

• The probabilistic method:  for random A ∈ ℝk×d

Pr [∀x, y ∈ S : (1 − ϵ)∥x − y∥2
2 ≤ ∥Ax − Ay∥2

2 ≤ (1 + ϵ)∥x − y∥2
2] = 1 − O ( 1

n )
w.h.p.



Theorem (Johnson-Lindenstrauss 1984): 

, for any set  of  points from , there is a 

 with , such that 

∀0 < ϵ < 1 S n ℝd

A ∈ ℝk×d k = O(ϵ−2 log n) ∀x, y ∈ S :
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• The probabilistic method:  for random A ∈ ℝk×d

Pr [∀x, y ∈ S : (1 − ϵ)∥x − y∥2
2 ≤ ∥Ax − Ay∥2

2 ≤ (1 + ϵ)∥x − y∥2
2] = 1 − O ( 1

n )
• Efficient construction of random :

• projection onto uniform random k-dimensional subspace; 

(Johnson-Lindenstrauss; Dasgupta-Gupta)

• independent Gaussian entries; (Indyk-Motwani)

• i.i.d. -1/+1 entries; (Achlioptas)

A ∈ ℝk×d



• for some suitable : k = O(ϵ−2 log n)

Dimension Reduction

J-L Transformation (i.i.d. Gaussian entries):

Entries of  are chosen i.i.d. from ;  


(Gaussian distribution with mean 0 and variance )


For :  let ;

A ∈ ℝk×d 𝒩(0,1/k)
1/k

i = 1,2,…, n yi = Axi

• Gaussian random variable : X ∼ 𝒩(μ, σ2)

Pr[X ≤ t] = ∫
t

−∞

1

2πσ2
e− (x − μ)2

2σ2 dx 𝔼[X] = μ
Var[X] = σ2

Input:   points  

Output:   points  s.t. 


 

n x1, x2, …, xn ∈ ℝd

n y1, y2, …, yn ∈ ℝk ∀1 ≤ i, j ≤ n :
(1 − ϵ)∥xi − xj∥2

2 ≤ ∥yi − yj∥2
2 ≤ (1 + ϵ)∥xi − xj∥2

2



• ,   set  of  points from  

• Random matrix  with :

∀0 ≤ ϵ ≤ 1 ∀ S n ℝd

A ∈ ℝk×d k = (ϵ−2 log n)

Norm Preservation

Johnson-Lindenstrauss Theorem: 

With high probability ( ): ,
≥ 1 − O(1/n) ∀x, y ∈ S
(1 − ϵ)∥x − y∥2

2 ≤ ∥Ax − Ay∥2
2 ≤ (1 + ϵ)∥x − y∥2

2
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unit vector!

union bound
over all O(n2) 

pairs of x, y ∈ S

for any unit vector u ∈ ℝd :
Pr

⇥��kAuk22 � 1
�� > ✏

⇤
< 1

n3



for any unit vector u ∈ ℝd :
Pr

⇥��kAuk22 � 1
�� > ✏

⇤
< 1

n3

A ∈ ℝk×d :  each entry of A is chosen i.i.d. from 𝒩 (0,
1
k )
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for any unit vector u ∈ ℝd :
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for any unit vector u ∈ ℝd :
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⇥��kAuk22 � 1
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p
k · Yi

A ∈ ℝk×d :  each entry of A is chosen i.i.d. from 𝒩 (0,
1
k )

Chernoff bound for -distributions:


For independent 

 

χ2

X1, …, Xk ∈ 𝒩(0,1) ⟹
Pr [∑k

i=1 X2
i > (1 + ϵ)k] < e−ϵ2k/8

Pr [∑k
i=1 X2

i < (1 − ϵ)k] < e−ϵ2k/8



for any unit vector u ∈ ℝd :
Pr

⇥��kAuk22 � 1
�� > ✏

⇤
< 1

n3

Pr
⇥��kAuk22 � 1

�� > ✏
⇤

for i.i.d.

= Pr

"
kX

i=1

X2
i > (1 + ✏)k or

kX

i=1

X2
i < (1� ✏)k

#

< 1
n3 for suitable k = O(ε-2log n)

X1, X2, . . . , Xk ⇠ N (0, 1)

A ∈ ℝk×d :  each entry of A is chosen i.i.d. from 𝒩 (0,
1
k )

Chernoff bound for -distributions:
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for all λ>0:

Chernoff bound for -distributions:
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Chernoff bound for -distributions:
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Pr [∀x, y ∈ S : (1 − ϵ)∥x − y∥2
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2] = 1 − O ( 1
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• Efficient construction of random :

• projection onto uniform random k-dimensional subspace; 

(Johnson-Lindenstrauss; Dasgupta-Gupta)

• independent Gaussian entries; (Indyk-Motwani)

• i.i.d. -1/+1 entries; (Achlioptas)

A ∈ ℝk×d



• for some suitable : k = O(ϵ−2 log n)

Dimension Reduction

J-L Transformation (uniform k-dim subspace):

The  rows  of  are orthogonal unit 
vectors  chosen uniform at random;


For :  let ;

k A1, …, Ak A ∈ ℝk×d

∈ ℝd

i = 1,2,…, n yi =
d
k

Axi

•   projection onto a uniform 
k-dimensional subspace
A ∈ ℝk×d :

Input:   points  

Output:   points  s.t. 


 

n x1, x2, …, xn ∈ ℝd

n y1, y2, …, yn ∈ ℝk ∀1 ≤ i, j ≤ n :
(1 − ϵ)∥xi − xj∥2

2 ≤ ∥yi − yj∥2
2 ≤ (1 + ϵ)∥xi − xj∥2

2



for any unit vector u ∈ ℝd :

A ∈ ℝk×d : projection onto uniform random k-dim subspace

Pr
d
k

Au
2

2

− 1 > ϵ <
1
n3

Pr [ Au
2
2 > (1 + ϵ)

k
d
 or  Au

2
2 < (1 − ϵ)

k
d ] <

1
n3



for any unit vector u ∈ ℝd :

A ∈ ℝk×d : projection onto uniform random k-dim subspace

Pr [ Au
2
2 > (1 + ϵ)

k
d ] <

1
2n3

Pr [ Au
2
2 < (1 − ϵ)

k
d ] <

1
2n3

fixed
     unit vector

random
subspace

fixed
subspace

random
unit vector

probabilistically
equivalent

“inner-products are invariant under rotations”



for any unit vector u ∈ ℝd :

A ∈ ℝk×d : projection onto uniform random k-dim subspace

Pr [ Au
2
2 > (1 + ϵ)

k
d ] <

1
2n3

Pr [ Au
2
2 < (1 − ϵ)

k
d ] <

1
2n3

fixed
subspace

random
unit vectoruniform random unit vector :∈ ℝd

Y = (Y1, …, Yk, Yk+1, …, Yd)
fixed k-dimensional subspace:

Z = (Y1, …, Yk)

 is identically distributed as ∥Au∥ ∥Z∥



Pr [
k

∑
i=1

Y2
i > (1 + ϵ)

k
d ] <

1
2n3

Pr [
k

∑
i=1

Y2
i < (1 − ϵ)

k
d ] <

1
2n3

uniform random unit vector :∈ ℝd Y = (Y1, …, Yd)

for some suitable k = O(ε-2log n): 

Pr[X = x] =
d

∏
i=1

1

2π
e−x2

i /2 = (2π)−d/2e−∥x∥2
2/2density:

Spherically symmetric!

sample  where  i.i.d.;


let ;

X = (X1, …, Xd) ∈ ℝd Xi ∼ 𝒩(0,1)

Y =
X

∥X∥



i.i.d. Gaussian random variables X1, X2, …, Xd ∼ 𝒩(0,1)

for some suitable k = O(ε-2log n): 

Pr [
k

∑
i=1

X2
i > (1 + ϵ)

k
d

d

∑
i=1

X2
i ] <

1
2n3

Pr [
k

∑
i=1

X2
i < (1 − ϵ)

k
d

d

∑
i=1

X2
i ] <

1
2n3

Pr [(d − (1 + ϵ)k)
k

∑
i=1

X2
i − (1 + ϵ)k

d

∑
i=k+1

X2
i > 0] <

1
2n3

Pr [(d − (1 − ϵ)k)
k

∑
i=1

X2
i − (1 − ϵ)k

d

∑
i=k+1

X2
i < 0] <

1
2n3



i.i.d. Gaussian random variables X1, X2, …, Xd ∼ 𝒩(0,1)

for some suitable k = O(ε-2log n): 

= Pr exp {λ (((1 − ϵ)k − d)
k

∑
i=1

X2
i + (1 − ϵ)k

d

∑
i=k+1

X2
i )} > 1 (arbitrary )λ > 0

≤ 𝔼 exp {λ (((1 − ϵ)k − d)
k

∑
i=1

X2
i + (1 − ϵ)k

d

∑
i=k+1

X2
i )}

=
k

∏
i=1

𝔼 [eλ((1−ϵ)k−d)X2
i ]

d

∏
i=k+1

𝔼 [eλ(1−ϵ)kX2
i ]

(Markov’s inequality)

Pr [(d − (1 + ϵ)k)
k

∑
i=1

X2
i − (1 + ϵ)k

d

∑
i=k+1

X2
i > 0] <

1
2n3

Pr [(d − (1 − ϵ)k)
k

∑
i=1
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i − (1 − ϵ)k
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i.i.d. Gaussian random variables X1, X2, …, Xd ∼ 𝒩(0,1)

for some suitable k = O(ε-2log n): 

(arbitrary )λ > 0

≤ (1 − 2λ((1 − ϵ)k − d))− k
2 (1 − 2λ(1 − ϵ)k)− d − k

2

= Pr exp {λ (((1 − ϵ)k − d)
k

∑
i=1

X2
i + (1 − ϵ)k

d

∑
i=k+1

X2
i )} > 1

Pr [(d − (1 + ϵ)k)
k

∑
i=1

X2
i − (1 + ϵ)k

d

∑
i=k+1

X2
i > 0] <

1
2n3

Pr [(d − (1 − ϵ)k)
k

∑
i=1

X2
i − (1 − ϵ)k

d

∑
i=k+1

X2
i < 0] <

1
2n3

≤ (1 − ϵ)− k
2 (1 −

ϵk
d − k )

d − k
2

set:
 λ =

ϵ
2(1 − ϵ)(d − (1 − ϵ)k)≤ exp (−

ϵ2k
4 )



Theorem (Johnson-Lindenstrauss 1984): 

, for any set  of  points from , there is a 

 with , such that 

∀0 < ϵ < 1 S n ℝd

A ∈ ℝk×d k = O(ϵ−2 log n) ∀x, y ∈ S :

(1 − ϵ)∥x − y∥2
2 ≤ ∥Ax − Ay∥2

2 ≤ (1 + ϵ)∥x − y∥2
2

• The probabilistic method:  for random A ∈ ℝk×d

Pr [∀x, y ∈ S : (1 − ϵ)∥x − y∥2
2 ≤ ∥Ax − Ay∥2

2 ≤ (1 + ϵ)∥x − y∥2
2] = 1 − O ( 1

n )
• Efficient construction of random :

• projection onto uniform random k-dimensional subspace; 

(Johnson-Lindenstrauss; Dasgupta-Gupta)

• independent Gaussian entries; (Indyk-Motwani)

• i.i.d. -1/+1 entries; (Achlioptas)

A ∈ ℝk×d



Nearest Neighbor 
Search (NNS)



Nearest Neighbor Search (NNS)

x

Applications in:

• database systems

• pattern matching

• machine learning

• image processing

• bioinformatics

• … …

Data:   points  

Query:  a point 


Find the datapoint  that is closest to . 

n y1, y2, …, yn ∈ X
x ∈ X

yi x

• Metric space :(X, dist)



Nearest Neighbor Search (NNS)

Data:   points  

Query:  a point 


Find the datapoint  that is closest to . 

n y1, y2, …, yn ∈ [N]d

x ∈ [N]d

yi x

when dimension d is small:

k-d tree Voronoi diagram



Nearest Neighbor Search (NNS)

when dimension d is high:

say d ≫ log n
Curse of dimensionality:

It is conjectured that to solve NNS in high dimension requires

either super-polynomial(n) space or super-polynomial(d) time.

Blessing:    randomization  +  approximation

• Hamming space :{0,1}d

Data:   points  

Query:  a point 


Find the datapoint  that is closest to . 

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

yi x



Data:   points  

Query:  a point 

-ANN (Approximate Nearest Neighbor):


Find a  such that 


-ANN (Approximate Near Neighbor):

return a  that  if  s.t. 


            “no” if  , 

      arbitrary if otherwise

n y1, y2, …, yn ∈ X
x ∈ X

c
yi dist(x, yi) ≤ c ⋅ min

1≤ j≤n
dist(x, yj)

(c, r)
yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r

∀yi dist(x, yi) > c ⋅ r

Approximate Near Neighbor (ANN)
• Metric space :(X, dist)

rx
cr

Dmax = max
1i<jn

dist(yi,yj)

Dmin = min
1i<jn

dist(yi,yj)r0 =
rk = c ⋅ rk−1

rlogc(Dmax/Dmin) =



let

(
p
c, r)-∀r  : ANN 

can be solved with space s 
and query time t

c-ANN can be solved
within space O(s logc R) 

and query time O(t loglogc R)

R =
Dmax

Dmin

Dmax = max
1i<jn

dist(yi,yj)

Dmin = min
1i<jn

dist(yi,yj)

• Metric space :(X, dist)

Data:   points  

Query:  a point 

-ANN (Approximate Nearest Neighbor):


Find a  such that 


-ANN (Approximate Near Neighbor):

return a  that  if  s.t. 


            “no” if  , 

      arbitrary if otherwise

n y1, y2, …, yn ∈ X
x ∈ X

c
yi dist(x, yi) ≤ c ⋅ min

1≤ j≤n
dist(x, yj)

(c, r)
yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r

∀yi dist(x, yi) > c ⋅ r



• Hamming space :{0,1}d

Data:   points  

Query:  a point 


-ANN (Approximate Near Neighbor):

return a  that  if  s.t. 


answer “no” if  , 

      arbitrary if otherwise

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

(c, r)
yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r

∀yi dist(x, yi) > c ⋅ r

• High dimension: d ≫ log n

Dimension Reduction:

Let ,  and  to be fixed later;

sample  Boolean matrix  with i.i.d. entries ;

for :   let  on finite field ;


store all -balls  for all ;

k p s
k × d A ∈ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(p)

i = 1,2,…, n zi = Ayi ∈ {0,1}k GF(2)
s Bs(u) = {yi ∣ dist(u, zi) ≤ s} u ∈ {0,1}k

zi(j) = (Ayi)j =

 
dX

`=1

Aj`yi(`)

!
mod 2



• Hamming space :{0,1}d

Data:   points  

Query:  a point 

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

• High dimension: d ≫ log n

Dimension Reduction:

Let ,  and  to be fixed later;

sample  Boolean matrix  with i.i.d. entries ;

for :   let  on finite field ;


store all -balls  for all ;

k p s
k × d A ∈ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(p)

i = 1,2,…, n zi = Ayi ∈ {0,1}k GF(2)
s Bs(u) = {yi ∣ dist(u, zi) ≤ s} u ∈ {0,1}k

zi(j) = (Ayi)j =

 
dX

`=1

Aj`yi(`)

!
mod 2

space:  O(n2k) query time:  O(kd) computation + O(1) memory access

To answer query :    retrieve ;

                        if  return “no” 

                        else return any 

x ∈ {0,1}d Bs(Ax)
Bs(Ax) = ∅

yi ∈ Bs(Ax)



• Hamming space :{0,1}d

Data:   points  

Query:  a point 

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

• High dimension: d ≫ log n

Dimension Reduction:

Let ,  and  to be fixed later;

sample  Boolean matrix  with i.i.d. entries ;

for :   let  on finite field ;

k p s
k × d A ∈ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(p)

i = 1,2,…, n zi = Ayi ∈ {0,1}k GF(2)

zi(j) = (Ayi)j =

 
dX

`=1

Aj`yi(`)

!
mod 2

for suitable k = O(log n),  p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < 1/n2

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < 1/n2

∀x,y ∈ {0,1}d :

union bound (c,r)-ANN is solved w.h.p.



random k×d Boolean matrix A with i.i.d. entries ∈ Bernoulli(p);

for suitable p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < e-Ω(k)

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < e-Ω(k)

∀x,y ∈ {0,1}d :

(Ax)i =

0

@
dX

j=1

Aijxi

1

A mod 2computation on GF(2):

Pr[(Ax)i 6= (Ay)i] =
1

2

⇣
1� (1� 2p)dist(x,y)

⌘
row vector Ai· :    i.i.d. entries ∈ Bernoulli(p)

= Pr[hAi·,xi 6= hAi·,yi]

For uniform u∈{0,1}d: Pr[hu,xi 6= hu,yi] = 1

2

generate Ai· as: 1. each j∈[d] joins D⊆[d] independently with probability 2p;
2. for each j∈D: samples a uniform and independent Aij∈{0,1};
3. for each j∉D: Aij=0;

Ai· restricted on D is a uniform Boolean vector! 

Why?



random k×d Boolean matrix A with i.i.d. entries ∈ Bernoulli(p);

for suitable p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < e-Ω(k)

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < e-Ω(k)

∀x,y ∈ {0,1}d :

(Ax)i =

0

@
dX

j=1

Aijxi

1

A mod 2computation on GF(2):

Pr[(Ax)i 6= (Ay)i] =
1

2

⇣
1� (1� 2p)dist(x,y)

⌘
row vector Ai· :    i.i.d. entries ∈ Bernoulli(p)

choose p to satisfy (1-2p) = 2-1/r

dist(x,y) ≤ r       ⇒   Pr[ (Ax)i ≠ (Ay)i ] ≤ 1/4
dist(x,y) > c·r   ⇒   Pr[ (Ax)i ≠ (Ay)i ] > 1/2 - 2-(c+1)

= Pr[hAi·,xi 6= hAi·,yi]



random k×d Boolean matrix A with i.i.d. entries ∈ Bernoulli(p);

for suitable p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < e-Ω(k)

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < e-Ω(k)

∀x,y ∈ {0,1}d :

(Ax)i =

0

@
dX

j=1

Aijxi

1

A mod 2computation on GF(2):

choose p to satisfy (1-2p) = 2-1/r

dist(x,y) ≤ r       ⇒   Pr[ (Ax)i ≠ (Ay)i ] ≤ 1/4
dist(x,y) > c·r   ⇒   Pr[ (Ax)i ≠ (Ay)i ] > 1/2 - 2-(c+1)

independent trials

dist(Ax, Ay) = X =
kX

i=1

Xi Xi =

(
1 if (Ax)i 6= (Ay)i
0 otherwise

where



random k×d Boolean matrix A with i.i.d. entries ∈ Bernoulli(p);

for suitable p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < e-Ω(k)

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < e-Ω(k)

∀x,y ∈ {0,1}d :

(Ax)i =

0

@
dX

j=1

Aijxi

1

A mod 2computation on GF(2):

choose p to satisfy (1-2p) = 2-1/r

dist(x,y) ≤ r      ⇒   Pr[ Xi =1 ] ≤ 1/4               ⇒  E[X] ≤ k/4
dist(x,y) > c·r  ⇒   Pr[ Xi =1 ] > 1/2 - 2-(c+1)    ⇒  E[X] ≤ (1/2 - 2-(c+1))k

dist(Ax, Ay) = X =
kX

i=1

Xi Xi =

(
1 if (Ax)i 6= (Ay)i
0 otherwise

where

choose s= (1/4 + 1/2 - 2-(c+1))k/2 = (3/8 - 2-(c+2))k 
dist(x,y) ≤ r  ⇒   Pr[ dist(Ax, Ay) > s] ≤ Pr[ X > EX+ (1/8-2-(c+2))k ]

dist(x,y) > c·r  ⇒   Pr[ dist(Ax, Ay) ≤ s] ≤ Pr[ X < EX - (1/8-2-(c+2))k ]



Chernoff-Hoeffding Bound
Chernoff Bound: 


For , where  are independent 

(or negatively associated),


for any :


X =
n

∑
i=1

Xi X1, …, Xn ∈ {0,1}

t > 0

Pr [ X ≥ 𝔼[X] + t ] ≤ exp (−
2t2

n )
Pr [ X ≤ 𝔼[X] − t ] ≤ exp (−

2t2

n )



random k×d Boolean matrix A with i.i.d. entries ∈ Bernoulli(p);

for suitable p and s:

dist(x,y) ≤ r       ⇒   Pr[ dist(Ax, Ay) > s] < e-Ω(k)

dist(x,y) > c·r   ⇒   Pr[ dist(Ax, Ay) ≤ s] < e-Ω(k)

∀x,y ∈ {0,1}d :

(Ax)i =

0

@
dX

j=1

Aijxi

1

A mod 2computation on GF(2):

choose p to satisfy (1-2p) = 2-1/r

dist(x,y) ≤ r      ⇒   Pr[ Xi =1 ] ≤ 1/4               ⇒  E[X] ≤ k/4
dist(x,y) > c·r  ⇒   Pr[ Xi =1 ] > 1/2 - 2-(c+1)    ⇒  E[X] ≤ (1/2 - 2-(c+1))k

dist(Ax, Ay) = X =
kX

i=1

Xi Xi =

(
1 if (Ax)i 6= (Ay)i
0 otherwise

where

choose s= (1/4 + 1/2 - 2-(c+1))k/2 = (3/8 - 2-(c+2))k 
dist(x,y) ≤ r  ⇒   Pr[ dist(Ax, Ay) > s] ≤ Pr[ X > EX+ (1/8-2-(c+2))k ]

dist(x,y) > c·r  ⇒   Pr[ dist(Ax, Ay) ≤ s] ≤ Pr[ X < EX - (1/8-2-(c+2))k ]

< exp(-2(1/8-2-(c+2))2k)

< exp(-2(1/8-2-(c+2))2k)



• Hamming space :{0,1}d

Data:   points  

Query:  a point 

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

• High dimension: d ≫ log n

Dimension Reduction:

Let                                                                                              ;

sample  Boolean matrix  with i.i.d. entries ;

for :   let  on finite field ;


store all -balls  for all ;

k × d A ∈ 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(p)
i = 1,2,…, n zi = Ayi ∈ {0,1}k GF(2)

s Bs(u) = {yi ∣ dist(u, zi) ≤ s} u ∈ {0,1}k

To answer query :    retrieve ;

                        if  return “no” 

                        else return any 

x ∈ {0,1}d Bs(Ax)
Bs(Ax) = ∅

yi ∈ Bs(Ax)

space:  nO(1) query time:  O(d lnn) solve (c,r)-ANN w.h.p.

k = lnn
(1/8�2�(c+2))2

- p = 1
2 � 2�1�1/r- s = ( 38 � 2�(c+2))k



Locality Sensitive 
Hashing (LSH)



Data:   points  

Query:  a point 


-ANN (Approximate Near Neighbor):

return a  that  if  s.t. 


            “no” if  , 

      arbitrary if otherwise

n y1, y2, …, yn ∈ X
x ∈ X

(c, r)
yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r

∀yi dist(x, yi) > c ⋅ r

• Metric space :(X, dist)
(Indyk-Motwani 1998)
Locality-Sensitive Hashing (LSH)

Locality-sensitive hashing (LSH):

A random  is an -LSH if :
h : X → U (r, cr, p, q) ∀x, y ∈ X

dist(x, y) ≤ r ⟹ Pr[h(x) = h(y)] ≥ p
dist(x, y) > c ⋅ r ⟹ Pr[h(x) = h(y)] ≤ q



• Metric space :(X, dist)

Locality-Sensitive Hashing (LSH)

Locality-sensitive hashing (LSH):

A random  is an -LSH if :
h : X → U (r, cr, p, q) ∀x, y ∈ X

dist(x, y) ≤ r ⟹ Pr[h(x) = h(y)] ≥ p
dist(x, y) > c ⋅ r ⟹ Pr[h(x) = h(y)] ≤ q

 an -LSH
∃ (r, cr, p, q)
h : X → U

 an -LSH
∃ (r, cr, pk, qk)
h : X → Uk⟹

Proposition (tensorization):

draw independent  according to distribution of h1, …, hk h
g(x) = (h1(x), h2(x), …, hk(x)) ∈ Uk



suppose we have (r, cr, p*, 1/n)-LSH g: X→U  
∀x,y ∈ X: dist(x,y) ≤ r      ⇒ Pr[ g(x) = g(y) ] ≥ p*

dist(x,y) > c·r  ⇒ Pr[ g(x) = g(y) ] ≤ 1/n

if real answer is “no”:   always correct
if real answer is not “no”:   correct with probability ≥ p*

(Use FKS) space:  O(n) time:  O(1) + O(1) in expectation 

Data:   points  

Query:  a point 


return a  that  if  s.t. 

            “no” if  , 

n y1, y2, …, yn ∈ X
x ∈ X

yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r
∀yi dist(x, yi) > c ⋅ r

• Metric space :(X, dist)

Data structure: a dictionary for all key-value pairs ;


Upon query :  find all  with ;

if encounter a  that   return this ;

else return “no”;

⟨g(yi), yi⟩
x ∈ X yi g(x) = g(yi)

yi dist(x, yi) ≤ c ⋅ r yi



suppose we have (r, cr, p*, 1/n)-LSH g: X→U  

• Metric space :(X, dist)
Data:   points  

Query:  a point 


return a  that  if  s.t. 

            “no” if  , 

n y1, y2, …, yn ∈ X
x ∈ X

yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r
∀yi dist(x, yi) > c ⋅ r

Hash functions: i.i.d. instances  of , where ;


Data structure:  dictionaries, where the th dictionary stores 

                          all key-value pairs ; 


Upon query :  

find  such  that ;

if encounter a  that   then return this ;

else return “no”;

g1, …, gℓ g ℓ = 1/p*
ℓ j

⟨gj(yi), yi⟩
x ∈ X

≤ 10ℓ yi ∃j, gj(x) = gj(yi)
yi dist(x, yi) ≤ c ⋅ r yi



metric space (X, dist) (r, cr, p*, 1/n)-LSH g: X→U  

space:  O(nl) = O(n/p*) time:  O(l) =O(1/ p*)
if real answer is “no” :  ∀ yi , dist(x,yi) > c·r

n points y1, y2, ..., yn ∈ Data: X Query: x ∈ X

always correct

if ∃ys s.t. dist(x,ys) ≤ r
Pr[ answer “no” ] ≤ ?

Hash functions: i.i.d. instances  of , where ;


Data structure:  dictionaries, where the th dictionary stores 

                          all key-value pairs ; 


Upon query :  

find  such  that ;

if encounter a  that   then return this ;

else return “no”;

g1, …, gℓ g ℓ = 1/p*
ℓ j

⟨gj(yi), yi⟩
x ∈ X

≤ 10ℓ yi ∃j, gj(x) = gj(yi)
yi dist(x, yi) ≤ c ⋅ r yi

(use FKS)



metric space (X, dist) (r, cr, p*, 1/n)-LSH g: X→U  

n points y1, y2, ..., yn ∈ Data: X Query: x ∈ X

                             ≤ Pr[∀j, gj(x) ≠ gj(ys)] 
+ Pr[>10l bad yi that dist(x,yi) > c·r but ∃j s.t. gj(x)=gj(yi)]

≤ E[ # of such bad yi] / 10lMarkov

inequality

 `·n·(1/n)
10` ≤ 0.1

linearity of expectation

Pr[ answer “no” ]  (1� p⇤)`  1/e
if ∃ys s.t. dist(x,ys) ≤ r

Hash functions: i.i.d. instances  of , where ;


Data structure:  dictionaries, where the th dictionary stores 

                          all key-value pairs ; 


Upon query :  

find  such  that ;

if encounter a  that   then return this ;

else return “no”;

g1, …, gℓ g ℓ = 1/p*
ℓ j

⟨gj(yi), yi⟩
x ∈ X

≤ 10ℓ yi ∃j, gj(x) = gj(yi)
yi dist(x, yi) ≤ c ⋅ r yi



metric space (X, dist) (r, cr, p*, 1/n)-LSH g: X→U  

space:  O(nl) = O(n/p*) time:  O(l) =O(1/ p*)
if real answer is “no” :  ∀ yi , dist(x,yi) > c·r

n points y1, y2, ..., yn ∈ Data: X Query: x ∈ X

always correct

if ∃ys s.t. dist(x,ys) ≤ r
Pr[ answer “no” ] ≤ 1/e + 0.1 < 0.5 

Hash functions: i.i.d. instances  of , where ;


Data structure:  dictionaries, where the th dictionary stores 

                          all key-value pairs ; 


Upon query :  

find  such  that ;

if encounter a  that   then return this ;

else return “no”;

g1, …, gℓ g ℓ = 1/p*
ℓ j

⟨gj(yi), yi⟩
x ∈ X

≤ 10ℓ yi ∃j, gj(x) = gj(yi)
yi dist(x, yi) ≤ c ⋅ r yi



suppose we have (r, cr, p, q)-LSH h: X→U  

we have (r, cr, pk, 1/n)-LSH g: X→Uk

for k = log(1/q) n so

solve -ANN with space (c, r) O(n1+ρ)

pk = plog1/q n = n�⇢

where ⇢ =
log p

log q

query time O(nρ·log n) and one-sided error <0.5 

• -ANN in metric space :(c, r) (X, dist)
Data:   points  

Query:  a point 


return a  that  if  s.t. 

            “no” if  , 

n y1, y2, …, yn ∈ X
x ∈ X

yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r
∀yi dist(x, yi) > c ⋅ r



suppose we have (r, cr, p, q)-LSH h: X→U  

solve -ANN with space (c, r) O(n1+ρ)

⇢ =
log p

log q

query time O(nρ·log n) and one-sided error <0.5 

• -ANN in metric space :(c, r) (X, dist)
Data:   points  

Query:  a point 


return a  that  if  s.t. 

            “no” if  , 

n y1, y2, …, yn ∈ X
x ∈ X

yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r
∀yi dist(x, yi) > c ⋅ r



solve -ANN in Hamming space with space (c, r) O(n1+1/c)
query time O(n1/c·log n) and one-sided error <0.5 

∀ x ∈ {0, 1}d : h(x) = xi  for uniform random i ∈ [d]
dist(x,y) ≤ r      ⇒ Pr[ h(x) = h(y) ] ≥ 1-r/d
dist(x,y) > c·r  ⇒ Pr[ h(x) = h(y) ] ≤ 1-cr/d

h: {0, 1}d → {0,1} is an (r, cr, 1-r/d, 1-cr/d)-LSH

⇢ =
log(1� r/d)

log(1� cr/d)
 1

c

• -ANN in Hamming space :(c, r) {0,1}d

Data:   points  

Query:  a point 


return a  that  if  s.t. 

            “no” if  , 

n y1, y2, …, yn ∈ {0,1}d

x ∈ {0,1}d

yi dist(x, yi) ≤ c ⋅ r ∃yj dist(x, yj) ≤ r
∀yi dist(x, yi) > c ⋅ r



COMPUTER SCIENCE

A neural algorithm for a fundamental
computing problem
Sanjoy Dasgupta,1 Charles F. Stevens,2,3 Saket Navlakha4*

Similarity search—for example, identifying similar images in a database or similar documents
on the web—is a fundamental computing problem faced by large-scale information retrieval
systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant
of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns
similar neural activity patterns to similar odors, so that behaviors learned from one odor can
be applied when a similar odor is experienced. The fly algorithm, however, uses three
computational strategies that depart from traditional approaches. These strategies can be
translated to improve the performance of computational similarity searches. This
perspective helps illuminate the logic supporting an important sensory function and
provides a conceptually new algorithm for solving a fundamental computational problem.

A
n essential task of many neural circuits
is to generate neural activity patterns in
response to input stimuli, so that differ-
ent inputs can be specifically identified.
We studied the circuit used to process odors

in the fruit fly olfactory system and uncovered
computational strategies for solving a fundamen-
tal machine learning problem: approximate sim-
ilarity (or nearest-neighbors) search.
The fly olfactory circuit generates a “tag” for

each odor, which is a set of neurons that fire when
that odor is presented (1). This tag is critical for
learning behavioral responses to different odors
(2). For example, if a reward (e.g., sugar water) or
a punishment (e.g., electric shock) is associated
with an odor, that odor becomes attractive (a fly
will approach the odor) or repulsive (a fly will
avoid the odor), respectively. The tags assigned
to odors are sparse—only a small fraction of the
neurons that receive odor information respond
to each odor (3–5)—and nonoverlapping: Tags for
two randomly selected odors share few, if any,
active neurons, so that different odors can be
easily distinguished (1).
The tag for an odor is computed by a three-

step procedure (Fig. 1A). The first step involves
feedforward connections from odorant receptor
neurons (ORNs) in the fly’s nose to projection neu-
rons (PNs) in structures called glomeruli. There
are 50 ORN types, each with a different sensi-
tivity and selectivity for different odors. Thus, each
input odor has a location in a 50-dimensional
space determined by the 50 ORN firing rates.
For each odor, the distribution ofORN firing rates
across the 50 ORN types is exponential, with a
mean that depends on the concentration of the
odor (6, 7). For the PNs, this concentration de-

pendence is removed (7, 8); that is, the distri-
bution of firing rates across the 50 PN types is
exponential, with close to the samemean for all
odors and all odor concentrations (1 ). Thus, the
first step in the circuit essentially “centers the
mean”—a standard preprocessing step in many
computational pipelines—using a technique called
divisive normalization (8). This step is important
so that the fly does notmix up odor intensity with
odor type.
The second step, where the main algorithmic

insight begins, involves a 40-fold expansion in
the number of neurons: Fifty PNs project to 2000
Kenyon cells (KCs), connected by a sparse, binary
random connection matrix (9). Each KC receives
and sums the firing rates from about six randomly
selected PNs (9). The third step involves a winner-
take-all (WTA) circuit in which strong inhibitory
feedback comes from a single inhibitory neuron,
called APL (anterior paired lateral neuron). As a
result, all but the highest-firing 5% of KCs are
silenced (1, 3, 4). The firing rates of these remain-
ing 5% correspond to the tag assigned to the
input odor.
From a computer science perspective, we view

the fly’s circuit as a hash function, whose input is
an odor and whose output is a tag (called a hash)
for that odor. Although tags should discriminate
odors, it is also to the fly’s advantage to associate
very similar odors with similar tags (Fig. 1B), so
that conditioned responses learned for one odor
can be applied when a very similar odor, or a
noisy version of the learned odor, is experienced.
This led us to conjecture that the fly’s circuit
produces tags that are locality-sensitive; that is,
the more similar a pair of odors (as defined by
the 50 ORN firing rates for that odor), the more
similar their assigned tags. Locality-sensitive hash
[LSH (10, 11)] functions serve as the foundation
for solving numerous similarity search problems
in computer science. We translated insights from
the fly’s circuit to develop a class of LSH algo-
rithms for efficiently finding approximate nearest
neighbors of high-dimensional points.
Imagine that you are provided an image of

an elephant and seek to find the 100 images—

out of the billions of images on the web—that
look most similar to your elephant image. This
is called the nearest-neighbors search problem,
which is of fundamental importance in infor-
mation retrieval, data compression, and machine
learning (10). Each image is typically represented
as a d-dimensional vector of feature values. (Each
odor that a fly processes is a 50-dimensional fea-
ture vector of firing rates.) A distance metric is
used to compute the similarity between two images
(feature vectors), and the goal is to efficiently find
the nearest neighbors of any query image. If the
web contained only a few images, then brute force
linear search could easily be used to find the exact
nearest neighbors. If the web contained many
images, but each image was represented by a low-
dimensional vector (e.g., 10 or 20 features), then
space-partitioning methods (12) would similarly
suffice. However, for large databases with high-
dimensional data, neither approach scales (11).
Inmany applications, returning anapproximate

set of nearest neighbors that are “close enough” to
the query is adequate, so long as they can be found
quickly. This has motivated an approach for find-
ing approximate nearest neighbors by LSH (10).
For the fly, as noted, the locality-sensitive property
states that two odors that generate similar ORN
responses will be represented by two tags that are
themselves similar (Fig. 1B). Likewise, for image
search, the tag of an elephant image will be more
similar to the tag of another elephant image than
to the tag of a skyscraper image.
Unlike a traditional (non-LSH) hash function,

where the input points are scattered randomly
and uniformly over the range, a LSH function pro-
vides a distance-preserving embedding of points
from d-dimensional space into m-dimensional
space (the latter corresponds to the tag). Thus,
points that are closer to one another in input
space have a higher probability of being assigned
the same or a similar tag than points that are far
apart. [A formal definition is given in (13).]
To design a LSH function, one common trick

is to compute random projections of the input
data (10, 11)—that is, to multiply the input fea-
ture vector by a random matrix. The Johnson-
Lindenstrauss lemma (14, 15) and its many variants
(16–18) provide strong theoretical bounds on how
well locality is preserved when embedding data
from d intom dimensions by using various types
of random projections.
The fly also assigns tags to odors through ran-

dom projections (step 2 in Fig. 1A; 50 PNs →
2000 KCs), which provides a key clue to the
function of this part of the circuit. There are, how-
ever, three differences between the fly algorithm
and conventional LSH algorithms. First, the
fly uses sparse, binary random projections,
whereas LSH functions typically use dense,
Gaussian random projections that require many
more mathematical operations to compute. Sec-
ond, the fly expands the dimensionality of the
input after projection (d « m), whereas LSH re-
duces the dimensionality (d » m). Third, the fly
sparsifies the higher-dimensionality representa-
tion by a WTA mechanism, whereas LSH pre-
serves a dense representation.
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