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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum solution: x1 = 1, x2 = 4

optimum value = 7× 1+4× 4 = 23
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x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Q: How can we give a lower bound for the linear program,
without solving it?
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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1+4x2 ≥ (x1+x2)+(x1+2x2)+(4x1+x2) ≥ 5+6+8 = 19

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23

Q: How can we obtain the best (i.e., largest) lower bound using
this method?
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Primal LP

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1 + 6y2 + 8y3

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2, y3 ≥ 0

A general method to prove a lower bound

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3

to achieve the largest lower bound: maximize 5y1 + 6y2 + 8y3
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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

max 5y1 + 6y2 + 8y3

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2, y3 ≥ 0

A =

 1 1
1 2
4 1

 b =

 5
6
8

 c =

(
7
4

)

min cTx

Ax ≥ b

x ≥ 0

max bTy

ATy ≤ c

y ≥ 0
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Primal LP

min cTx

Ax ≥ b

x ≥ 0

Dual LP

max bTy

ATy ≤ c

y ≥ 0

Relationships

Primal LP dual LP

variables constraints

constraints variables

obj. coefficients RHS constants

RHS constants obj. coefficients

More Relationships

Primal LP Dual LP

variable in R equlities

equlities variable in R
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Primal LP

min cTx

Ax ≥ b

x ≥ 0

Dual LP

max bTy

ATy ≤ c

y ≥ 0

P := value of primal LP

D := value of dual LP

Theorem (Weak Duality Theorem)
D ≤ P .

Proof.

x: an arbitrary solution to Primal LP

y: an arbitrary solution to Dual LP

bTy ≤ (Ax)Ty = xTATy ≤ xTc = cTx.
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Theorem (Strong Duality Theorem) D = P .

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) Ax ≤ b, x ≥ 0 is infeasible, if
and only if yTA ≥ 0, yTb < 0, y ≥ 0 is feasible.

∀ϵ > 0,

(
−A
cT

)
x ≤

(
−b

P − ϵ

)
, x ≥ 0 is infeasible

There exists y ∈ Rm
≥0, α ≥ 0, such that (yT, α)

(
−A
cT

)
≥ 0,

(yT, α)

(
−b

P − ϵ

)
< 0

we can prove α ̸= 0; assume α = 1

−yTA+ cT ≥ 0,−yTb+P − ϵ < 0⇐⇒ ATy ≤ c, bTy > P − ϵ

∀ϵ > 0, D > P − ϵ =⇒ D = P (since D ≤ P )
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duality is mutual: the dual of the dual of an LP is the LP itself.

Primal LP

max bTy

ATy ≤ c

y ≥ 0

Dual LP

min cTx

Ax ≥ b

x ≥ 0

Duality theorem holds when one LP is infeasible:

Minimization LP is infeasible =⇒ value = ∞
⇐⇒ dual LP value = ∞ =⇒ feasible region of
dual LP is unbounded
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Complementary Slackness

Primal LP

min cTx

Ax ≥ b

x ≥ 0

Dual LP

max bTy

ATy ≤ c

y ≥ 0

x∗ and y∗: optimum primal and dual solutions

D = bTy∗ ≤ (Ax∗)Ty∗ = (x∗)TATy∗ ≤ (x∗)Tc = cTx∗ = P .

P = D: all the inequlaities hold with equalities.

Complementary Slackness

y∗i > 0 =⇒
∑

j aijx
∗
j = bi.

x∗
j > 0 =⇒

∑
i aijy

∗
i = cj.
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Simple Example for Duality: Brewery problem

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)
Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

Primal LP

max 13x+ 23y

5x+ 15y ≤ 480

4x+ 4y ≤ 160

35x+ 20y ≤ 1190

x, y ≥ 0

Dual LP

min 480α + 160β + 1190γ

5α + 4β + 35γ ≥ 13

15α + 4β + 20γ ≥ 23

α, β, γ ≥ 0

α, β, γ: the value of 1 pound of corn,
hops and malt respectively.
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min 480α + 160β + 1190γ

5α + 4β + 35γ ≥ 13

15α + 4β + 20γ ≥ 23

α, β, γ ≥ 0

Covering LP

min cTx, s.t. Ax ≥ b, x ≥ 0,
A, b, c are non-negative

increasing values of variables
can not make the solution
feasible

max 13x+ 23y

5x+ 15y ≤ 480

4x+ 4y ≤ 160

35x+ 20y ≤ 1190

x, y ≥ 0

Packing LP

max cTx, s.t. Ax ≤ b, x ≥ 0,
A, b, c are non-negative

decreasing values of
variables (still guarnateeing
the non-negativity) can not
make the solution infeasible

The dual of a covering LP is a packing LP, and vice versa.
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Maximum Flow Problem

Input: flow network
(G = (V,E), c, s, t)

Output: maximum value of a
s-t flow f

s t

a

b d

c
12/12
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0/
90/
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7/
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19/20

4/
4

LP for Maximum Flow

max
∑

e∈δin(t)

xe

xe ≤ ce ∀e ∈ E∑
e∈δout(v)

xe −
∑

e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E
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An Equivalent Packing LP

12

s t

a

b d

c
12/12

11/14

0/
90/
4

7/
7

12
/1
6

11/13

19/20

4/
4

7
4

P : the set of all simple paths
from s to t

fP , P ∈ P : the flow on P

max
∑
P∈P

fP∑
P∈P:e∈P

fP ≤ ce ∀e ∈ E

fP ≥ 0 ∀P ∈ P

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

dual constraints: the shortest s-t path w.r.t weights y has
length ≥ 1
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Dual LP

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

Theorem The optimum value can
be attained at an integral point y.

Maximum Flow Minimum Cut
Theorem The value of the
maximum flow equals the value of
the minimum cut.

Proof of Theorem.

Given any optimum y, let dv be the length of shortest path
from s to v, for every v ∈ V . ds = 0, dt = 1

Randomly choose θ ∈ (0, 1), and output cut
(S := {v : dv ≤ θ}, T := {v : dv > θ})
Lemma: E[cut value of(S, T )] ≤

∑
e∈E ceye

Any cut (S, T ) in the support is optimum
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max
∑
P∈P

fP∑
P∈P:e∈P

fP ≤ ce ∀e ∈ E

fP ≥ 0 ∀P ∈ P

min
∑
e∈E

ceye∑
e∈P

ye ≥ 1 ∀P ∈ P

ye ≥ 0 ∀e ∈ E

pros of new LP: it is a packing LP, dual is a covering LP, easier
to understand and analyze

cons of new LP: exponential size, can not be solved directly

when we only need to do non-algorithmic analysis
ellipsoid method with separation oracle can solve some
exponential size LP



19/41

Outline

1 Duality of Linear Programming
Max-Flow Min-Cut Theorem Using LP Duality
0-Sum Game and Nash Equilibrium

2 2-Approximation Algorithm for Weighted Vertex Cover Using
Primal-Dual

3 3-Approximation Algorithm for Uncapacitated Facility Location
Problem Using Primal Dual



20/41

0-Sum Game

Input: a payoff matrix M ∈ Rm×n,m, n ≥ 1,

two players: row player R, column player C

Output: R plays a row i ∈ [m], C plays a column j ∈ [n]

payoff of game is Mij

R wants to minimize Mij, C wants to maximize Mij

Rock-Scissor-Paper Game

payoff R S P
R 0 -1 1
S 1 0 - 1
P -1 1 0

game depends on who plays first

By allowing mixed strategies, each
player has a best strategy, regardless
of who plays first



21/41

row player R column player C

pure strategy row i ∈ [m] column j ∈ [n]

mixed strategy
distribution x over [m] distribution y over [n]

x ∈ [0, 1]m,
∑m

i=1 xi = 1 y ∈ [0, 1]n,
∑n

j=1 yj = 1

M(x, y) :=
m∑
i=1

n∑
j=1

xiyjMij

M(x, j) :=
m∑
i=1

xiMij, M(i, y) :=
n∑

j=1

yjMij

If R plays a mixed strategy y first, then it is the best for C to
play a pure strategy j. Value of game is infxmaxj∈[n] M(x, j).

If C plays a mixed strategy x first, then it is the best for R to
play a pure strategy i. Value of game is supy mini∈[m] M(i, y).
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Theorem (Von Neumann (1928), Nash’s Equilibrium)

inf
x
max
j∈[n]

M(x, j) = sup
y

min
i∈[m]

M(i, y).

Coro. inf
x
sup
y

M(x, y) = sup
y

inf
x
M(x, y).

Coro. There are mixed strategies x∗ and y∗ satisfying
M(x, y∗) ≥M(x∗, y∗),∀x and M(x∗, y) ≤M(x∗, y∗),∀y.

Proof.

V := infx supy M(x, y) = supy infx M(x, y)

x∗: the strategy x that minimizes supy M(x, y)

y∗: the strategy y that maximizes infx M(x, y)

M(x∗, y∗) ≤ V,M(x∗, y∗) ≥ V =⇒ M(x∗, y∗) = V

M(x∗, y) ≤ V, ∀y and M(x, y∗) ≥ V, ∀x.
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As long as the first player can play a mixed strategy, then he
will not be at a disadvantage.

If both players can play mixed strategies, then they do not
need to know the strategy of the other player.

Def. infx supy M(x, y) = supy infx M(x, y) is called the value of
the game. The two strategies x∗ and y∗ in the corollary are called
the optimum strategies for R and C respectively.

Theorem (Von Neumann (1928), Nash’s Equilibrium)

inf
x
max
j∈[n]

M(x, j) = sup
y

min
i∈[m]

M(i, y).

Can be proved by LP duality.
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LP for Row Player

min R
m∑
i=1

xi = 1

R−
m∑
i=1

Mijxi ≥ 0 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

LP for Column Player

max C
n∑

j=1

yj = 1

C −
n∑

j=1

Mijyj ≤ 0 ∀i ∈ [m]

yj ≥ 0 ∀j ∈ [n]

The two LPs are dual to each other.

xi, i ∈ [m] primal variable (∈ R≥0) dual constraint (≤)
yj, j ∈ [n] dual variable (∈ R≥0) primal constraint (≥)

R primal variable (∈ R) dual constraint (=)

C dual variable (∈ R) primal constraint (=)
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Let V be the value of the game, x∗ and y∗ be the two
optimum strategies. Complementrary slackness implies:

If x∗i > 0, then M(i, y∗) = V .
If y∗j > 0, then M(x∗, j) = V .

The game is called 0-sum game as the payoff for R is the
negative of the payoff for C.
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LP Relaxation

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

Dual LP

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

Algorithm constructs integral primal solution x and dual
solution y simultaneously.
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Primal-Dual Algorithm for Weighted Vertex Cover Problem

1: x← 0, y ← 0, all edges said to be uncovered
2: while there exists at least one uncovered edge do
3: take such an edge e arbitrarily
4: increasing ye until the dual constraint for one end-vertex v

of e becomes tight
5: xv ← 1, claim all edges incident to v are covered

6: return x

1

3

3

2

2 4

1

2

1
1

Lemma

1 x satisfies all primal constraints

2 y satisfies all dual constraints

3 P ≤ 2D ≤ 2D∗ ≤ 2 · opt
P :=

∑
v∈V xv: value of x

D :=
∑

e∈E ye: value of y

D∗ : dual LP value
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Proof of P ≤ 2D.

P =
∑
v∈V

wvxv ≤
∑
v∈V

xv

∑
e∈δ(v)

ye =
∑

(u,v)∈E

y(u,v)(xu + xv)

≤ 2
∑
e∈E

ye = 2D.

a more general framework: construct an arbitrary maximal dual
solution y; choose the vertices whose dual constraints are tight

y is maximal: increasing any coordinate ye makes y infeasible

primal-dual algorithms do not need to solve LPs

LPs are used in analysis only

faster than LP-rounding algorithm in general
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3

24

2

facilities

clients

Uncapacitated Facility Location Problem

Input: F : pontential facilities C: clients

d: (symmetric) metric over F ∪ C (fi)i∈F : facility
opening costs

Output: S ⊆ F , so as to minimize
∑

i∈S fi +
∑

j∈C d(j, S)

1.488-approximation [Li, 2011]

1.463-hardness of approximation, 1.463 ≈ root of x = 1+2e−x
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yi: open facility i?

xi,j: connect client j to facility i?

Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

Obs. When (yi)i∈F is determined,
(xi,j)i∈F,j∈C can be determined
automatically.

0.1

facilities

clients

0.3

0.3

0.20.6
0.2

0.4

0.3

0.6
0.1
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Basic LP Relaxation

min
∑
i∈F

fiyi +
∑

i∈F,j∈C

d(i, j)xi,j∑
i∈F

xi,j ≥ 1 ∀j ∈ C

xi,j ≤ yi ∀i ∈ F, j ∈ C

xi,j ≥ 0 ∀i ∈ F, j ∈ C

yi ≥ 0 ∀i ∈ F

LP is not of covering type

harder to understand the
dual

consider an equivalent
covering LP

idea: treat a solution as a
set of stars

facilities

clients
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(i, J), i ∈ F, J ⊆ C: star with center i and leaves J

cost(i, J) := fi +
∑

j∈J d(i, j): cost of star (i, J)

xi,J ∈ {0, 1}: if star (i, J) is chosen

Equivalent LP

min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

Dual LP

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

both LPs have exponential size, but the final algorithm can run
in polynomial time
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min
∑
(i,J)

cost(i, J) · xi,J∑
(i,J):j∈J

xi,J ≥ 1 ∀j ∈ C

xi,J ≥ 0 ∀(i, J)

max
∑
j∈C

αj∑
j∈J

αj ≤ cost(j, J) ∀(i, J)

αj ≥ 0 ∀j ∈ C

αj: budget of j

dual constraints: total budget in any star is ≤ its cost

=⇒ opt ≥ total budget = dual value
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Construction of Dual Solution α

αj’s can only increase

α is always feasible

if a dual constraint
becomes tight, freeze
all clients in star

unfrozen clients are
called active clients

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

facilities
clients

Construction of Dual Solution α

1: αj ← 0,∀j ∈ C
2: while exists at least one active client do
3: increase the budgets αj for all active clients j at uniform

rate, until (at least) one new client is frozen
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Construction of Dual Solution α

: tight facilities; they
are temporarily open

□: pemanently closed

ti: time when facility i
becomes tight

construct a bipartite
graph: (i, j) exists
⇐⇒ αj > d(i, j),

8

9 8

4

3
3

2

5

5

5

5

2

3
3

8

8

6

6
5

5 7

11

ti = 5

ti = 6
ti = 11

facilities
clients

αj > d(i, j): j contributes to i, (solid lines)

αj = d(i, j): j does not contribute to i, but its budget is just
enough for it to connect to i (dashed lines)

αj < d(i, j): budget of j is not enough to connect to i
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Construction of Integral Primal Solution

Construction of Integral Primal Solution

1: S ← ∅, all clients are unowned
2: for every temporarily open facility i, in

increasing order of ti do
3: if all (solid-line) neighbors of i are

unowned then
4: S ← S ∪ {i}, open facility i
5: connect to all its neighbors to i
6: let i own them
7: connect unconnected clients to their

nearest facilities in S

ti increasing

S
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S: set of open facilities

C1: clients that make contributions

C2: clients that do not make
contributions

f : total facillity cost

cj: connection cost of client j

c =
∑

j∈C cj: total connection cost

D =
∑

j∈C αj: value of α

Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

ti increasing

C1

C2

S
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Lemma

f +
∑

j∈C1
cj ≤

∑
j∈C1

αj

for any client j ∈ C2, we have cj ≤ 3αj

So, f + c = f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.

stronger statement:

3f + c = 3f +
∑
j∈C

cj ≤ 3
∑
j∈C

αj = 3D ≤ 3 · opt.
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Proof of ∀j ∈ C2, cj ≤ 3αj

at time αj, j is frozen.

let i be the temporarily open facility
it connects to

i ∈ S: then cj ≤ αj. assume i /∈ S.

there exists a client j′, which made
contribution to i, and owned by
another facility i′ ∈ S

d(j, i) ≤ αj

d(j′, i) < αj′ , d(j
′, i′) < αj′

αj′ = t′i ≤ ti ≤ αj

d(j, i′) ≤ d(j, i)+d(i, j′)+d(j′, i′) ≤
αj + αj + αj = 3αj

ti increasing

C1

C2

ji
j′

i′

S
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