Advanced Algorithms (Fall 2023) Primal Dual

Lecturers: 尹一通, 刘景铖, 栗师 Nanjing University

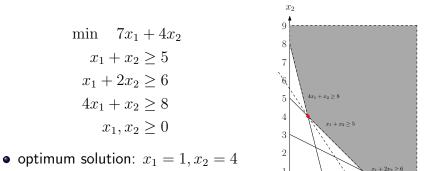
Outline

Duality of Linear Programming

Max-Flow Min-Cut Theorem Using LP DualityO-Sum Game and Nash Equilibrium

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

3 3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual



2 3

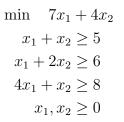
1

5 6

• optimum value = $7 \times 1 + 4 \times 4 = 23$

Q: How can we give a lower bound for the linear program, without solving it?

 x_1



•
$$7x_1 + 4x_2 \ge 2(x_1 + x_2) + (x_1 + 2x_2) \ge 2 \times 5 + 6 = 16$$

• $7x_1 + 4x_2 \ge (x_1 + x_2) + (x_1 + 2x_2) + (4x_1 + x_2) \ge 5 + 6 + 8 = 19$
• $7x_1 + 4x_2 \ge 3(x_1 + x_2) + (4x_1 + x_2) \ge 3 \times 5 + 8 = 23$

Q: How can we obtain the best (i.e., largest) lower bound using this method?



Dual LP max $5y_1 + 6y_2 + 8y_3$ $y_1 + y_2 + 4y_3 \le 7$ $y_1 + 2y_2 + y_3 \le 4$ $y_1, y_2, y_3 \ge 0$

A general method to prove a lower bound

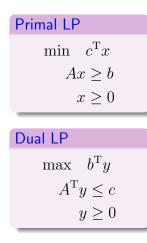
 $7x_1 + 4x_2 \quad (\text{if } 7 \ge y_1 + y_2 + 4y_3 \text{ and } 4 \ge y_1 + 2y_2 + y_3) \\ \ge y_1(x_1 + x_2) + y_2(x_1 + 2x_2) + y_3(4x_1 + x_2) \quad (\text{if } y_1, y_2, y_3 \ge 0) \\ \ge 5y_1 + 6y_2 + 8y_3$

• to achieve the largest lower bound: maximize $5y_1 + 6y_2 + 8y_3$

$$\begin{array}{ll} \min & 7x_1 + 4x_2 & \max & 5y_1 + 6y_2 + 8y_3 \\ x_1 + x_2 \ge 5 & y_1 + y_2 + 4y_3 \le 7 \\ x_1 + 2x_2 \ge 6 & y_1 + 2y_2 + y_3 \le 4 \\ 4x_1 + x_2 \ge 8 & y_1, y_2, y_3 \ge 0 \\ x_1, x_2 \ge 0 & \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 4 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ 6 \\ 8 \end{pmatrix} \quad c = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$
$$\min \quad c^{\mathrm{T}}x \qquad \qquad \max \quad b^{\mathrm{T}}y$$

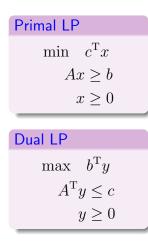
$$Ax \ge b \qquad A^{\mathrm{T}}y \le c$$
$$x \ge 0 \qquad \qquad y \ge 0$$



Relationships

Primal LP	dual LP
variables	constraints
constraints	variables
obj. coefficients	RHS constants
RHS constants	obj. coefficients

Primal LPDual LPvariable in \mathbb{R} equlitiesequlitiesvariable in \mathbb{R}	More	Relationships	
		Primal LP	Dual LP
equlities \qquad variable in $\mathbb R$		variable in $\mathbb R$	equlities
		equlities	variable in ${\mathbb R}$



- P := value of primal LP
- D :=value of dual LP

Theorem (Weak Duality Theorem) $D \leq P$.

Proof.

- x: an arbitrary solution to Primal LP
- $\bullet \ y:$ an arbitrary solution to Dual LP

•
$$b^{\mathrm{T}}y \leq (Ax)^{\mathrm{T}}y = x^{\mathrm{T}}A^{\mathrm{T}}y \leq x^{\mathrm{T}}c = c^{\mathrm{T}}x.$$

Proof of Strong Duality Theorem

Lemma (Variant of Farkas Lemma) $Ax \le b, x \ge 0$ is infeasible, if and only if $y^{\mathrm{T}}A \ge 0, y^{\mathrm{T}}b < 0, y \ge 0$ is feasible.

•
$$\forall \epsilon > 0, \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} x \leq \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix}, x \geq 0$$
 is infeasible

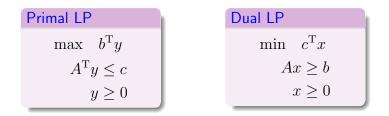
• There exists $y \in \mathbb{R}^m_{\geq 0}, \alpha \geq 0$, such that $(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -A \\ c^{\mathrm{T}} \end{pmatrix} \geq 0$,

$$(y^{\mathrm{T}}, \alpha) \begin{pmatrix} -b \\ P - \epsilon \end{pmatrix} < 0$$

• we can prove $\alpha \neq 0$; assume $\alpha = 1$

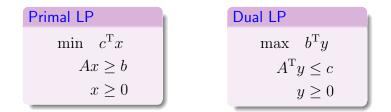
- $\bullet \ -y^{\mathrm{T}}A + c^{\mathrm{T}} \geq 0, -y^{\mathrm{T}}b + P \epsilon < 0 \Longleftrightarrow A^{\mathrm{T}}y \leq c, b^{\mathrm{T}}y > P \epsilon$
- $\forall \epsilon > 0, D > P \epsilon \implies D = P \text{ (since } D \le P \text{)}$

• duality is mutual: the dual of the dual of an LP is the LP itself.



- Duality theorem holds when one LP is infeasible:

Complementary Slackness



• x^* and y^* : optimum primal and dual solutions

•
$$D = b^{\mathrm{T}}y^* \le (Ax^*)^{\mathrm{T}}y^* = (x^*)^{\mathrm{T}}A^{\mathrm{T}}y^* \le (x^*)^{\mathrm{T}}c = c^{\mathrm{T}}x^* = P.$$

• P = D: all the inequlaities hold with equalities.

Complementary Slackness

•
$$y_i^* > 0 \implies \sum_j a_{ij} x_j^* = b_i$$

•
$$x_j^* > 0 \implies \sum_i a_{ij} y_i^* = c_j.$$

Simple Example for Duality: Brewery problem

Beverage	Corn	Hops	Malt	Profit
Develage	(pounds)	(pounds)	(pounds)	(\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Constraint	480	160	1190	

Primal LP

max	13x	+	23y
5x +	$\cdot 15y$	\leq	480
4x	+4y	\leq	160
35x +	- 20y	\leq	1190
	x, y	\geq	0

Dual LP

$$\begin{array}{ll} \min & 480\alpha + 160\beta + 1190\gamma \\ & 5\alpha + 4\beta + 35\gamma \geq 13 \\ & 15\alpha + 4\beta + 20\gamma \geq 23 \\ & \alpha, \beta, \gamma \geq 0 \end{array}$$

 $lpha,eta,\gamma$: the value of 1 pound of corn, hops and malt respectively. 12/41

 $\begin{array}{ll} \min & 480\alpha + 160\beta + 1190\gamma \\ & 5\alpha + 4\beta + 35\gamma \geq 13 \\ 15\alpha + 4\beta + 20\gamma \geq 23 \\ & \alpha, \beta, \gamma \geq 0 \end{array}$

Covering LP

- min $c^{\mathrm{T}}x$, s.t. $Ax \ge b, x \ge 0$, A, b, c are non-negative
- increasing values of variables can not make the solution feasible

 $\max \quad 13x + 23y$ $5x + 15y \le 480$ $4x + 4y \le 160$ $35x + 20y \le 1190$ $x, y \ge 0$

Packing LP

- $\max c^{\mathrm{T}}x$, s.t. $Ax \leq b, x \geq 0$, A, b, c are non-negative
- decreasing values of variables (still guarnateeing the non-negativity) can not make the solution infeasible

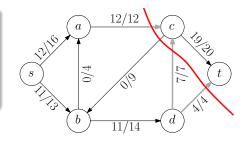
The dual of a covering LP is a packing LP, and vice versa.

Outline

Duality of Linear Programming

- Max-Flow Min-Cut Theorem Using LP Duality
- 0-Sum Game and Nash Equilibrium
- 2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual
- 3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual

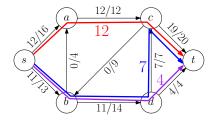
Maximum Flow Problem Input: flow network (G = (V, E), c, s, t)Output: maximum value of a s-t flow f



LP for Maximum Flow

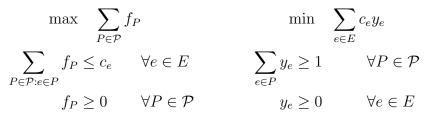
$$\begin{aligned} \max & \sum_{e \in \delta^{\text{in}}(t)} x_e \\ & x_e \leq c_e \quad \forall e \in E \\ & \sum_{e \in \delta^{\text{out}}(v)} x_e - \sum_{e \in \delta^{\text{in}}(v)} x_e = 0 \quad \forall v \in V \setminus \{s, t\} \\ & x_e \geq 0 \quad \forall e \in E \end{aligned}$$

An Equivalent Packing LP



• \mathcal{P} : the set of all simple paths from s to t

•
$$f_P, P \in \mathcal{P}$$
: the flow on P



 \bullet dual constraints: the shortest s-t path w.r.t weights y has length ≥ 1

Dual LP	
min	$\sum_{e \in E} c_e y_e$
$\sum_{e \in P} y_e \ge 1$	$\forall P \in \mathcal{P}$
$y_e \ge 0$	$\forall e \in E$

Theorem The optimum value can be attained at an integral point y.

Maximum Flow Minimum Cut Theorem The value of the maximum flow equals the value of the minimum cut.

Proof of Theorem.

- Given any optimum y, let $\frac{d_v}{v}$ be the length of shortest path from s to v, for every $v \in V$. $d_s = 0, d_t = 1$
- Randomly choose $\theta \in (0, 1)$, and output cut $(S := \{v : d_v \le \theta\}, T := \{v : d_v > \theta\})$
- Lemma: $\mathbb{E}[\operatorname{cut} \operatorname{value} \operatorname{of}(S,T)] \leq \sum_{e \in E} c_e y_e$
- Any cut (S,T) in the support is optimum

$$\max \sum_{P \in \mathcal{P}} f_P \qquad \min \sum_{e \in E} c_e y_e$$
$$\sum_{P \in \mathcal{P}: e \in P} f_P \le c_e \quad \forall e \in E \qquad \sum_{e \in P} y_e \ge 1 \qquad \forall P \in \mathcal{P}$$
$$f_P \ge 0 \quad \forall P \in \mathcal{P} \qquad y_e \ge 0 \qquad \forall e \in E$$

- pros of new LP: it is a packing LP, dual is a covering LP, easier to understand and analyze
- cons of new LP: exponential size, can not be solved directly
 - when we only need to do non-algorithmic analysis
 - ellipsoid method with separation oracle can solve some exponential size LP

Duality of Linear Programming Max-Flow Min-Cut Theorem Using LP Duality O-Sum Game and Nash Equilibrium

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual

0-Sum Game

Input: a payoff matrix $M \in \mathbb{R}^{m \times n}, m, n \ge 1$, two players: row player R, column player C Output: R plays a row $i \in [m]$, C plays a column $j \in [n]$ payoff of game is M_{ij} R wants to minimize M_{ij} , C wants to maximize M_{ij}

Rock-Scissor-Paper Game				
payoff	R	S	Ρ	
R	0	-1	1	
S	1	0	- 1	
Р	-1	1	0	

• game depends on who plays first

By allowing mixed strategies, each player has a best strategy, regardless of who plays first

	row player R	column player C
pure strategy	row $i \in [m]$	column $j \in [n]$
mixed strategy	distribution x over $[m]$	v
mixed strategy	$x \in [0,1]^m, \sum_{i=1}^m x_i = 1$	$y \in [0,1]^n, \sum_{j=1}^n y_j = 1$

$$M(x,y) := \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j M_{ij}$$
$$M(x,j) := \sum_{i=1}^{m} x_i M_{ij}, \qquad M(i,y) := \sum_{j=1}^{n} y_j M_{ij}$$

- If R plays a mixed strategy y first, then it is the best for C to play a pure strategy j. Value of game is $\inf_x \max_{j \in [n]} M(x, j)$.
- If C plays a mixed strategy x first, then it is the best for R to play a pure strategy i. Value of game is sup_y min_{i∈[m]} M(i, y)_{21/41}

Theorem (Von Neumann (1928), Nash's Equilibrium)

$$\inf_{x} \max_{j \in [n]} M(x, j) = \sup_{y} \min_{i \in [m]} M(i, y).$$

Coro.
$$\inf_{x} \sup_{y} M(x, y) = \sup_{y} \inf_{x} M(x, y).$$

Coro. There are mixed strategies x^* and y^* satisfying $M(x, y^*) \ge M(x^*, y^*), \forall x$ and $M(x^*, y) \le M(x^*, y^*), \forall y$.

Proof.

- $V := \inf_x \sup_y M(x, y) = \sup_y \inf_x M(x, y)$
- x^* : the strategy x that minimizes $\sup_y M(x,y)$
- $y^*\!\!:$ the strategy y that maximizes $\inf_x M(x,y)$
- $\bullet \ M(x^*,y^*) \leq V, M(x^*,y^*) \geq V \implies M(x^*,y^*) = V$
- $\bullet \ M(x^*,y) \leq V, \forall y \text{ and } M(x,y^*) \geq V, \forall x.$

- As long as the first player can play a mixed strategy, then he will not be at a disadvantage.
- If both players can play mixed strategies, then they do not need to know the strategy of the other player.

Def. $\inf_x \sup_y M(x, y) = \sup_y \inf_x M(x, y)$ is called the value of the game. The two strategies x^* and y^* in the corollary are called the optimum strategies for R and C respectively.

Theorem (Von Neumann (1928), Nash's Equilibrium)

$$\inf_{x} \max_{j \in [n]} M(x, j) = \sup_{y} \min_{i \in [m]} M(i, y).$$

• Can be proved by LP duality.

LP for Row PlayerLP for Column Player
$$\min R$$
 $\sum_{i=1}^{m} x_i = 1$ $\max C$ $\sum_{i=1}^{m} x_i = 1$ $\sum_{j=1}^{n} y_j = 1$ $R - \sum_{i=1}^{m} M_{ij} x_i \ge 0 \quad \forall j \in [n]$ $C - \sum_{j=1}^{n} M_{ij} y_j \le 0 \quad \forall i \in [m]$ $x_i \ge 0 \quad \forall i \in [m]$ $y_j \ge 0 \quad \forall j \in [n]$

• The two LPs are dual to each other.

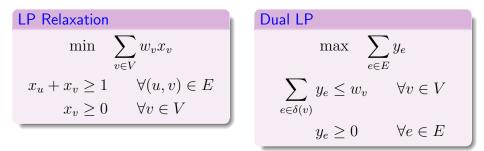
$x_i, i \in [m]$	$ig $ primal variable ($\in \mathbb{R}_{\geq 0}$)	dual constraint (\leq)	
$y_j, j \in [n]$	dual variable ($\in \mathbb{R}_{\geq 0}$)	primal constraint (\geq)	_
R	primal variable ($\in \mathbb{R}$)	dual constraint $(=)$	-
C	dual variable ($\in \mathbb{R}$)	primal constraint (=)	04/41
		·	24/41

- Let V be the value of the game, x^* and y^* be the two optimum strategies. Complementrary slackness implies:
 - If $x_i^* > 0$, then $M(i, y^*) = V$.
 - If $y_j^* > 0$, then $M(x^*, j) = V$.
- The game is called 0-sum game as the payoff for R is the negative of the payoff for C.

Duality of Linear Programming Max-Flow Min-Cut Theorem Using LP Duality 0-Sum Game and Nash Equilibrium

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

3 3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual

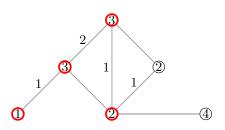


• Algorithm constructs integral primal solution x and dual solution y simultaneously.

Primal-Dual Algorithm for Weighted Vertex Cover Problem

- 1: $x \leftarrow 0, y \leftarrow 0$, all edges said to be uncovered
- 2: while there exists at least one uncovered edge do
- 3: take such an edge e arbitrarily
- 4: increasing y_e until the dual constraint for one end-vertex v of e becomes tight
- 5: $x_v \leftarrow 1$, claim all edges incident to v are covered

6: **return** *x*



Lemma

- 0 x satisfies all primal constraints
- **2** y satisfies all dual constraints

$$\ \, {\it Omega} \ \, P \leq 2D \leq 2D^* \leq 2 \cdot {\rm opt}$$

$$P:=\sum_{v\in V} x_v$$
: value of x

$$D:=\sum_{e\in E}y_e:$$
 value of y

 D^* : dual LP value

Proof of $P \leq 2D$.

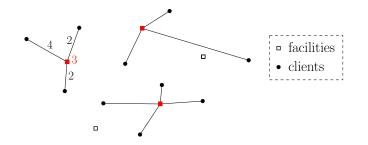
$$P = \sum_{v \in V} w_v x_v \le \sum_{v \in V} x_v \sum_{e \in \delta(v)} y_e = \sum_{(u,v) \in E} y_{(u,v)}(x_u + x_v)$$
$$\le 2 \sum_{e \in E} y_e = 2D.$$

- a more general framework: construct an arbitrary maximal dual solution y; choose the vertices whose dual constraints are tight
- y is maximal: increasing any coordinate y_e makes y infeasible
- primal-dual algorithms do not need to solve LPs
- LPs are used in analysis only
- faster than LP-rounding algorithm in general

Duality of Linear Programming Max-Flow Min-Cut Theorem Using LP Duality 0-Sum Game and Nash Equilibrium

2-Approximation Algorithm for Weighted Vertex Cover Using Primal-Dual

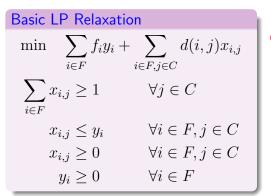
3-Approximation Algorithm for Uncapacitated Facility Location Problem Using Primal Dual



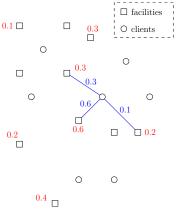
Uncapacitated Facility Location Problem Input: F: pontential facilities C: clients d: (symmetric) metric over $F \cup C$ $(f_i)_{i \in F}$: facility opening costs Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in C} d(j, S)$

- 1.488-approximation [Li, 2011]
- 1.463-hardness of approximation, 1.463 \approx root of $x=1+2e^{-x}$

- y_i : open facility *i*?
- $x_{i,j}$: connect client j to facility i?



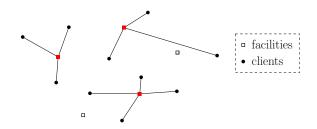
Obs. When $(y_i)_{i \in F}$ is determined, $(x_{i,j})_{i \in F, j \in C}$ can be determined automatically.



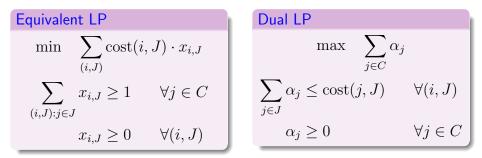
Basic LP Relaxation

$\min \sum_{i \in F} f_i y_i + $	$\sum_{i \in F, j \in C} d(i, j) x_{i, j}$
$\sum_{i \in F} x_{i,j} \ge 1$	$\forall j \in C$
$x_{i,j} \le y_i$	$\forall i \in F, j \in C$
$x_{i,j} \ge 0$	$\forall i \in F, j \in C$
$y_i \ge 0$	$\forall i \in F$

- $\bullet~\mbox{LP}$ is not of covering type
- harder to understand the dual
- consider an equivalent covering LP
- idea: treat a solution as a set of stars



- $(i, J), i \in F, J \subseteq C$: star with center i and leaves J
- $cost(i, J) := f_i + \sum_{j \in J} d(i, j)$: cost of star (i, J)
- $x_{i,J} \in \{0,1\}$: if star (i, J) is chosen



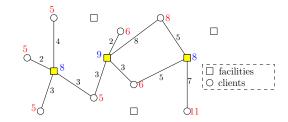
 both LPs have exponential size, but the final algorithm can run in polynomial time

$$\begin{array}{c|c} \min & \sum_{(i,J)} \operatorname{cost}(i,J) \cdot x_{i,J} \\ & \sum_{(i,J): j \in J} x_{i,J} \ge 1 \quad \forall j \in C \\ & x_{i,J} \ge 0 \quad \forall (i,J) \end{array} & \begin{array}{c} \max & \sum_{j \in C} \alpha_j \\ & \sum_{j \in J} \alpha_j \le \operatorname{cost}(j,J) \quad \forall (i,J) \\ & \alpha_j \ge 0 \quad \forall j \in C \end{array}$$

- α_j : budget of j
- \bullet dual constraints: total budget in any star is \leq its cost
- $\bullet \implies \mathsf{opt} \ge \mathsf{total} \ \mathsf{budget} = \mathsf{dual} \ \mathsf{value}$

Construction of Dual Solution α

- α_j 's can only increase
- α is always feasible
- if a dual constraint becomes tight, freeze all clients in star
- unfrozen clients are called active clients

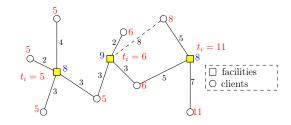


Construction of Dual Solution $\boldsymbol{\alpha}$

- 1: $\alpha_j \leftarrow 0, \forall j \in C$
- 2: while exists at least one active client do
- 3: increase the budgets α_j for all active clients j at uniform rate, until (at least) one new client is frozen

Construction of Dual Solution α

- : tight facilities; they are temporarily open
- \Box : pemanently closed
- t_i : time when facility i becomes tight
- construct a bipartite graph: (i, j) exists $\iff \alpha_j > d(i, j)$,



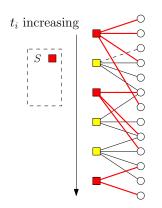
 $\alpha_j > d(i,j)$: j contributes to i, (solid lines)

 $\alpha_j = d(i, j)$: *j* does not contribute to *i*, but its budget is just enough for it to connect to *i* (dashed lines)

 $\alpha_j < d(i,j) :$ budget of j is not enough to connect to i

Construction of Integral Primal Solution

- 1: $S \leftarrow \emptyset$, all clients are unowned
- 2: for every temporarily open facility i, in increasing order of t_i do
- 3: **if** all (solid-line) neighbors of *i* are unowned **then**
- 4: $S \leftarrow S \cup \{i\}$, open facility i
- 5: connect to all its neighbors to i
- 6: let i own them
- 7: connect unconnected clients to their nearest facilities in ${\cal S}$

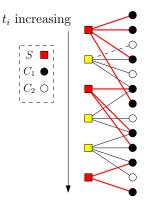


- S: set of open facilities
- C_1 : clients that make contributions
- C₂: clients that do not make contributions
- f: total facillity cost
- c_j : connection cost of client j
- $c = \sum_{j \in C} c_j$: total connection cost
- $D = \sum_{j \in C} \alpha_j$: value of α

Lemma

•
$$f + \sum_{j \in C_1} c_j \leq \sum_{j \in C_1} \alpha_j$$

• for any client $j \in C_2$, we have $c_j \leq 3\alpha_j$



Lemma

•
$$f + \sum_{j \in C_1} c_j \le \sum_{j \in C_1} \alpha_j$$

• for any client $j \in C_2$, we have $c_j \le 3\alpha_j$

• So,
$$f + c = f + \sum_{j \in C} c_j \le 3 \sum_{j \in C} \alpha_j = 3D \le 3 \cdot \text{opt.}$$

• stronger statement:

$$3f + c = 3f + \sum_{j \in C} c_j \le 3\sum_{j \in C} \alpha_j = 3D \le 3 \cdot \text{opt.}$$

Proof of $\forall j \in C_2, c_j \leq 3\alpha_j$

- at time α_j , j is frozen.
- let *i* be the temporarily open facility it connects to
- $i \in S$: then $c_j \leq \alpha_j$. assume $i \notin S$.
- there exists a client j', which made contribution to i, and owned by another facility $i' \in S$
- $d(j,i) \le \alpha_j$
- $d(j',i) < \alpha_{j'}, d(j',i') < \alpha_{j'}$
- $\alpha_{j'} = t'_i \le t_i \le \alpha_j$
- $d(j,i') \le d(j,i) + d(i,j') + d(j',i') \le \alpha_j + \alpha_j + \alpha_j = 3\alpha_j$

