Combinatorics

南京大学
尹一通

The Twelvefold Way

Gian-Carlo Rota
(1932-I999)

The twelvefold way

$$
f: N \rightarrow M \quad|N|=n,|M|=m
$$

elements of N	elements of M	any f	$1-1$	on-to
distinct	distinct			
identical	distinct			
distinct	identical			
identical	identical			

Knuth's version (in TAOCP vol.4A)

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}		
n identical balls, m distinct bins			
n distinct balls m identical bins			
n identical balls, m identical bins			

Tuples

$$
\begin{gathered}
\{1,2, \ldots, m\} \\
{[m]=\{0,1, \ldots, m-1\}} \\
{[m]^{n}=\underbrace{[m] \times \cdots \times[m]}_{n}} \\
\left|[m]^{n}\right|=m^{n}
\end{gathered}
$$

Product rule:

finite sets S and T

$$
|S \times T|=|S| \cdot|T|
$$

Functions

count the \# of functions

$$
f:[n] \rightarrow[m]
$$

$$
(f(1), f(2), \ldots, f(n)) \in[m]^{n}
$$

one-one correspondence

$$
[n] \rightarrow[m] \Leftrightarrow[m]^{n}
$$

Functions

[n] [m]
count the \# of functions

$$
f:[n] \rightarrow[m]
$$

one-one correspondence

$$
[n] \rightarrow[m] \Leftrightarrow[m]^{n}
$$

Bijection rule:
finite sets S and T

$$
\exists \phi: S \xrightarrow[\text { on-to }]{1-1} T \Longrightarrow|S|=|T|
$$

Functions

[n]
[m]
count the \# of functions

$$
f:[n] \rightarrow[m]
$$

one-one correspondence

$$
[n] \rightarrow[m] \Leftrightarrow[m]^{n}
$$

$$
|[n] \rightarrow[m]|=\left|[m]^{n}\right|=m^{n}
$$

"Combinatorial proof."

Injections

count the \# of 1-1 functions

$$
f:[n] \xrightarrow{1-1}[m]
$$

one-to-one correspondence

$$
[\mathrm{n}] \quad[\mathrm{m}]
$$

$$
\pi=(f(1), f(2), \ldots, f(n))
$$

n-permutation: $\pi \in[m]^{n}$ of distinct elements

$$
(m)_{n}=m(m-1) \cdots(m-n+1)=\frac{m!}{(m-n)!}
$$

"m lower factorial n"

Subsets

subsets of $\{1,2,3\}$:

$$
\begin{aligned}
& \varnothing, \\
&\{1\},\{2\},\{3\}, \\
&\{1,2\},\{1,3\},\{2,3\}, \\
&\{1,2,3\} \\
& {[n]=\{1,2, \ldots, n\} }
\end{aligned}
$$

Power set: $2^{[n]}=\{S \mid S \subseteq[n]\}$

$$
\left|2^{[n]}\right|=
$$

Subsets

$$
[n]=\{1,2, \ldots, n\}
$$

Power set: $\quad 2^{[n]}=\{S \mid S \subseteq[n]\}$

$$
\left|2^{[n]}\right|=
$$

Combinatorial proof:

A subset $S \subseteq[n]$ corresponds to a string of n bit, where bit i indicates whether $i \in S$.

Subsets

$$
[n]=\{1,2, \ldots, n\}
$$

Power set: $\quad 2^{[n]}=\{S \mid S \subseteq[n]\}$

$$
\left|2^{[n]}\right|=\left|\{0,1\}^{n}\right|=2^{n}
$$

Combinatorial proof:
$S \subseteq[n] \leadsto \chi_{S} \in\{0,1\}^{n} \quad \chi_{S}(i)= \begin{cases}1 & i \in S \\ 0 & i \notin S\end{cases}$ one-to-one correspondence

Subsets

$$
[n]=\{1,2, \ldots, n\}
$$

Power set: $\quad 2^{[n]}=\{S \mid S \subseteq[n]\}$

$$
\left|2^{[n]}\right|=
$$

A not-so-combinatorial proof:
Let $f(n)=\left|2^{[n]}\right|$

$$
f(n)=2 f(n-1)
$$

$$
\begin{aligned}
& f(n)=\left|2^{[n]}\right| \quad f(n)=2 f(n-1) \mid \\
& 2^{[n]}=\{S \subseteq[n] \mid n \notin S\} \cup\{S \subseteq[n] \mid n \in S\} \\
& \left|2^{[n]}\right|=\left|2^{[n-1]}\right|+\left|2^{[n-1]}\right|=2 f(n-1)
\end{aligned}
$$

Sum rule:
finite disjoint sets S and T

$$
|S \cup T|=|S|+|T|
$$

Subsets

$$
[n]=\{1,2, \ldots, n\}
$$

Power set: $\quad 2^{[n]}=\{S \mid S \subseteq[n]\}$

$$
\left|2^{[n]}\right|=2^{n}
$$

Let $\quad f(n)=\left|2^{[n]}\right|$

$$
f(n)=2 f(n-1)
$$

$$
f(0)=\left|2^{\emptyset}\right|=1
$$

Three rules

Sum rule:
finite disjoint sets S and T

$$
|S \cup T|=|S|+|T|
$$

Product rule:
finite sets S and T

$$
|S \times T|=|S| \cdot|T|
$$

Bijection rule:
finite sets S and T

$$
\exists \phi: S \xrightarrow[\text { on-to }]{1-1} T \Longrightarrow|S|=|T|
$$

Subsets of fixed size

2-subsets of $\{1,2,3\}:\{1,2\},\{I, 3\},\{2,3\}$
k-uniform $\quad\binom{S}{k}=\{T \subseteq S| | T \mid=k\}$

$$
\binom{n}{k}=\left|\binom{[n]}{k}\right|
$$

"n choose k"

Subsets of fixed size

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots 1}=\frac{n!}{k!(n-k)!}
$$

\# of ordered k-subsets: $\quad n(n-1) \cdots(n-k+1)$
\# of permutations of a k-set: $\quad k(k-1) \cdots 1$

Binomial coefficients

Binomial coefficient: $\quad\binom{n}{k}$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

1. $\binom{n}{k}=\binom{n}{n-k}$
choose a k-subset \Leftrightarrow choose its compliment

0 -subsets +I -subsets $+\ldots$
+n -subsets $=$ all subsets

Binomial theorem

Binomial Theorem

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Proof:

$$
(1+x)^{n}=\underbrace{(1+x)(1+x) \cdots(1+x)}_{n}
$$

\# of x^{k} : choose k factors out of n

Binomial Theorem

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

$$
\text { Let } x=1 \text {. }
$$

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

\# of subsets of S of odd sizes
$=\#$ of subsets of S of even sizes
Let $x=-1$.

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins		$\binom{m}{n}$	
n distinct balls, m identical bins			
n identical balls, m identical bins			

Compositions of an integer

n beli

k pirates

How many ways to assign n beli to k pirates?
How many ways to assign n beli to k pirates, so that each pirate receives at least 1 beli?

Compositions of an integer

$n \in \mathbb{Z}^{+}$
k-composition of n :

an ordered sum of k positive integers

Compositions of an integer

$n \in \mathbb{Z}^{+}$
k-composition of n :

$$
\begin{aligned}
& \text { a k-tuple }\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& \quad x_{1}+x_{2}+\cdots+x_{k}=n \text { and } x_{i} \in \mathbb{Z}^{+}
\end{aligned}
$$

\# of k-compositions of n ? $\quad\binom{n-1}{k-1}$
n identical balls

Compositions of an integer

a k-tuple $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$

$$
x_{1}+x_{2}+\cdots+x_{k}=n \text { and } x_{i} \in \mathbb{Z}^{+}
$$

\# of k -compositions of n ? $\quad\binom{n-1}{k-1}$

$$
\phi\left(\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)=\left\{x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3},\right.
$$

$$
\left.\ldots, x_{1}+x_{2}+\cdots+x_{k-1}\right\}
$$

ϕ is a 1-1 correspondence between
$\{k$-compositions of $n\}$ and $\binom{\{1,2, \ldots, n-1\}}{k-1}$

Compositions of an integer

weak k-composition of n :
an ordered sum of k nonnegative integers

Compositions of an integer

weak k-composition of n :
a k-tuple $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$

$$
x_{1}+x_{2}+\cdots+x_{k}=n \text { and } x_{i} \in \mathbb{N}
$$

\# of weak k -compositions of n ? $\quad\binom{n+k-1}{k-1}$

$$
\left(x_{1}+1\right)+\left(x_{2}+1\right)+\cdots+\left(x_{k}+1\right)=n+k
$$

a k-composition of $n+k$
I-I correspondence

Multisets

k-subset of S
"k-combination of S without repetition"

3-combinations of $\{1,2,3,4\}$

without repetition:

$$
\{I, 2,3\},\{I, 2,4\},\{I, 3,4\},\{2,3,4\}
$$

with repetition:

$$
\begin{aligned}
& \{1, I, I\},\{1, I, 2\},\{1,1,3\},\{1,1,4\},\{1,2,2\},\{1,3,3\}, \\
& \{1,4,4\},\{2,2,2\},\{2,2,3\},\{2,2,4\},\{2,3,3\},\{2,4,4\}, \\
& \{3,3,3\},\{3,3,4\},\{3,4,4\},\{4,4,4\}
\end{aligned}
$$

Multisets

multiset M on set S :

$$
m: S \rightarrow \mathbb{N}
$$

multiplicity of $x \in S$

$$
m(x): \# \text { of repetitions of } x \text { in } M
$$

cardinality $|M|=\sum_{x \in S} m(x)$
"k-combination of S with repetition"

$\left(\binom{n}{k}\right): \#$ of k-multisets on an n-set

Multisets

$$
\begin{gathered}
\left(\binom{n}{k}\right)=\binom{n+k-1}{n-1}=\binom{n+k-1}{k} \\
k \text {-multiset on } S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
m\left(x_{1}\right)+m\left(x_{2}\right)+\cdots+m\left(x_{n}\right)=k \\
m\left(x_{i}\right) \geq 0
\end{gathered}
$$

a weak n-composition of k

Multinomial coefficients

permutations of a multiset
of size n with multiplicities $m_{1}, m_{2} \ldots, m_{k}$
\# of reordering of "multinomial" permutations of $\{a, i, i, l, m, m, n, o, t, u\}$
assign n distinct balls to k distinct bins
with the i-th bin receiving m_{i} balls

$$
\begin{gathered}
\underset{\text { coefficient }}{\text { multinomial }} \quad\binom{n}{m_{1}, \ldots, m_{k}} \\
m_{1}+m_{2}+\cdots+m_{k}=n
\end{gathered}
$$

Multinomial coefficients

permutations of a multiset of size n with multiplicities $m_{1}, m_{2} \ldots, m_{k}$

II

assign n distinct balls to k distinct bins with the i-th bin receiving m_{i} balls

$$
\begin{aligned}
\binom{n}{m_{1}, \ldots, m_{k}} & =\frac{n!}{m_{1}!m_{2}!\cdots m_{k}!} \\
\binom{n}{m, n-m} & =\binom{n}{m}
\end{aligned}
$$

Multinomial theorem

Multinomial Theorem

$$
\begin{aligned}
& \left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n} \\
= & \sum_{m_{1}+\cdots+m_{k}=n}\binom{n}{m_{1}, \ldots, m_{k}} x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{k}^{m_{k}}
\end{aligned}
$$

Proof: $\quad\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}$

$$
=\underbrace{\left(x_{1}+x_{2}+\cdots+x_{k}\right) \cdots \cdots\left(x_{1}+x_{2}+\cdots+x_{k}\right)}_{n}
$$

$\#$ of $x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{k}^{m_{k}}$:
assign n factors to k groups of sizes $m_{1}, m_{2}, \ldots, m_{k}$

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins	$\left(\binom{m}{n}\right)$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins			
n identical balls, m identical bins			

Partitions of a set

n pirates
k boats
$P=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is a partition of $S:$

$$
\begin{aligned}
& A_{i} \neq \emptyset \\
& A_{i} \cap A_{j}=\emptyset \\
& A_{1} \cup A_{2} \cup \cdots \cup A_{k}=S
\end{aligned}
$$

Partitions of a set

$P=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is a partition of S :

$$
\begin{aligned}
& A_{i} \neq \emptyset \\
& A_{i} \cap A_{j}=\emptyset \\
& A_{1} \cup A_{2} \cup \cdots \cup A_{k}=S
\end{aligned}
$$

$\left\{\begin{array}{l}n \\ k\end{array}\right\} \quad \#$ of k-partitions of an n-set
"Stirling number of the second kind"

$$
\begin{gathered}
B_{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \quad \text { \# of partitions of an n-set } \\
\text { "Bell number" }
\end{gathered}
$$

Stirling number of the $2 n d$ kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\} \quad \#$ of k-partitions of an n-set

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}+\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}
$$

Case.I $\{n\}$ is not a partition block n is in one of the k blocks in a k-partition of [$n-1$]

Case. $2 \quad\{n\}$ is a partition block the remaining k-1 blocks forms a $(k-1)$-partition of [$n-1]$

The twelvefold way

$$
f: N \rightarrow M \quad n \text { balls are put into } m \text { bins }
$$

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins	$\left(\binom{m}{n}\right)$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m}\left\{\begin{array}{l}n \\ k\end{array}\right\}$	$\begin{cases}1 & \text { if } n \leq m \\ 0 & \text { if } n>m\end{cases}$	$\left\{\begin{array}{c}n \\ m\end{array}\right\}$
n identical balls, m identical bins			

Surjections

$$
f:[n] \xrightarrow{\text { onto }}[m]
$$

$$
\begin{aligned}
& \forall i \in[m] \\
& f^{-1}(i) \neq \emptyset \\
& \left(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(m)\right) \\
& \quad \text { ordered } m \text {-partition of }[n]
\end{aligned}
$$

$$
m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}
$$

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	$m!\left\{\begin{array}{c}n \\ m\end{array}\right\}$
n identical balls, m distinct bins	$\left(\binom{m}{n}\right)$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins	$\sum_{k=1}^{m}\left\{\begin{array}{c}n \\ k\end{array}\right\}$	$\left\{\begin{array}{cc}1 & \text { if } n \leq m \\ 0 & \text { if } n>m\end{array}\right.$	$\left\{\begin{array}{c}n \\ m\end{array}\right\}$
n identical balls, m identical bins			

Partitions of a number

n beli

k boxes
a partition of n into k parts:
an unordered sum of k positive integers

Partitions of a number

a partition of n into k parts:
"positive"

$$
\begin{array}{cc}
n=7 & \{7\} \\
\{I, 6\},\{2,5\},\{3,4\} \\
\{I, I, 5\},\{I, 2,4\},\{I, 3,3\},\{2,2,3\} \\
\{I, I, I, 4\},\{I, I, 2,3\},\{I, 2,2,2\} \\
\{I, I, I, I, 3\},\{I, I, I, 2,2\} \\
\{I, I, I, I, I, 2\} \\
\{I, I, I, I, I, I, I\}
\end{array}
$$

$p_{k}(n) \quad \#$ of partitions of n into k parts

$p_{k}(n) \quad \#$ of partitions of n into k parts

integral solutions to
 $$
\left\{\begin{array}{l} x_{1}+x_{2}+\cdots+x_{k}=n \\ x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 1 \end{array}\right.
$$

$$
p_{k}(n)=?
$$

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\cdots+x_{k}=n \\
x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 1
\end{array}\right.
$$

$$
p_{k}(n)=p_{k-1}(n-1)+p_{k}(n-k)
$$

Case.I $\quad x_{k}=1$

$$
\left(x_{1}, \ldots, x_{k-1}\right) \text { is a }(k-1) \text {-partition of } n-1
$$

Case. $2 \quad x_{k}>1$

$$
\left(x_{1}-1, \ldots, x_{k}-1\right) \text { is a } k \text {-partition of } n-k
$$

partition $\left\{\begin{array}{l}x_{1}+x_{2}+\cdots+x_{k}=n \\ x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 1\end{array}\right.$
composition $\left\{\begin{array}{l}x_{1}+x_{2}+\cdots+x_{k}=n \\ x_{i} \geq 1\end{array}\right.$
partition
$\left\{x_{1}, \cdots, x_{k}\right\}$

composition
$\left(x_{1}, \cdots, x_{k}\right)$
permutation
"on-to"

$$
k!p_{k}(n) \geq\binom{ n-1}{k-1}
$$

partition $\left\{x_{1}, \cdots, x_{k}\right\} \quad y_{i}=x_{i}+k-i$

$$
\begin{gathered}
x_{1} \geq x_{2} \geq \cdots \geq x_{k-2} \geq x_{k-1} \geq x_{k} \geq 1 \\
+k-1 \quad+k-2 \quad+2 \quad+1 \\
y_{1}>y_{2}>\cdots>y_{k-2}>y_{k-1}>y_{k}>1
\end{gathered}
$$

composition of $n+\frac{k(k-1)}{2}$ $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$
permutation

$$
k!p_{k}(n) \leq\binom{ n+\frac{k(k-1)}{2}-1}{k-1}
$$

$$
\frac{\binom{n-1}{k-1}}{k!} \leq p_{k}(n) \leq \frac{\left(\begin{array}{c}
n+\frac{k(k-1)}{k-1}-1
\end{array}\right)}{k!}
$$

If k is fixed,

$$
p_{k}(n) \sim \frac{n^{k-1}}{k!(k-1)!} \quad \text { as } \quad n \rightarrow \infty
$$

Ferrers diagram
 (Young diagram)

partition $\left\{\begin{array}{l}x_{1}+x_{2}+\cdots+x_{k}=n \\ x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 1\end{array}\right.$

(6,4,4,2,I)

(5,4,3,3, I, I)

one-to-one

correspondence

\# of partitions of n with largest part k

\# of partitions of n into k parts \# of partitions of $n-k$ into at most k parts

$$
p_{k}(n)=\sum_{j=1}^{k} p_{j}(n-k)
$$

The twelvefold way

n balls are put into m bins

balls per bin:	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins	m^{n}	$(m)_{n}$	$m!\left\{\begin{array}{c}n \\ m\end{array}\right\}$
n identical balls, m distinct bins	$\left(\binom{m}{n}\right)$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls m identical bins	$\sum_{k=1}^{m}\left\{\begin{array}{c}n \\ k\end{array}\right\}$	$\begin{cases}1 & \text { if } n \leq m \\ 0 & \text { if } n>m\end{cases}$	$\left\{\begin{array}{c}n \\ m\end{array}\right\}$
n n dentical balls, m identical bins	$\sum_{k=1}^{m} p_{k}(n)$	$\begin{cases}1 & \text { if } n \leq m \\ 0 & \text { if } n>m\end{cases}$	$p_{m}(n)$

