Combinatorics

南京大学
尹一通
Counting (labeled) trees

“How many different trees can be formed from n distinct vertices?”
Cayley’s formula:

There are n^{n-2} trees on n distinct vertices.

Arthur Cayley
Prüfer Code

leaf: vertex of degree 1

removing a leaf from T, still a tree

$T_1 = T$;
for $i = 1$ to $n-1$

u_i: smallest leaf in T_i;
(u_i, v_i): edge in T_i;
$T_{i+1} = $ delete u_i from T_i;

Prüfer code:

$(v_1, v_2, \ldots, v_{n-2})$
edges of T: $(u_i, v_i), 1 \leq i \leq n-1$

$v_{n-1} = n$

u_i: smallest leaf in T_i

a tree has ≥ 2 leaves} $\quad n$ is never deleted

$u_i \neq n$

T:

$2, 4, 5, 6, 3, 1$

$4, 3, 1, 3, 1, 7$

$(v_1, v_2, \ldots, v_{n-2})$

Only need to recover every u_i from $(v_1, v_1, \ldots, v_{n-2})$.

u_i is the smallest number not in

$\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$
u_i is the smallest number not in
$\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

∀ vertex v in T,

occurrences of v in $u_1, u_2, \ldots, u_{n-1}, v_{n-1}$: 1

occurrences of v in edges (u_i,v_i), $1 \leq i \leq n-1$: $\text{deg}_T(v)$

T:

\begin{align*}
&T: \\
&\begin{tikzpicture}
&\node[circle,fill, inner sep=1pt] (1) at (0,0) {1};
&\node[circle,fill, inner sep=1pt] (2) at (-1,1) {2};
&\node[circle,fill, inner sep=1pt] (3) at (0,1) {3};
&\node[circle,fill, inner sep=1pt] (4) at (-1,-1) {4};
&\node[circle,fill, inner sep=1pt] (5) at (1,0) {5};
&\node[circle,fill, inner sep=1pt] (6) at (0,-1) {6};
&\node[circle,fill, inner sep=1pt] (7) at (1,-1) {7};
&\draw (1) -- (2);
&\draw (1) -- (3);
&\draw (1) -- (4);
&\draw (3) -- (5);
&\draw (3) -- (6);
&\draw (3) -- (7);
&\end{tikzpicture}
\end{align*}

occurrences of v in Prüfer code: $(v_1, v_2, \ldots, v_{n-2})$

u_i: 2, 4, 5, 6, 3, 1

v_i: 4, 3, 1, 3, 1, 7

$(v_1, v_2, \ldots, v_{n-2})$
\(u_i \) is the smallest number not in
\[\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\} \]

\[\forall \text{ vertex } v \text{ in } T_i, \]

\[\# \text{ occurrences of } v \text{ in } u_i, u_{i+1}, \ldots, u_{n-1}, v_{n-1} : \quad 1 \]

\[\# \text{ occurrences of } v \text{ in edges } (u_j,v_j), i \leq j \leq n-1: \quad \deg_{T_i}(v) \]

\[T_3 : \]

\[\begin{align*}
2 & \quad \text{blue} \\
4 & \quad \text{blue} \\
3 & \quad \text{blue} \\
6 & \quad \text{red} \\
7 & \quad \text{red} \\
5 & \quad \text{green} \\
\end{align*} \]

\[\begin{align*}
u_i: & \quad 2, 4, 5, 6, 3, 1 \\
v_i: & \quad 4, 3, 1, 3, 1, 7 \\
(v_1, v_2, \ldots, v_{n-2}) & \quad \text{not in } \{v_i, v_{i+1}, \ldots, v_{n-2}\} \\
u_i: & \quad \text{smallest leaf in } T_i \]
u_i is the smallest number not in
$\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

T:

\begin{align*}
T &= \text{empty graph;} \\
v_{n-1} &= n; \\
\text{for } i = 1 \text{ to } n-1 \\
u_i &: \text{smallest number not in } \\
&\quad \{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\} \\
\text{add edge } (u_i, v_i) \text{ to } T; \\
\end{align*}

$u_i: 2, 4, 5, 6, 3, 1$

$v_i: 4, 3, 1, 3, 1, 7$

$(v_1, v_2, \ldots, v_{n-2})$
Prüfer code is reversible \(\Rightarrow \) 1-1

every \((v_1, v_2, \ldots, v_{n-2}) \in \{1, 2, \ldots, n\}^{n-2} \)

is decodable to a tree \(\Rightarrow \) onto

\[T : \]

\[T = \text{empty graph; } \]
\[v_{n-1} = n ; \]
for \(i = 1 \) to \(n-1 \)

\(u_i : \) smallest number not in \(\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\} \)

add edge \((u_i, v_i) \) to \(T ; \)

\(u_i : 2, 4, 5, 6, 3, 1 \)

\(v_i : 4, 3, 1, 3, 1, 7 \)

(\(v_1, v_2, \ldots, v_{n-2} \))
Prüfer code is reversible \[1-1\]

every \((v_1, v_2, \ldots, v_{n-2}) \in \{1, 2, \ldots, n\}^{n-2}\) is decodable to a tree \[\text{onto}\]

Cayley’s formula:

There are \(n^{n-2}\) trees on \(n\) distinct vertices.
of sequences of adding directed edges to an empty graph to form a rooted tree
T_n: # of trees on n distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree:
- pick a root;
- pick an order of edges.

$$T_n n(n - 1)!$$

$$= n!T_n$$
T_n: # of trees on n distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph:
- add edges one by one
of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

Start from n isolated vertices

rooted trees

Each step joins 2 trees.
Let us now start at the other end. To produce from adding directed edges, from any vertex the roots on top. We now regard each component tree. Let \(F \) choices. Continuing this way, we arrive at.

Start from \(n \) rooted trees. After adding \(k \) edges \(n-k \) rooted trees

add an edge

\[\text{any vertex} \quad \rightarrow \quad \text{root of another tree} \]

\(n \quad \rightarrow \quad n-k-1 \)
of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

\[
\prod_{k=0}^{n-2} n(n-k-1)
\]

\[
= n^{n-1} \prod_{k=1}^{n-1} k
\]

\[
= n^{n-2} n!
\]

Start from \(n\) rooted trees.

After adding \(k\) edges

\(n-k\) rooted trees

add an edge

any vertex \(\rightarrow\) root of another tree

\(n\) \hspace{1cm} \(n-k-1\)
of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree:
- pick a root;
- pick an order of edges.

\[T_n n(n-1)! = n!T_n \]

From an empty graph:
- add edges one by one

\[\prod_{k=2}^{n} n(k-1) = n^{n-2}n! \]

\[T_n = n^{n-2} \]
Cayley’s formula:

There are n^{n-2} trees on n distinct vertices.
Graph Laplacian

Graph \(G(V,E) \)

adjacency matrix \(A \)

\[
A(i, j) = \begin{cases}
1 & \{i, j\} \in E \\
0 & \{i, j\} \notin E
\end{cases}
\]

diagonal matrix \(D \)

\[
D(i, j) = \begin{cases}
\deg(i) & i = j \\
0 & i \neq j
\end{cases}
\]

graph Laplacian \(L \)

\[
L = D - A
\]
Graph Laplacian

graph Laplacian L

$$L(i, j) = \begin{cases}
\deg(i) & i = j \\
-1 & i \neq j, \{i, j\} \in E \\
0 & \text{otherwise}
\end{cases}$$

quadratic form:

$$x L x^T = \sum_{i} d_i x_i^2 - \sum_{ij \in E} x_i x_j = \frac{1}{2} \sum_{ij \in E} (x_i - x_j)^2$$

incidence matrix $B : n \times m$

$i \in V, e \in E$

$$B(i, e) = \begin{cases}
1 & e = \{i, j\}, i < j \\
-1 & e = \{i, j\}, i > j \\
0 & \text{otherwise}
\end{cases}$$

$$L = B B^T$$
Kirchhoff’s matrix-tree theorem

$L_{i,i}$: submatrix of L by removing ith row and ith column

t(G) : number of spanning trees in G
Kirchhoff’s matrix-tree theorem

\[L_{i,i} : \text{submatrix of } L \text{ by removing } \]

\[\text{ith row and ith column} \]

\[t(G) : \text{number of spanning trees in } G \]

Kirchhoff’s Matrix-Tree Theorem:

\[\forall i, \quad t(G) = \det(L_{i,i}) \]
Kirchhoff’s Matrix-Tree Theorem:

\[\forall i, \quad t(G) = \det(L_{i,i}) \]

\(B_i: (n - 1) \times m \)

incidence matrix \(B \) removing \(i \)th row

\[L = BB^T \]

\[L_{i,i} = B_iB_i^T \quad \det(L_{i,i}) = \det(B_iB_i^T) = ? \]
Cauchy-Binet Theorem:

\[
\det(AB) = \sum_{S \in \binom{[m]}{n}} \det(A_{[n],S}) \det(B_{S,[n]})
\]

\[A : n \times m\]

\[B : m \times n\]
Cauchy-Binet Theorem:

\[
\det(AB) = \sum_{S \in \binom{[m]}{n}} \det(A_{[n]}, S) \det(B_{S,[n]})
\]

\[
\det(L_{i,i}) = \det(B_i B_i^T)
\]

\[
= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\{i\},S}) \det(B_{S,[n]\{i\}}^T)
\]

\[
= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\{i\},S})^2
\]
\[
\det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n]\{i\},S})^2
\]

\(j \in [n] \setminus \{i\}, e \in S\)

\[
B_{[n]\{i\},S}(j, e) = \begin{cases}
1 & e = \{j, k\}, j < k \\
-1 & e = \{j, k\}, j > k \\
0 & \text{otherwise}
\end{cases}
\]

\[
\det(B_{[n]\{i\},S}) = \begin{cases}
\pm 1 & S \text{ is a spanning tree of } G \\
0 & \text{otherwise}
\end{cases}
\]
\[
\det(B_{[n]\setminus \{i\},S}) = \begin{cases}
\pm 1 & \text{if } S \text{ is a spanning tree of } G \\
0 & \text{otherwise}
\end{cases}
\]

\[B' = B_{[n]\setminus \{i\},S}\]

\((n-1) \times (n-1)\) matrix:

- every column contains at most one 1 and at most one -1
- and all other entries are 0

\[
\det(B') \in \{-1, 0, 1\}
\]

\[\det(B') \neq 0 \text{ iff } S \text{ is a spanning tree}\]
\[\text{det}(B') \neq 0 \iff S \text{ is a spanning tree} \]

\[S \text{ is not a spanning tree:} \]
\[\exists \text{ a connected component } R \text{ s.t. } i \notin R \]
\[\Rightarrow \text{ det}(B') = 0 \]

\[S \text{ is a spanning tree:} \]
\[\exists \text{ a leaf } j_1 \neq i \text{ with incident edge } e_1, \text{ delete } e_1 \]
\[\exists \text{ a leaf } j_2 \neq i \text{ with incident edge } e_2, \text{ delete } e_2 \]
\[\vdots \]
\[\text{ vertices: } j_1, j_2, \ldots, j_{n-1} \]
\[\text{ edges: } e_1, e_2, \ldots, e_{n-1} \]

\[\text{ det}(B') = \pm 1 \]
Cauchy-Binet

\[
det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} det(B_{[n] \setminus \{i\},S})^2
\]

\[
j \in [n] \setminus \{i\}, e \in S
\]

\[
B_{[n] \setminus \{i\},S}(j, e) = \begin{cases}
1 & e = \{j, k\}, j < k \\
-1 & e = \{j, k\}, j > k \\
0 & \text{otherwise}
\end{cases}
\]

\[
det(B_{[n] \setminus \{i\},S}) = \begin{cases}
\pm 1 & S \text{ is a spanning tree of } G \\
0 & \text{otherwise}
\end{cases}
\]
Kirchhoff’s Matrix-Tree Theorem:
\[\forall i, \quad t(G) = \det(L_{i,i}) \]

all \(n \)-vertex trees: spanning trees of \(K_n \)

\[L_{i,i} = \begin{bmatrix}
 n - 1 & -1 & \cdots & -1 \\
 -1 & n - 1 & \cdots & -1 \\
 \vdots & \vdots & \ddots & \vdots \\
 -1 & -1 & \cdots & n - 1
\end{bmatrix} \]

Cayley formula:
\[T_n = t(K_n) = \det(L_{i,i}) = n^{n-2} \]