Combinatorics

Counting (labeled) trees

"How many different trees can be formed from n distinct vertices?"

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Prüfer Code

leaf: vertex of degree 1

removing a leaf from T, still a tree

$$u_i: 2, 4, 5, 6, 3, 1$$

 $v_i: 4, 3, 1, 3, 1, 7$

 $T_{1} = T;$ for i = 1 to n-1 u_{i} : smallest leaf in $T_{i};$ (u_{i},v_{i}) : edge in $T_{i};$ T_{i+1} = delete u_{i} from $T_{i};$

Prüfer code:

$$(v_1, v_2, \ldots, v_{n-2})$$

edges of
$$T$$
: $(u_i, v_i), 1 \le i \le n-1$

$$v_{n-1} = n$$

T :

 u_i : smallest leaf in T_i a tree has ≥ 2 leaves } *n* is never deleted $u_i \neq n$

 $u_i: 2, 4, 5, 6, 3, 1$

 $v_i: 4, 3, 1, 3, 1, 7$

 $(v_1, v_2, \ldots, v_{n-2})$

Only need to recover every u_i from $(v_1, v_1, ..., v_{n-2})$.

 u_i is the smallest number not in $\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

$$u_i$$
 is the smallest number not in
 $\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

 \forall vertex v in T,

occurrences of v in $u_1, u_2, ..., u_{n-1}, v_{n-1}$: 1 # occurrences of v in edges $(u_i, v_i), 1 \le i \le n-1$: $\deg_T(v)$

occurrences of v in Prüfer code: $(v_1, v_2, ..., v_{n-2})$

 $\deg_T(v)-1$

 $u_i: 2, 4, 5, 6, 3, 1$

 $v_i: 4, 3, 1, 3, 1, 7$

 $(v_1, v_2, \ldots, v_{n-2})$

$$u_i$$
 is the smallest number not in
 $\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

 \forall vertex v in T_i ,

occurrences of v in $u_i, u_{i+1}, ..., u_{n-1}, v_{n-1}$: 1 # occurrences of v in edges $(u_j, v_j), i \le j \le n-1$: $\deg_{T_i}(v)$

leaf v of T_i :

occurrences of v in $(v_i, ..., v_{n-2})$ $\deg_{T_i}(v) - 1$

> in $\{u_i, u_{i+1}, \dots, u_{n-1}, v_{n-1}\}$ not in $\{v_i, v_{i+1}, \dots, v_{n-2}\}$

 u_i : smallest leaf in T_i

 u_i is the smallest number not in $\{u_1, \ldots, u_{i-1}\} \cup \{v_i, \ldots, v_{n-1}\}$

T = empty graph; $v_{n-1} = n;$ for i = 1 to n-1 $u_i: \text{ smallest number not in}$ $\{u_1, \dots, u_{i-1}\} \cup \{v_i, \dots, v_{n-1}\}$ add edge (u_i, v_i) to T; Prüfer code is reversible 1-1every $(v_1, v_2, \dots, v_{n-2}) \in \{1, 2, \dots, n\}^{n-2}$ is decodable to a tree onto

T = empty graph; $v_{n-1} = n;$ for i = 1 to n-1 $u_i: smallest number not in$ $\{u_1, \dots, u_{i-1}\} \cup \{v_i, \dots, v_{n-1}\}$ add edge (u_i, v_i) to T;

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Double Counting

of sequences of adding directed edges to an empty graph to form a rooted tree

T_n : # of trees on *n* distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree: • pick a root; • pick an order of edges. $T_n n(n-1)!$ $= n!T_n$

T_n : # of trees on *n* distinct vertices.

of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph:add edges one by one

of sequences of adding directed edges to an empty graph to form a rooted tree From an empty graph: • add edges one by one

Start from *n* isolated vertices rooted trees

Each step joins 2 trees.

of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

$$\prod_{k=0}^{n-2} n(n-k-1)$$

 $= n^{n-1} \prod_{k=1}^{n-1} k$ $= n^{n-2} n!$

Start from *n* rooted trees. After adding k edges *n*-k rooted trees add an edge any root of vertex another tree **n-k-1** n

$$T_n = n^{n-2}$$

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Graph Laplacian

Graph G(V,E)adjacency matrix A $A(i,j) = \begin{cases} 1 & \{i,j\} \in E \\ 0 & \{i,j\} \notin E \end{cases}$ 3 diagonal matrix Donal matrix D $D(i,j) = \begin{cases} \deg(i) & i = j \\ 0 & i \neq j \end{cases} \quad D = \begin{vmatrix} d_1 \\ d_2 & 0 \\ 0 & \ddots \\ 0 & \ddots \end{vmatrix}$ graph Laplacian L $L = \begin{vmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{vmatrix}$ L = D - A

Graph Laplacian

Kirchhoff's matrix-tree theorem

t(G) : number of spanning trees in G

Kirchhoff's matrix-tree theorem

- $L_{i,i}$: submatrix of L by removing *i*th row and *i*th collumn
- t(G) : number of spanning trees in G

Kirchhoff's Matrix-Tree Theorem: $\forall i, \quad t(G) = \det(L_{i,i})$

Kirchhoff's Matrix-Tree Theorem: $\forall i, \quad t(G) = \det(L_{i,i})$

 $B_i: (n-1) \times m$ incidence matrix *B* removing *i*th row

$$L = BB^T$$

 $L_{i,i} = B_i B_i^T \quad \det(L_{i,i}) = \det(B_i B_i^T) = ?$

 $A:n\times m$

Cauchy-Binet Theorem:

$$det(AB) = \sum_{S \in \binom{[m]}{n}} det(A_{[n],S}) det(B_{S,[n]})$$

 $\det(L_{i,i}) = \det(B_i B_i^T)$

$$= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n] \setminus \{i\},S}) \det(B_{S,[n] \setminus \{i\}})$$

$$= \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n] \setminus \{i\},S})^2$$

$$\det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} \det(B_{[n] \setminus \{i\},S})^2$$

 $j \in [n] \setminus \{i\}, e \in S$

$$B_{[n] \setminus \{i\}, S}(j, e) = \begin{cases} 1 & e = \{j, k\}, j < k \\ -1 & e = \{j, k\}, j > k \\ 0 & \text{otherwise} \end{cases}$$

$$\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$$

 $\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$

$$B' = B_{[n] \setminus \{i\}, S}$$

 $(n-1) \times (n-1)$ matrix:
every column contains
at most one 1 and at most one -1
and all other entries are 0

 $\det(B') \in \{-1, 0, 1\}$

 $det(B') \neq 0$ iff S is a spanning tree

$\det(B') \neq 0$ iff S is a spanning tree

S is not a spanning tree:

 \exists a connected component R s.t. $i \notin R$

S is a spanning tree:

 \exists a leaf $j_1 \neq i$ with incident edge e_1 , delete e_1 \exists a leaf $j_2 \neq i$ with incident edge e_2 , delete e_2 e_1, e_2, \dots, e_{n-1}

vertices: j_1, j_2, \dots, j_{n-1} edges: e_1, e_2, \dots, e_{n-1}

$$j_{1} \qquad \begin{array}{c} \pm 1 \\ j_{2} \\ \vdots \\ j_{n-1} \end{array} \qquad \begin{array}{c} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{array} \qquad \begin{array}{c} 0 \\ \vdots \\ \pm 1 \end{array}$$

Cauchy-Binet

$$det(L_{i,i}) = \sum_{S \in \binom{[m]}{n-1}} det(B_{[n] \setminus \{i\},S})^2$$

$$j \in [n] \setminus \{i\}, e \in S$$
$$B_{[n] \setminus \{i\}, S}(j, e) = \begin{cases} 1 & e = \{j, k\}, j < k \\ -1 & e = \{j, k\}, j > k \\ 0 & \text{otherwise} \end{cases}$$

$$\det(B_{[n]\setminus\{i\},S}) = \begin{cases} \pm 1 & S \text{ is a spanning tree of } G \\ 0 & \text{otherwise} \end{cases}$$

Kirchhoff's Matrix-Tree Theorem: $\forall i, \quad t(G) = \det(L_{i,i})$

all *n*-vertex trees: spanning trees of K_n

$$L_{i,i} = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix}$$

Cayley formula:

$$T_n = t(K_n) = \det(L_{i,i}) = n^{n-2}$$