Combinatorics

南京大学
尹一通

Counting (labeled) trees

\%ู\% รู รู
โั รั โร
5

"How many different trees can be formed from n distinct vertices?"

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

5

Prüfer Code

leaf : vertex of degree 1

removing a leaf from T, still a tree

$$
\begin{aligned}
& u_{i}: 2,4,5,6,3,1 \\
& v_{i}: 4,3,1,3,1,7
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=T \\
& \text { for } i=1 \text { to } n-1
\end{aligned}
$$

$$
u_{i}: \text { smallest leaf in } T_{i} ;
$$

$$
\left(u_{i}, v_{i}\right): \text { edge in } T_{i}
$$

$$
T_{i+1}=\text { delete } u_{i} \text { from } T_{i} ;
$$

Prüfer code:

$$
\left(v_{1}, v_{2}, \ldots, v_{n-2}\right)
$$

```
edges of T:(u,vi),1\leqi\leqn-1
```

$$
v_{n-1}=n
$$

u_{i} : smallest leaf in T_{i} a tree has ≥ 2 leaves

Only need to recover every u_{i} from ($v_{1}, v_{1}, \ldots, v_{n-2}$).
u_{i} is the smallest number not in $\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}$

$$
\begin{gathered}
u_{i}: 2,4,5,6,3,1 \\
v_{i}: \frac{4,3,1,3,1,7}{\left(v_{1}, v_{2}, \ldots, v_{n-2}\right)}
\end{gathered}
$$

u_{i} is the smallest number not in
$\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}$
\forall vertex v in T,
\# occurrences of v in $u_{1}, u_{2}, \ldots, u_{n-1}, v_{n-1}: 1$
\# occurrences of v in edges $\left(u_{i}, v_{i}\right), 1 \leq i \leq n-1: \quad \operatorname{deg}_{T}(v)$

\# occurrences of v in Prüfer code: $\left(v_{1}, v_{2}, \ldots, v_{n-2}\right)$

$$
\operatorname{deg}_{T}(v)-1
$$

$$
\begin{gathered}
u_{i}: 2,4,5,6,3,1 \\
v_{i}: \underline{4,3,1,3,1,7} \\
\left(v_{1}, v_{2}, \ldots, v_{n-2}\right)
\end{gathered}
$$

u_{i} is the smallest number not in
$\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}$
\forall vertex v in T_{i},
\# occurrences of v in $u_{i}, u_{i+1}, \ldots, u_{n-1}, v_{n-1}: \quad 1$
\# occurrences of v in edges $\left(u_{j}, v_{j}\right), i \leq j \leq n-1: \quad \operatorname{deg}_{T_{i}}(v)$

$$
\begin{aligned}
& u_{i}: \not, 4,5,6,3,1 \\
& v_{i}: 4,3,1,3,1,7
\end{aligned}
$$

$$
\left(v_{1}, v_{2}, \ldots, v_{n-2}\right)
$$

\# occurrences of v in $\left(v_{i}, \ldots, v_{n-2}\right)$

$$
\operatorname{deg}_{T_{i}}(v)-1
$$

leaf v of T_{i} :
in $\left\{u_{i}, u_{i+1}, \ldots, u_{n-1}, v_{n-1}\right\}$ not in $\left\{v_{i}, v_{i+1}, \ldots, v_{n-2}\right\}$
$u_{i}:$ smallest leaf in T_{i}
u_{i} is the smallest number not in $\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}$
T

$T=$ empty graph;
$v_{n-1}=n$;
for $i=1$ to $n-1$
u_{i} : smallest number not in

$$
\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}
$$

add edge $\left(u_{i}, v_{i}\right)$ to T;

Prüfer code is reversible $\square \quad 1-1$ every $\left(v_{1}, v_{2}, \ldots, v_{n-2}\right) \in\{1,2, \ldots, n\}^{n-2}$ is decodable to a tree

T = empty graph;
$v_{n-1}=n$;
for $i=1$ to $n-1$
u_{i} : smallest number not in

$$
\left\{u_{1}, \ldots, u_{i-1}\right\} \cup\left\{v_{i}, \ldots, v_{n-1}\right\}
$$

add edge $\left(u_{i}, v_{i}\right)$ to T;

Prüfer code is reversible $\rightarrow 1-1$

$$
\text { every }\left(v_{1}, v_{2}, \ldots, v_{n-2}\right) \in\{1,2, \ldots, n\}^{n-2}
$$

is decodable to a tree

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

Double Counting

\# of sequences of adding directed edges to an empty graph to form a rooted tree

T_{n} : \# of trees on n distinct vertices.

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree:

- pick a root;
- pick an order of edges.

$$
\begin{aligned}
& T_{n} n(n-1)! \\
= & n!T_{n}
\end{aligned}
$$

T_{n} : \# of trees on n distinct vertices.

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph:

- add edges one by one

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

Start from n iselated vertices

 rooted treesEach step joins 2 trees.

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

Start from n rooted trees.
After adding k edges $n-k$ rooted trees
add an edge

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From an empty graph: • add edges one by one

$$
\prod_{k=0}^{n-2} n(n-k-1)
$$

$$
=n^{n-1} \prod_{k=1}^{n-1} k
$$

$$
=n^{n-2} n!
$$

Start from n rooted trees.
After adding k edges
$n-k$ rooted trees
add an edge

$\underset{\text { vertex }}{\text { any }} \downarrow \longrightarrow$| root of |
| :---: |
| another tree |
| $n-k-1$ |

\# of sequences of adding directed edges to an empty graph to form a rooted tree

From a tree:

- pick a root;
- pick an order of edges.

$$
\begin{aligned}
& T_{n} n(n-1)! \\
= & n!T_{n}
\end{aligned}
$$

From an empty graph:

- add edges one by one

$$
\begin{aligned}
& \prod_{k=2}^{n} n(k-1) \\
= & n^{n-2} n!
\end{aligned}
$$

$$
T_{n}=n^{n-2}
$$

Cayley's formula:

There are n^{n-2} trees on n distinct vertices.

5

Graph Laplacian

Graph $G(V, E)$
adjacency matrix A

$$
A(i, j)= \begin{cases}1 & \{i, j\} \in E \\ 0 & \{i, j\} \notin E\end{cases}
$$

diagonal matrix D

$$
\begin{aligned}
& \text { onal matrix } D \\
& D(i, j)=\left\{\begin{array}{ll}
\operatorname{deg}(i) & i=j \\
0 & i \neq j
\end{array} \quad D=\left[\begin{array}{cccc}
d_{1} & & & 0 \\
& d_{2} & 0 & \\
0 & \ddots & \\
& & & d_{n}
\end{array}\right]\right.
\end{aligned}
$$

graph Laplacian L

$$
L=D-A \quad L=\left[\begin{array}{rrrr}
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

Graph Laplacian

graph Laplacian L

$$
L(i, j)= \begin{cases}\operatorname{deg}(i) & i=j \\ -1 & i \neq j,\{i, j\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

quadratic form:

$$
x L x^{T}=\sum_{i} d_{i} x_{i}^{2}-\sum_{i j \in E} x_{i} x_{j}=\frac{1}{2} \sum_{i j \in E}\left(x_{i}-x_{j}\right)^{2}
$$

incidence matrix $B: n \times m$

$$
\quad i \in V, e \in E \quad \begin{cases}1 & e=\{i, j\}, i<j \\ -1 & e=\{i, j\}, i>j \\ 0 & \text { otherwise }\end{cases}
$$

$$
L=B B^{T}
$$

Kirchhoffs matrix-tree theorem
$L_{i, i}$: submatrix of L by removing i th row and i th collumn

$t(G)$: number of spanning trees in G

Kirchhoffs matrix-tree theorem

$L_{i, i}$: submatrix of L by removing i th row and i th collumn
$t(G)$: number of spanning trees in G

Kirchhoff's Matrix-Tree Theorem:

$$
\forall i, \quad t(G)=\operatorname{det}\left(L_{i, i}\right)
$$

Kirchhoff's Matrix-Tree Theorem:

$$
\forall i, \quad t(G)=\operatorname{det}\left(L_{i, i}\right)
$$

$$
B_{i}:(n-1) \times m
$$ incidence matrix B removing i th row

$$
L=B B^{T}
$$

$$
L_{i, i}=B_{i} B_{i}^{T} \quad \operatorname{det}\left(L_{i, i}\right)=\operatorname{det}\left(B_{i} B_{i}^{T}\right)=?
$$

Cauchy-Binet Theorem:

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[m]}{n}} \operatorname{det}\left(A_{[n], S}\right) \operatorname{det}\left(B_{S,[n]}\right)
$$

$A: n \times m$

$$
B: m \times n
$$

Cauchy-Binet Theorem:

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[m]}{n}} \operatorname{det}\left(A_{[n], S}\right) \operatorname{det}\left(B_{S,[n]}\right)
$$

$$
\operatorname{det}\left(L_{i, i}\right)=\operatorname{det}\left(B_{i} B_{i}^{T}\right)
$$

$$
\begin{aligned}
& =\sum_{S \in\binom{[m]}{n-1}} \operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right) \operatorname{det}\left(B_{S,[n] \backslash\{i\}}^{T}\right) \\
& =\sum_{S \in\binom{[m]}{n-1}} \operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right)^{2}
\end{aligned}
$$

$$
\operatorname{det}\left(L_{i, i}\right)=\sum_{S \in\binom{[m]}{n-1}} \operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right)^{2}
$$

$$
j \in[n] \backslash\{i\}, e \in S
$$

$$
B_{[n] \backslash\{i\}, S}(j, e)= \begin{cases}1 & e=\{j, k\}, j<k \\ -1 & e=\{j, k\}, j>k \\ 0 & \text { otherwise }\end{cases}
$$

$$
\operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right)= \begin{cases} \pm 1 & S \text { is a spanning tree of } G \\ 0 & \text { otherwise }\end{cases}
$$

$$
\operatorname{det}\left(B_{[n \backslash \backslash\{i\}, S}\right)= \begin{cases} \pm 1 & S \text { is a spanning tree of } G \\ 0 & \text { otherwise }\end{cases}
$$

$$
B^{\prime}=B_{[n] \backslash\{i\}, S}
$$

$$
(n-1) \times(n-1) \text { matrix: }
$$

every column contains

$$
\text { at most one } 1 \text { and at most one }-1
$$ and all other entries are 0

$\operatorname{det}\left(B^{\prime}\right) \neq 0$ iff S is a spanning tree

$\operatorname{det}\left(B^{\prime}\right) \neq 0$ iff S is a spanning tree

S is not a spanning tree:
\exists a connected component R

$$
\text { s.t. } i \notin R
$$

$$
\checkmark \operatorname{det}\left(B^{\prime}\right)=0
$$

S is a spanning tree:
\exists a leaf $j_{1} \neq i$ with incident edge e_{1}, delete e_{1}
\exists a leaf $j_{2} \neq i$ with incident edge e_{2}, delete e_{2}
vertices: $j_{1}, j_{2}, \ldots, j_{n-1}$ edges: $e_{1}, e_{2}, \ldots, e_{n-1}$

$$
\operatorname{det}\left(B^{\prime}\right)= \pm 1
$$

Cauchy-Binet

$$
\operatorname{det}\left(L_{i, i}\right)=\sum_{S \in\binom{[m]}{n-1}} \operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right)^{2}
$$

$$
j \in[n] \backslash\{i\}, e \in S
$$

$$
B_{[n] \backslash\{i\}, S}(j, e)= \begin{cases}1 & e=\{j, k\}, j<k \\ -1 & e=\{j, k\}, j>k \\ 0 & \text { otherwise }\end{cases}
$$

$$
\operatorname{det}\left(B_{[n] \backslash\{i\}, S}\right)= \begin{cases} \pm 1 & S \text { is a spanning tree of } G \\ 0 & \text { otherwise }\end{cases}
$$

Kirchhoff's Matrix-Tree Theorem:

$$
\forall i, \quad t(G)=\operatorname{det}\left(L_{i, i}\right)
$$

all n-vertex trees: spanning trees of K_{n}

$$
L_{i, i}=\left[\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right]
$$

Cayley formula:

$$
T_{n}=t\left(K_{n}\right)=\operatorname{det}\left(L_{i, i}\right)=n^{n-2}
$$

