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Extremal Combinatorics

“how large or how small a collection of finite 
objects can be, if it has to satisfy certain 

restrictions”



“What is the largest number of edges that
an n-vertex cycle-free graph can have?”

Extremal Problem:

Extremal Graph:

(n-1)

spanning tree



Triangle-free graph

contains no as subgraph

Example:  bipartite graph

|E| is maximized for
complete balanced bipartite graph

Extremal ?



Mantel’s Theorem

Theorem (Mantel 1907)

|E| � n2

4
.

If G(V,E) has |V|=n and is triangle-free, then

For n is even,
extremal graph:

Kn
2 , n

2



Induction on n.

Induction Hypothesis:   for any n < N

Induction step:  for n = N

Basis:   n=1,2.   trivial

-free  ⇒  |E| ≤ n2/4

⇒   G ⊇ |E| >
n2

4

First Proof.

A

B

due to I.H.  |E(B)| ≤ (n-2)2/4
|E(A,B)| = |E|� |E(B)|� 1

>
n2

4
� (n� 2)2

4
� 1 = n� 2

pigeonhole!



-free  ⇒  |E| ≤ n2/4

Second Proof.
�

uv�E

(du + dv) =
�

v�V

d2
v

u v

(du + dv)

Cauchy-Schwarz
⇤

v�V

d2
v �

1
n

�
⇤

v�V

dv

⇥2

=
4|E|2

n

-free ⇥ du + dv � n ⇥
�

uv�E

(du + dv) � n|E|

n|E| �
⌅

uv�E

(du + dv) =
⌅

v�V

d2
v �

�⇤
v�V dv

⇥2

n
=

4|E|2

n

(handshaking)



-free  ⇒  |E| ≤ n2/4

Second Proof.
�

uv�E

(du + dv) =
�

v�V

d2
v

Cauchy-Schwarz
⇤

v�V

d2
v �

1
n

�
⇤

v�V

dv

⇥2

=
4|E|2

n

-free ⇥ du + dv � n ⇥
�

uv�E

(du + dv) � n|E|

n|E| � 4|E|2

n

(handshaking)

|E| � n2

4

u v

(du + dv)



-free  ⇒  |E| ≤ n2/4

Third Proof.
A:  maximum independent set

B = V \ A

α = |A|

β = |B|

v

⇤ ⇥� ⌅
dv

independent ⇤v ⇥ V, dv � �

B

B incident to all edges

� �⇥ �
�

� + ⇥

2

⇥2

|E| �
�

v�B

dv =
n2

4

Inequality of the arithmetic and geometric mean



Turán's Theorem

Paul Turán
(1910-1976)

“Suppose G is a Kr -free graph.

What is the largest number of 
edges that G can have?”



Turán's Theorem

Theorem (Turán 1941)

If G(V,E) has |V|=n and is Kr-free, then

|E| ⇥ r � 2
2(r � 1)

n2.



K2,2,3

Complete multipartite graph Kn1,n2,...,nr

Turán graph T(n, r)
T (n, r) = Kn1,n2,...,nr

n1 + n2 + · · · + nr = n ni �
⇧�n

r

⇥
,
⇤n

r

⌅⌃



Turán graph T(n, r)
T (n, r) = Kn1,n2,...,nr

n1 + n2 + · · · + nr = n ni �
⇧�n

r

⇥
,
⇤n

r

⌅⌃

T(n, r-1) has no Kr 

|T (n, r � 1)| ⇥
�

r � 1
2

⇥�
n

r � 1

⇥2

=
r � 2

2(r � 1)
n2



|E| � r�2
2(r�1)n

2Kr-free

First Proof. Induction on n.

Induction Hypothesis:  true for any n < N
Basis:  n=1,...,r-1. 

A

B

(r-1)-clique

Induction step:  for n = N,
suppose G is maximum Kr -free

∃(r-1)-clique



|E| � r�2
2(r�1)n

2Kr-free

First Proof. Induction on n.

A

B

(r-1)-clique

Induction step:  for n = N,
suppose G is maximum Kr -free

due to I.H. 

|E(B)| ⇥ r � 2
2(r � 1)

(n� r + 1)2

no u∈B adjacent to all v∈A 

E(A,B) ⇥ (r � 2)(n� r + 1)

Kr -free



|E| � r�2
2(r�1)n

2Kr-free

First Proof. Induction on n.

A

B

(r-1)-clique

Induction step:  for n = N,

|E(B)| ⇥ r � 2
2(r � 1)

(n� r + 1)2

E(A,B) ⇥ (r � 2)(n� r + 1)

|E| = |E(A)| + |E(B)| + |E(A, B)|
=

�r�1
2

⇥
+ r�2

2(r�1) (n�r+1)2+(r�2)(n�r+1)

� r�2
2(r�1)n

2



|E| � r�2
2(r�1)n

2Kr-free

Second Proof. (weight shifting)

wv � 0assign each vertex v a weight with
�

v�V

wv = 1

evaluate S =
�

uv�E

wuwv

Wu =
�

v:v�u

wvlet

(wu + �)Wu + (wv � �)Wv ⇥ wuWu + wvWv

u ⇥� v Wu �WvFor that

S is maximized ⇒ all weights on a clique

shifting all weight of v to u ⇒ S non-decreasing



|E| � r�2
2(r�1)n

2Kr-free

Second Proof. (weight shifting)

wv � 0assign each vertex v a weight with
�

v�V

wv = 1

evaluate S =
�

uv�E

wuwv

S is maximized ⇒ all weights on a clique

⇥
�

r � 1
2

⇥
1

(r � 1)2

when all wi =
1
n

S =
�

uv�E

wuwv =
|E|
n2



|E| � r�2
2(r�1)n

2Kr-free

Third Proof.

(The probabilistic method)

V = {v1, v2, . . . , vn} di = d(vi)

clique number ω(G):  size of the largest clique

�(G) ⇥
n�

i=1

1
n� di

random permutation π
S = {i | ⇥�j < �i, vi � vj}

i � S i� vi adjacent to all vj that �j < �i

S is a clique



|E| � r�2
2(r�1)n

2Kr-free

Third Proof. (The probabilistic method)

�(G) ⇥
n�

i=1

1
n� di

random permutation π
S = {i | ⇥�j < �i, vi � vj}

i � S i� vi adjacent to all vj that �j < �i

S is a clique

Xi =

�
1 vi � S

0 otherwise
X =

n�

i=1

Xi|S| =

vi � S 8vj 6⇠ vi, ⇡i < ⇡j

E[Xi] � 1
n�di

E[|S|] �
nX

i=1

1

n� di



|E| � r�2
2(r�1)n

2Kr-free

Third Proof.

�(G) ⇥
n�

i=1

1
n� di

�
n⇤

i=1

aibi

⇥2

�
�

n⇤

i=1

a2
i

⇥�
n⇤

i=1

b2
i

⇥
Cauchy-Schwarz ai =

⇥
n� di, b = 1⇥

n�di

=

�
n⇤

i=1

(n� di)

⇥�
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i=1

1
n� di

⇥
⇥ �(G)

�
n⇤

i=1

(n� di)

⇥

n2 =



|E| � r�2
2(r�1)n

2Kr-free

Third Proof.

⇥ �(G)

�
n⇤

i=1

(n� di)

⇥

n2

⇥ (r � 1)(n2 � 2|E|)



|E| � r�2
2(r�1)n

2Kr-free

Fourth Proof.
Suppose G is Kr-free with maximum edges.

G does not have
u v

w

w

v

uu� By contradiction.

Case.1 dw < du or dw < dv

duplicate u, delete w,

|E�| = |E| + du � dw > |E|

still Kr-free



|E| � r�2
2(r�1)n

2Kr-free

Fourth Proof.
Suppose G is Kr-free with maximum edges.

G does not have
u v

w

w
v

u
delete u,v,

still Kr-free

duplicate w, twice
w� w��

|E�| = |E| + 2dw � (du + dv � 1) > |E|

Case.2 dw � du ⇥ dw � dv



|E| � r�2
2(r�1)n

2Kr-free

Fourth Proof.
Suppose G is Kr-free with maximum edges.

G does not have
u v

w

u ⇥� v is an equivalence relation

G is a complete multipartite graph

optimize Kn1,n2,...,nr�1

n1 + n2 + . . . + nr�1 = nsubject to 



Turán’s Theorem (clique)

If G(V,E) has |V|=n and is Kr-free, then

|E| ⇥ r � 2
2(r � 1)

n2.

Turán’s Theorem (independent set)

If G(V,E) has |V|=n and |E|=m, then G 
 has an independent set of size

� n2

2m+ n
.



Parallel Max

• compute max of n distinct numbers

• computation model: parallel, comparison-based

• 1-round algorithm:        comparisons of all pairs 

• lower bound for one-round:

•       comparisons are required in the worst case
✓
n

2

◆

✓
n

2

◆

adversary argument



Parallel Max
• 2-round algorithm:

• divide n numbers into k groups of n/k each

• 1st round:  find max of each group;

• 2nd round:  find the max of the k maxes 

• total comparisons:  

k

✓
n/k

2

◆
comparisons

✓
k

2

◆
comparisons

k

✓
n/k

2

◆
+

✓
k

2

◆
= O

⇣
n4/3

⌘

k = n2/3for
3-round? optimal?



1st round: 

2nd round:

Alg:  m comparisons

choose an independent set

of size � n2

2m+ n

make them local maximal

a parallel max problem of size � n2

2m+ n

requires �
✓ n2

2m+n

2

◆
comparisons

� m+

✓ n2

2m+n

2

◆
= ⌦(n4/3)total comparisons

(Turán)



Extremal Graph Theory

Fix a graph H.

ex(n, H)
largest possible number of edges
of G ⇥� H on n vertices

ex(n,H) = max
G ⇥�H

|V (G)|=n

|E(G)|

Turán's Theorem
ex(n,Kr) = |T (n, r � 1)| ⇥ r � 2

2(r � 1)
n2



Erdős–Stone theorem
(Fundamental theorem of extremal graph theory)

Theorem (Erdős–Stone 1946)

ex(n,Kr
s ) =

�
r � 2

2(r � 1)
+ o(1)

⇥
n2

complete r-partite graph 
with s vertices in each part

Kr
s = Ks, s, · · · , s⇤ ⇥� ⌅

r

= T (rs, r)

K3
2



Theorem (Erdős–Stone 1946)

ex(n,Kr
s ) =

�
r � 2

2(r � 1)
+ o(1)

⇥
n2

Corollary

lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

For any nonempty graph H

ex(n,H)/
�n
2

⇥
extremal density of subgraph H



lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

�(H) = r

H ⇤⇥ T (n, r � 1) for any n

ex(n,H) ⇥ |T (n, r � 1)|
H � Kr

s for su�ciently large s

ex(n,H) � ex(n,Kr
s )

=
�

r�2
2(r�1) + o(1)

⇥
n2



lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

�(H) = r

|T (n, r � 1)| ⇥ ex(n,H) ⇥
�

r � 2
2(r � 1)

+ o(1)
⇥

n2

r � 2
r � 1

� o(1) ⇥ ex(n,H)�n
2

⇥ ⇥ r � 2
r � 1

+ o(1)


