Combinatorics

南京大学
尹一通

Extremal Combinatorics

"how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions"

Extremal Problem:

"What is the largest number of edges that an n-vertex cycle-free graph can have?"

$$
(n-1)
$$

Extremal Graph:

spanning tree

Triangle-free graph

contains no Ω_{0} as subgraph
Example: bipartite graph

$|E|$ is maximized for
complete balanced bipartite graph
Extremal ?

Mantel's Theorem

Theorem (Mantel I907) If $G(V, E)$ has $|V|=n$ and is triangle-free, then

$$
|E| \leq \frac{n^{2}}{4}
$$

For n is even, extremal graph:

$$
K_{\frac{n}{2}, \frac{n}{2}}
$$

$$
\Omega_{-} \text {-free } \Rightarrow|E| \leq n^{2} / 4
$$

First Proof. Induction on n.

Basis: $n=1,2$. trivial
Induction Hypothesis: for any $n<N$

$$
|E|>\frac{n^{2}}{4} \Rightarrow G \supseteq \Omega
$$

Induction step: for $n=N$

pigeonhole!

. -free $\Rightarrow|E| \leq n^{2} / 4$

Second Proof.

Ω_{-}-free $\Rightarrow d_{u}+d_{v} \leq n \Rightarrow \sum_{u v \in E}\left(d_{u}+d_{v}\right) \leq n|E|$
Cauchy-Schwarz

$$
\sum_{v \in V} d_{v}^{2} \geq \frac{1}{n}\left(\sum_{v \in V} d_{v}\right)^{2}=\frac{4|E|^{2}}{n} \quad \text { (handshaking) }
$$

$n|E| \geq \sum_{u v \in E}\left(d_{u}+d_{v}\right)=\sum_{v \in V} d_{v}^{2} \geq \frac{\left(\sum_{v \in \vee} d_{v}\right)^{2}}{n}=\frac{4|E|^{2}}{n}$

$\Omega_{\text {- }}$-free $\Rightarrow|E| \leq n^{2} / 4$

Second Proof.

Ω_{-}-free $\Rightarrow d_{u}+d_{v} \leq n \Rightarrow \sum_{u v \in E}\left(d_{u}+d_{v}\right) \leq n|E|$
Cauchy-Schwarz

$$
\begin{gathered}
\sum_{v \in V} d_{v}^{2} \geq \frac{1}{n}\left(\sum_{v \in V} d_{v}\right)^{2}=\frac{4|E|^{2}}{n} \quad \text { (handshaking) } \\
n|E| \geq \frac{4|E|^{2}}{n} \quad \neg|E| \leq \frac{n^{2}}{4}
\end{gathered}
$$

©-free $\Rightarrow|E| \leq n^{2} / 4$

Third Proof.

A : maximum independent set $\quad \alpha=|A|$

$$
\forall v \in V, \quad d_{v} \leq \alpha
$$

$B=V \backslash A \quad B$ incident to all edges $\quad \beta=|B|$
Inequality of the arithmetic and geometric mean

$$
|E| \leq \sum_{v \in B} d_{v} \leq \alpha \beta \leq\left(\frac{\alpha+\beta}{2}\right)^{2}=\frac{n^{2}}{4}
$$

Turán's Theorem

"Suppose G is a K_{r}-free graph. What is the largest number of edges that G can have?"

Paul Turán
(1910-1976)

Turán's Theorem

Theorem (Turán 194I)
If $G(V, E)$ has $|V|=n$ and is K_{r}-free, then

$$
|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$

$K_{2,2,3}$

Turán graph $T(n, r)$

$$
\begin{gathered}
T(n, r)=K_{n_{1}, n_{2}, \ldots, n_{r}} \\
n_{1}+n_{2}+\cdots+n_{r}=n \quad n_{i} \in\left\{\left\lfloor\frac{n}{r}\right\rfloor,\left\lceil\frac{n}{r}\right\rceil\right\}
\end{gathered}
$$

Turán graph $T(n, r)$

$$
\begin{gathered}
T(n, r)=K_{n_{1}, n_{2}, \ldots, n_{r}} \\
n_{1}+n_{2}+\cdots+n_{r}=n \quad n_{i} \in\left\{\left\lfloor\frac{n}{r}\right\rfloor,\left\lceil\frac{n}{r}\right\rceil\right\}
\end{gathered}
$$

$T(n, r-1)$ has no K_{r}

$$
\begin{aligned}
|T(n, r-1)| & \leq\binom{ r-1}{2}\left(\frac{n}{r-1}\right)^{2} \\
& =\frac{r-2}{2(r-1)} n^{2}
\end{aligned}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

First Proof. Induction on n.

Basis: $n=1, \ldots, r-1$.
Induction Hypothesis: true for any $n<N$ Induction step: for $n=N$,

suppose G is maximum K_{r}-free

$\exists(r-1)$-clique
B O $0 \cdots$ - 0

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

First Proof. Induction on n.

Induction step: for $n=N$,

suppose G is maximum K_{r}-free

$$
\begin{aligned}
& \text { A } \\
& \text { B } 0 \quad 0 \quad \cdots \quad 0 \text {. } \\
& |E(B)| \leq \frac{r-2}{2(r-1)}(n-r+1)^{2}
\end{aligned}
$$

K_{r}-free \leadsto no $u \in B$ adjacent to all $v \in A$

$$
E(A, B) \leq(r-2)(n-r+1)
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

First Proof. Induction on n.

Induction step: for $n=N$,

$$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B} \quad \begin{aligned}
\mathrm{B} & (r-1) \text {-clique } \\
|E| & =|E(B)| \leq \frac{r-2}{2(r-1)}(n-r+1)^{2} \\
& =\binom{r-1}{2}+\frac{r-2}{2(r-1)}(n-r+1)^{2}+(r-2)(n-r+1) \\
& \leq \frac{r-2}{2(r-1)} n^{2}
\end{aligned}
\end{aligned}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Second Proof. (weight shifting)

 assign each vertex v a weight $w_{v} \geq 0$ with $\sum_{v \in V} w_{v}=1$ evaluate $S=\sum_{u v \in E} w_{u} w_{v}$let $W_{u}=\sum_{v: v \sim u} w_{v}$ For $u \nsim v$ that $W_{u} \geq W_{v}$
$\left(w_{u}+\epsilon\right) W_{u}+\left(w_{v}-\epsilon\right) W_{v} \geq w_{u} W_{u}+w_{v} W_{v}$
shifting all weight of v to $u \Rightarrow$ S non-decreasing
S is maximized \Rightarrow all weights on a clique

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Second Proof. (weight shifting)

 assign each vertex v a weight $w_{v} \geq 0$ with $\sum_{v \in V} w_{v}=1$ evaluate $S=\sum_{u v \in E} w_{u} w_{v} \leq\binom{ r-1}{2} \frac{1}{(r-1)^{2}}$$S$ is maximized \Rightarrow all weights on a clique when all $w_{i}=\frac{1}{n}$

$$
S=\sum_{u v \in E}^{n} w_{u} w_{v}=\frac{|E|}{n^{2}}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof.

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \quad d_{i}=d\left(v_{i}\right)
$$

clique number $\omega(G)$: size of the largest clique

$$
\omega(G) \geq \sum_{i=1}^{n} \frac{1}{n-d_{i}}
$$

(The probabilistic method)
random permutation π

$$
S=\left\{i \mid \forall \pi_{j}<\pi_{i}, v_{i} \sim v_{j}\right\}
$$

$i \in S$ iff v_{i} adjacent to all v_{j} that $\pi_{j}<\pi_{i}$
S is a clique

$$
K_{r} \text {-free } \neg|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof. (The probabilistic method)

$$
\omega(G) \geq \sum_{i=1}^{n} \frac{1}{n-d_{i}}
$$

random permutation π

$$
S=\left\{i \mid \forall \pi_{j}<\pi_{i}, v_{i} \sim v_{j}\right\}
$$

S is a clique
$i \in S$ iff v_{i} adjacent to all v_{j} that $\pi_{j}<\pi_{i}$

$$
\begin{gathered}
X_{i}=\left\{\begin{array}{ll}
1 & v_{i} \in S \\
0 & \text { otherwise }
\end{array} \quad|S|=X=\sum_{i=1}^{n} X_{i}\right. \\
v_{i} \in S<\quad \forall v_{j} \nsim v_{i}, \pi_{i}<\pi_{j} \\
\mathbf{E}\left[X_{i}\right] \geq \frac{1}{n-d_{i}} \quad \mathbf{E}[|S|] \geq \sum_{i=1}^{n} \frac{1}{n-d_{i}}
\end{gathered}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof.

$$
\omega(G) \geq \sum_{i=1}^{n} \frac{1}{n-d_{i}}
$$

Cauchy-Schwarz $\quad a_{i}=\sqrt{n-d_{i}}, b=\frac{1}{\sqrt{n-d_{i}}}$

$$
\begin{aligned}
& n^{2}=\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \\
& =\left(\sum_{i=1}^{n}\left(n-d_{i}\right)\right)\left(\sum_{i=1}^{n} \frac{1}{n-d_{i}}\right) \leq \omega(G)\left(\sum_{i=1}^{n}\left(n-d_{i}\right)\right)
\end{aligned}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof.

$$
\begin{aligned}
n^{2} & \leq \omega(G)\left(\sum_{i=1}^{n}\left(n-d_{i}\right)\right) \\
& \leq(r-1)\left(n^{2}-2|E|\right)
\end{aligned}
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

By contradiction.
Case.I $d_{w}<d_{u}$ or $d_{w}<d_{v}$
duplicate u, delete w, still K_{r}-free

$$
\left|E^{\prime}\right|=|E|+d_{u}-d_{w}>|E|
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

Case. $2 \quad d_{w} \geq d_{u} \wedge d_{w} \geq d_{v}$ delete u, v, duplicate w, twice still K_{r}-free

$$
\left|E^{\prime}\right|=|E|+2 d_{w}-\left(d_{u}+d_{v}-1\right)>|E|
$$

$$
K_{r} \text {-free } \Rightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

$u \nsim v$ is an equivalence relation
G is a complete multipartite graph
optimize $\quad K_{n_{1}, n_{2}, \ldots, n_{r-1}}$
subject to $n_{1}+n_{2}+\ldots+n_{r-1}=n$

Turán's Theorem (clique)

If $G(V, E)$ has $|V|=n$ and is K_{r}-free, then

$$
|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Turán's Theorem (independent set) If $G(V, E)$ has $|V|=n$ and $|E|=m$, then G has an independent set of size

$$
\geq \frac{n^{2}}{2 m+n}
$$

Parallel Max

- compute max of n distinct numbers
- computation model: parallel, comparison-based
- 1-round algorithm: $\binom{n}{2}$ comparisons of all pairs
- lower bound for one-round:
- $\binom{n}{2}$ comparisons are required in the worst case

Parallel Max

- 2-round algorithm:
- divide n numbers into k groups of n / k each
- 1st round: find max of each group;

$$
k\binom{n / k}{2} \text { comparisons }
$$

- 2nd round: find the max of the k maxes
$\binom{k}{2}$ comparisons
- total comparisons: $k\binom{n / k}{2}+\binom{k}{2}=O\left(n^{4 / 3}\right)$

3 -round?
optimal?
for $k=n^{2 / 3}$

1st round:

Alg: m comparisons
choose an independent set

$$
\text { of size } \geq \frac{n^{2}}{2 m+n} \text { (Turán) }
$$

make them local maximal

2nd round:
a parallel max problem of size $\geq \frac{n^{2}}{2 m+n}$
requires $\geq\binom{\frac{n^{2}}{2 m+n}}{2}$ comparisons
total comparisons $\geq m+\binom{\frac{n^{2}}{2 m+n}}{2}=\Omega\left(n^{4 / 3}\right)$

Extremal Graph Theory

Fix a graph H.

$$
\operatorname{ex}(n, H)
$$

largest possible number of edges
of $G \nsupseteq H$ on n vertices

$$
\operatorname{ex}(n, H)=\max _{\substack{G \nsupseteq H \\|V(G)|=n}}|E(G)|
$$

Turán's Theorem

$$
\operatorname{ex}\left(n, K_{r}\right)=|T(n, r-1)| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Erdős-Stone theorem

(Fundamental theorem of extremal graph theory)

$$
K_{s}^{r}=K_{\underbrace{s, s, \cdots, s}_{r}}^{s, \cdots(r s, r)}
$$

complete r-partite graph with s vertices in each part

Theorem (Erdős-Stone 1946)

$$
\operatorname{ex}\left(n, K_{s}^{r}\right)=\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
$$

Theorem (Erdős-Stone 1946)

$$
\operatorname{ex}\left(n, K_{s}^{r}\right)=\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
$$

$\operatorname{ex}(n, H) /\binom{n}{2} \quad$ extremal density of subgraph H

Corollary

For any nonempty graph H

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$\chi(H)=r$
$H \nsubseteq T(n, r-1)$ for any n

$$
\operatorname{ex}(n, H) \geq|T(n, r-1)|
$$

$H \subseteq K_{s}^{r}$ for sufficiently large s

$$
\begin{aligned}
\operatorname{ex}(n, H) & \leq \operatorname{ex}\left(n, K_{s}^{r}\right) \\
& =\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$$
\begin{aligned}
& \chi(H)=r \\
& |T(n, r-1)| \leq \operatorname{ex}(n, H) \leq\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2} \\
& \frac{r-2}{r-1}-o(1) \leq \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} \leq \frac{r-2}{r-1}+o(1)
\end{aligned}
$$

