Combinatorics

南京大学
尹一通
Course Info

• Instructor: 尹一通
 • yinyt@nju.edu.cn,

• Office hour:
 • 804 , Wednesday, 4–6pm

• course homepage:
 • http://tcs.nju.edu.cn/wiki/
Combinatorics

- **Enumeration (counting):** How many solutions satisfying the constraints?
- **Existence:** Does there exist a solution?
- **Extremal:** How large/small a solution can be to preserve/avoid certain structure?
- **Ramsey:** When a solution is sufficiently large, some structure must emerge.
- **Optimization:** Find the optimal solution.
- **Construction (design):** Construct a solution.

combinatorial ≈ *discrete finite*
solution: *combinatorial object*
constraint: *combinatorial structure*
Textbook

van Lint and Wilson,
A course in Combinatorics,
2nd Edition.

Jukna,
Extremal Combinatorics: with applications in computer science,
2nd Edition.
Reference Books

Stanley,
Enumerative Combinatorics, Volume 1

Graham, Knuth, and Patashnik,
Concrete Mathematics: A Foundation for Computer Science
Reference Books

Aigner and Ziegler.
Proofs from THE BOOK.

Alon and Spencer.
The Probabilistic Method.

Cook, Cunningham, Pulleyblank, and Schrijver.
Combinatorial Optimization.
Enumeration
(counting)

How many ways are there:

• to rank n people?
• to assign m zodiac signs to n people?
• to choose m people out of n people?
• to partition n people into m groups?
• to distribute m yuan to n people?
• to partition m yuan to n parts?
•
The Twelvefold Way

Gian-Carlo Rota
(1932-1999)
The twelvefold way

\[f : N \rightarrow M \quad \mid N \mid = n, \quad \mid M \mid = m \]

<table>
<thead>
<tr>
<th>elements of (N)</th>
<th>elements of (M)</th>
<th>any (f)</th>
<th>1-1</th>
<th>on-to</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinct</td>
<td>distinct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identical</td>
<td>distinct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>distinct</td>
<td>identical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identical</td>
<td>identical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knuth’s version (in *TAOCP* vol.4A)

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tuples

\[[m] = \{0, 1, \ldots, m - 1\} \]

\[[m]^n = \underbrace{[m] \times \cdots \times [m]}_n \]

\[|[m]^n| = m^n \]

Product rule:

finite sets \(S \) and \(T \)

\[|S \times T| = |S| \cdot |T| \]
Functions

Count the # of functions

\(f : [n] \rightarrow [m] \)

\((f(1), f(2), \ldots, f(n)) \in [m]^n\)

One-one correspondence

\([n] \rightarrow [m] \Leftrightarrow [m]^n\)
Functions

count the # of functions

\[f : [n] \rightarrow [m] \]

one-one correspondence

\[[n] \rightarrow [m] \Leftrightarrow [m]^n \]

Bijection rule:

finite sets \(S \) and \(T \)

\[\exists \phi : S \xrightarrow{1-1 \text{ on-to}} T \implies |S| = |T| \]
Functions

Count the number of functions

\[f : [n] \rightarrow [m] \]

One-one correspondence

\[[n] \rightarrow [m] \Leftrightarrow [m]^n \]

\[|[n] \rightarrow [m]| = |[m]^n| = m^n \]

“Combinatorial proof.”
Injections

Count the # of 1-1 functions

\[f : [n] \xrightarrow{1-1} [m] \]

One-to-one correspondence

\[\pi = (f(1), f(2), \ldots, f(n)) \]

\textbf{n-permutation:} \quad \pi \in [m]^n \quad \text{of distinct elements}

\[(m)_n = m(m - 1) \cdots (m - n + 1) = \frac{m!}{(m - n)!} \]

“\textit{m lower factorial n}”
Subsets

subsets of \{ 1, 2, 3 \}:

\[\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \]

\[[n] = \{1, 2, \ldots, n\} \]

Power set: \(2^{[n]} = \{ S \mid S \subseteq [n] \} \)

\[\left| 2^{[n]} \right| = \]
Subsets

\[[n] = \{1, 2, \ldots, n\} \]

Power set: \(2^{[n]} = \{ S \mid S \subseteq [n] \} \)

\[|2^{[n]}| = \]

Combinatorial proof:

A subset \(S \subseteq [n] \) corresponds to a string of \(n \) bit, where bit \(i \) indicates whether \(i \in S \).
Subsets

\[[n] = \{1, 2, \ldots, n\} \]

Power set: \(2^{[n]} = \{S \mid S \subseteq [n]\} \)

\[|2^{[n]}| = |\{0, 1\}^n| = 2^n \]

Combinatorial proof:

\(S \subseteq [n] \iff \chi_S \in \{0, 1\}^n \quad \chi_S(i) = \begin{cases} 1 & i \in S \\ 0 & i \notin S \end{cases} \)

one-to-one correspondence
Subsets

$[n] = \{1, 2, \ldots, n\}$

Power set: $2^{[n]} = \{S \mid S \subseteq [n]\}$

$|2^{[n]}| =$

A not-so-combinatorial proof:

Let $f(n) = |2^{[n]}|$

$f(n) = 2f(n - 1)$
\[f(n) = 2^{[n]} \]

\[f(n) = 2f(n - 1) \]

\[2^{[n]} = \{ S \subseteq [n] \mid n \not\in S \} \cup \{ S \subseteq [n] \mid n \in S \} \]

\[|2^{[n]}| = |2^{[n-1]}| + |2^{[n-1]}| = 2f(n - 1) \]

Sum rule:

finite **disjoint** sets \(S \) and \(T \)

\[|S \cup T| = |S| + |T| \]
Subsets

\[[n] = \{1, 2, \ldots, n\} \]

Power set: \(2^{[n]} = \{S \mid S \subseteq [n]\} \)

\[\left| 2^{[n]} \right| = 2^n \]

Let \(f(n) = \left| 2^{[n]} \right| \)

\[f(n) = 2f(n - 1) \]

\[f(0) = |2^\emptyset| = 1 \]
Three rules

Sum rule:

finite disjoint sets \(S \) and \(T \)

\[|S \cup T| = |S| + |T| \]

Product rule:

finite sets \(S \) and \(T \)

\[|S \times T| = |S| \cdot |T| \]

Bijection rule:

finite sets \(S \) and \(T \)

\[\exists \phi : S \xrightarrow{1-1 \text{ on-to}} T \quad \implies \quad |S| = |T| \]
Subsets of fixed size

2-subsets of \(\{ 1, 2, 3 \} \): \(\{1, 2\}, \{1, 3\}, \{2, 3\} \)

\(k \)-uniform

\[
\binom{S}{k} = \left\{ T \subseteq S \mid |T| = k \right\}
\]

\[
\binom{n}{k} = \left| \binom{[n]}{k} \right|
\]

“\(n \) choose \(k \)”
Subsets of fixed size

\[\binom{n}{k} = \frac{n(n-1) \cdots (n-k+1)}{k(k-1) \cdots 1} = \frac{n!}{k!(n-k)!} \]

of ordered k-subsets: \(n(n-1) \cdots (n-k+1) \)

of permutations of a k-set: \(k(k-1) \cdots 1 \)
Binomial coefficients

Binomial coefficient:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

1. \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \)
2. choose a \(k \)-subset \(\Leftrightarrow \)
 choose its compliment
3. 0-subsets + 1-subsets + ... + \(n \)-subsets = all subsets
Binomial theorem

Binomial Theorem

\[(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k\]

Proof:

\[(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)\]

\(n\) copies

\# of \(x^k\): choose \(k\) factors out of \(n\)
Binomial Theorem

\[(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k\]

Let \(x = 1\).

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n\]

Let \(x = 1\).

\[S = \{x_1, x_2, \ldots, x_n\}\]

\[\text{# of subsets of } S \text{ of odd sizes} = \text{# of subsets of } S \text{ of even sizes}\]

Let \(x = -1\).
The twelvefold way

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td>$(m)_n$</td>
<td></td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compositions of an integer

How many ways to assign \(n \) beli to \(k \) pirates?

How many ways to assign \(n \) beli to \(k \) pirates, so that each pirate receives at least 1 beli?
Compositions of an integer

\[n \in \mathbb{Z}^+ \]

k-composition of \(n \):

an ordered sum of \(k \) positive integers

a \(k \)-tuple \((x_1, x_2, \cdots, x_k)\)

\[x_1 + x_2 + \cdots + x_k = n \quad \text{and} \quad x_i \in \mathbb{Z}^+ \]
Compositions of an integer

\(n \in \mathbb{Z}^+ \)

k-composition of \(n \):

A \(k \)-tuple \((x_1, x_2, \cdots, x_k)\)

\[x_1 + x_2 + \cdots + x_k = n \quad \text{and} \quad x_i \in \mathbb{Z}^+ \]

\# of \(k \)-compositions of \(n \)?

\[\binom{n-1}{k-1} \]

\(n \) identical balls

\(x_1 \quad x_2 \quad \cdots \quad x_k \)
Compositions of an integer

a k-tuple (x_1, x_2, \ldots, x_k)

$x_1 + x_2 + \cdots + x_k = n$ and $x_i \in \mathbb{Z}^+$

of k-compositions of n?

$\binom{n - 1}{k - 1}$

$\phi(((x_1, x_2, \ldots, x_k))) = \{x_1, x_1 + x_2, x_1 + x_2 + x_3, \ldots, x_1 + x_2 + \cdots + x_{k-1}\}$

ϕ is a 1-1 correspondence between

$\{k$-compositions of $n\}$ and $\binom{\{1,2,\ldots,n-1\}}{k-1}$
Compositions of an integer

weak k-composition of n:

an ordered sum of k nonnegative integers

a k-tuple (x_1, x_2, \cdots, x_k)

$x_1 + x_2 + \cdots + x_k = n$ \text{ and } x_i \in \mathbb{N}$
Compositions of an integer

weak k-composition of n:

a k-tuple (x_1, x_2, \cdots, x_k)

\[x_1 + x_2 + \cdots + x_k = n \quad \text{and} \quad x_i \in \mathbb{N} \]

of weak k-compositions of n?

\[\binom{n + k - 1}{k - 1} \]

\[(x_1 + 1) + (x_2 + 1) + \cdots + (x_k + 1) = n + k \]

a k-composition of $n+k$

1-1 correspondence
Multisets

\(k \)-subset of \(S \)

"\(k \)-combination of \(S \) without repetition"

3-combinations of \(\{1, 2, 3, 4\} \)

without repetition:

\(\{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\} \)

with repetition:

\(\{1,1,1\}, \{1,1,2\}, \{1,1,3\}, \{1,1,4\}, \{1,2,2\}, \{1,3,3\}, \{1,4,4\}, \{2,2,2\}, \{2,2,3\}, \{2,2,4\}, \{2,3,3\}, \{2,4,4\}, \{3,3,3\}, \{3,3,4\}, \{3,4,4\}, \{4,4,4\} \)
Multisets

multiset M on set S:

$$m : S \rightarrow \mathbb{N}$$

multiplicity of $x \in S$

$$m(x) : \# \text{ of repetitions of } x \text{ in } M$$

cardinality

$$|M| = \sum_{x \in S} m(x)$$

“k-combination of S with repetition” \leftrightarrow k-multiset on S

$$\binom{n}{k} : \# \text{ of } k\text{-multisets on an } n\text{-set}$$
Multisets

\[
\binom{n}{k} = \binom{n + k - 1}{n-1} = \binom{n + k - 1}{k}
\]

\(k\)-multiset on \(S = \{x_1, x_2, \ldots, x_n\}\)

\[m(x_1) + m(x_2) + \cdots + m(x_n) = k\]

\(m(x_i) \geq 0\)

a weak \(n\)-composition of \(k\)
Multinomial coefficients

permutations of a multiset of size n with multiplicities $m_1, m_2 \ldots, m_k$

of reordering of “multinomial”

permutations of $\{a, i,i, l,l, m,m, n, o, t, u\}$

assign n distinct balls to k distinct bins with the i-th bin receiving m_i balls

multinomial coefficient \[\binom{n}{m_1, \ldots, m_k} \]

\[m_1 + m_2 + \cdots + m_k = n \]
Multinomial coefficients

permutations of a multiset of size n with multiplicities $m_1, m_2 \ldots, m_k$

assign n distinct balls to k distinct bins with the i-th bin receiving m_i balls

$$\binom{n}{m_1, \ldots, m_k} = \frac{n!}{m_1!m_2!\cdots m_k!}$$

$$\binom{n}{m, n-m} = \binom{n}{m}$$
Multinomial theorem

Multinomial Theorem

\[
(x_1 + x_2 + \cdots + x_k)^n = \sum_{m_1 + \cdots + m_k = n} \binom{n}{m_1, \ldots, m_k} x_1^{m_1} x_2^{m_2} \cdots x_k^{m_k}
\]

Proof:

\[
(x_1 + x_2 + \cdots + x_k)^n = (x_1 + x_2 + \cdots + x_k) \cdots (x_1 + x_2 + \cdots + x_k)
\]

\[
\text{# of } x_1^{m_1} x_2^{m_2} \cdots x_k^{m_k}:
\]

assign \(n\) factors to \(k\) groups of sizes \(m_1, m_2, \ldots, m_k\)
The twelvefold way

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td>$(m)_n$</td>
<td></td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td>$\binom{m}{n}$</td>
<td>$(m)_n$</td>
<td>$(n-1)\binom{m-1}{n-1}$</td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The twelvefold way

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td>$(m)_n$</td>
<td></td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td>$\binom{n + m - 1}{m - 1}$</td>
<td>(m)</td>
<td>$\binom{n - 1}{m - 1}$</td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Partitions of a set

\[P = \{A_1, A_2, \ldots, A_k\} \text{ is a partition of } S: \]

\[A_i \neq \emptyset \]

\[A_i \cap A_j = \emptyset \]

\[A_1 \cup A_2 \cup \cdots \cup A_k = S \]
Partitions of a set

\[P = \{A_1, A_2, \ldots, A_k\} \text{ is a partition of } S:\]
\[
A_i \neq \emptyset \\
A_i \cap A_j = \emptyset \\
A_1 \cup A_2 \cup \cdots \cup A_k = S
\]

\[\binom{n}{k} \]

of k-partitions of an n-set

“Stirling number of the second kind”

\[B_n = \sum_{k=1}^{n} \binom{n}{k} \]

of partitions of an n-set

“Bell number”
Stirling number of the 2nd kind

\[
\begin{pmatrix} n \\ k \end{pmatrix} \quad \# \text{ of } k\text{-partitions of an } n\text{-set}
\]

\[
\begin{pmatrix} n \\ k \end{pmatrix} = k \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}
\]

Case.1 \{n\} is not a partition block

n is in one of the k blocks in a k-partition of \([n-1]\)

Case.2 \{n\} is a partition block

the remaining k-1 blocks forms a \((k-1)\)-partition of \([n-1]\)
The twelvefold way

\[f : N \rightarrow M \quad \text{n balls are put into m bins} \]

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>(\leq 1)</th>
<th>(\geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) distinct balls, (m) distinct bins</td>
<td>(m^n)</td>
<td>((m)_n)</td>
<td></td>
</tr>
<tr>
<td>(n) identical balls, (m) distinct bins</td>
<td>(\binom{m}{n})</td>
<td>(\binom{m}{n})</td>
<td>(\binom{n - 1}{m - 1})</td>
</tr>
<tr>
<td>(n) distinct balls, (m) identical bins</td>
<td>[\sum_{k=1}^{m} \begin{pmatrix} n \ k \end{pmatrix}]</td>
<td>[\begin{cases} 1 & \text{if } n \leq m \ 0 & \text{if } n > m \end{cases}]</td>
<td>(\begin{pmatrix} n \ m \end{pmatrix})</td>
</tr>
<tr>
<td>(n) identical balls, (m) identical bins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surjections

\[f : [n] \xrightarrow{\text{on-to}} [m] \]

\[\forall i \in [m], \quad f^{-1}(i) \neq \emptyset \]

\[(f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(m)) \]

ordered \(m \)-partition of \([n] \]

\[m! \binom{n}{m} \]
The twelvefold way

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td>$(m)_n$</td>
<td>$m! \left{ \begin{array}{c} n \ m \end{array} \right}$</td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td>$\left(\begin{array}{c} m \ n \end{array} \right)$</td>
<td>$\left(\begin{array}{c} m \ n \end{array} \right)$</td>
<td>$\left(\begin{array}{c} n-1 \ m-1 \end{array} \right)$</td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td>$\sum_{k=1}^{m} \left{ \begin{array}{c} n \ k \end{array} \right}$</td>
<td>$\begin{cases} 1 & \text{if } n \leq m \ 0 & \text{if } n > m \end{cases}$</td>
<td>$\left{ \begin{array}{c} n \ m \end{array} \right}$</td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Partitions of a number

n beli

k boxes

a partition of n into k parts:

an unordered sum of k positive integers
Partitions of a number

A partition of n into k parts:

$n=7$

\[p_k(n) \]
of partitions of n into k parts

\{7\}

\{1,6\}, \{2,5\}, \{3,4\}

\{1,1,5\}, \{1,2,4\}, \{1,3,3\}, \{2,2,3\}

\{1,1,1,4\}, \{1,1,2,3\}, \{1,2,2,2\}

\{1,1,1,1,3\}, \{1,1,1,2,2\}

\{1,1,1,1,1,2\}

\{1,1,1,1,1,1,1\}

“positive”

“unordered”
$p_k(n)$ \# of partitions of n into k parts

integral solutions to \[
x_1 + x_2 + \cdots + x_k = n \quad \begin{align*}
x_1 &\geq x_2 \geq \cdots \geq x_k \geq 1
\end{align*}
\]

$p_k(n) = ?$
\[
\begin{cases}
 x_1 + x_2 + \cdots + x_k = n \\
 x_1 \geq x_2 \geq \cdots \geq x_k \geq 1
\end{cases}
\]

\[
p_k(n) = p_{k-1}(n - 1) + p_k(n - k)
\]

Case.1 \(x_k = 1\)

\((x_1, \ldots, x_{k-1})\) is a \((k - 1)\)-partition of \(n - 1\)

Case.2 \(x_k > 1\)

\((x_1 - 1, \ldots, x_k - 1)\) is a \(k\)-partition of \(n - k\)
partition \[\begin{cases} x_1 + x_2 + \cdots + x_k = n \\ x_1 \geq x_2 \geq \cdots \geq x_k \geq 1 \end{cases} \]

composition \[\begin{cases} x_1 + x_2 + \cdots + x_k = n \\ x_i \geq 1 \]

\(\pi \) is a permutation of \(\{x_1, \cdots, x_k\} \)

“on-to”

\[k!p_k(n) \geq \binom{n - 1}{k - 1} \]
partition \(\{x_1, \cdots, x_k\} \) \quad y_i = x_i + k - i

\[
x_1 \geq x_2 \geq \cdots \geq x_{k-2} \geq x_{k-1} \geq x_k \geq 1
\]

\[
+k - 1 \quad +k - 2 \quad +2 \quad +1
\]

\[
y_1 > y_2 > \cdots > y_{k-2} > y_{k-1} > y_k > 1
\]

composition of \(n + \frac{k(k-1)}{2} \)

\[
(y_1, y_2, \cdots, y_k)
\]

permutation \(\pi \)

“1-1”

\[
k!p_k(n) \leq \left(n + \frac{k(k-1)}{k - 1} - 1 \right)
\]
If k is fixed,

$$p_k(n) \sim \frac{n^{k-1}}{k!(k-1)!} \quad \text{as} \quad n \to \infty$$
\[p(n) = \sum_{k=1}^{n} p_k(n) \]
\[\approx \frac{1}{4n\sqrt{3}} \exp \left\{ \pi \sqrt{\frac{2n}{3}} \right\} \]

Srinivasa Ramanujan
(1887-1920)

G. H. Hardy
(1877-1947)

The Man Who Knew Infinity
(2015 film)
Ferrers diagram

(Young diagram)

\[x_1 + x_2 + \cdots + x_k = n \]
\[x_1 \geq x_2 \geq \cdots \geq x_k \geq 1 \]
conjugate

one-to-one correspondence
\# of partitions of \(n \) into \(k \) parts \quad = \quad \# of partitions of \(n \) with largest part \(k \)
The number of partitions of n into k parts is equal to the number of partitions of $n-k$ into at most k parts.

$$p_k(n) = \sum_{j=1}^{k} p_j(n - k)$$
The twelvefold way

n balls are put into m bins

<table>
<thead>
<tr>
<th>balls per bin:</th>
<th>unrestricted</th>
<th>≤ 1</th>
<th>≥ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n distinct balls, m distinct bins</td>
<td>m^n</td>
<td>$(m)_n$</td>
<td>$m! \binom{n}{m}$</td>
</tr>
<tr>
<td>n identical balls, m distinct bins</td>
<td>$\binom{m}{n}$</td>
<td>$\binom{m}{n}$</td>
<td>$(n-1)\binom{m-1}{m-1}$</td>
</tr>
<tr>
<td>n distinct balls, m identical bins</td>
<td>$\sum_{k=1}^{m} \binom{n}{k}$</td>
<td>$\begin{cases} 1 & \text{if } n \leq m \ 0 & \text{if } n > m \end{cases}$</td>
<td>$\binom{n}{m}$</td>
</tr>
<tr>
<td>n identical balls, m identical bins</td>
<td>$\sum_{k=1}^{m} p_k(n)$</td>
<td>$\begin{cases} 1 & \text{if } n \leq m \ 0 & \text{if } n > m \end{cases}$</td>
<td>$p_m(n)$</td>
</tr>
</tbody>
</table>