Combinatorics

Existence Problems

尹一通 Nanjing University， 2023 Spring

Counting Argument

Circuit Complexity

Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Boolean circuit

- DAG
(directed acyclic graph)
- Nodes:
- inputs: x_{1}, \ldots, x_{n}
- gates: $\wedge \vee \neg$
- Complexity: \#gates

Theorem (Shannon 1949)

There is a boolean function
$f:\{0,1\}^{n} \rightarrow\{0,1\}$ which
cannot be computed by any circuit with $\frac{2^{n}}{3 n}$ gates.

Claude Shannon (1916-2001)
\# of $f:\{0,1\}^{n} \rightarrow\{0,1\} \quad\left|\{0,1\}^{n} \rightarrow\{0,1\}\right|=2^{2^{n}}$
\# of circuits with t gates: $\quad<2^{t}(2 n+t+1)^{2 t}$
$x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}, 0,1$
De Morgan's law:

$$
\begin{aligned}
& \neg(A \vee B)=\neg A \wedge \neg B \\
& \neg(A \wedge B)=\neg A \vee \neg B
\end{aligned}
$$

Theorem (Shannon 1949)
Almost all
There is a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
which cannot be computed by any circuit with $\frac{2^{n}}{3 n}$ gates.
one circuit computes one function
$\# f$ computable by t gates \leq
\#circuits with t gates \leq

$$
\begin{gathered}
<2^{t}(2 n+t+1)^{2 t} \ll 2^{2^{n}}=\# f \\
\text { for } t \leq \frac{2^{n}}{3 n}
\end{gathered}
$$

Double Counting

"Count the same thing twice. The result will be the same."

B

Handshaking Lemma

A party of n guests.

Handshaking Lemma: The number of people who shake an odd number of other people's hands is even.

Represented by graph:
n guests $\Leftrightarrow n$ vertices handshaking \Leftrightarrow edge \# of handshaking \Leftrightarrow degree

Handshaking Lemma (Euler 1736)

$$
\sum_{v \in V} d(v)=2|E|
$$

Leonhard Euler

In the 1736 paper of Seven Bridges of Königsberg

Handshaking Lemma (Euler 1736)

$$
\sum_{v \in V} d(v)=2|E|
$$

Count the \# of edge orientations:

$$
(u, v):\{u, v\} \in E
$$

Count by vertex:

$\forall v \in V$
d directed edges
$\left(v, u_{1}\right) \cdots\left(v, u_{d}\right)$

Count by edge:
$\forall\{u, v\} \in E$
2 orientations
(u, v) and (v, u)

Handshaking Lemma (Euler 1736)

$$
\sum_{v \in V} d(v)=2|E|
$$

Corollary

\# of odd-degree vertices is even.

Sperner's Lemma

line segment: $a b$ divided into small segments each endpoint: red or blue

$a b$ are colored differently
\exists small segment

Emanuel Sperner (1905-1980)

Sperner's Lemma

triangle: $a b c$ triangulation
proper coloring:
3 colors red, blue, green $a b c$ is tricolored
lines $a b, b c, a c$ are 2-colored

Sperner's Lemma (1928)
\forall properly colored triangulation of a triangle, \exists a properly colored small triangle.

Sperner's Lemma (1928)

\forall properly colored triangulation of a triangle, \exists a properly colored small triangle.

degree is odd
partial dual graph: each \triangle is a vertex the outer-space is a vertex add an edge if $2 \triangle$ share a o o edge degree of Ω node: 1 degree of Ω or Ω node: 2 other cases: 0 degree

Sperner's Lemma (1928)

\forall properly colored triangulation of a triangle, \exists a properly colored small triangle.

partial dual graph:

degree is odd
degree of Ω_{0} node: 1 degree of other \triangle : even
handshaking lemma:
\# of odd-degree vertices is even.
\# of Ω : odd $\neq 0$

Sperner's Lemma (1928)

\forall properly colored triangulation of a triangle, \exists a properly colored small triangle.
high-dimension: triangle $\underset{\sim}{ }$ simplex triangulation \leftrightarrows simplicial subdivision

Brouwer's fixed point theorem (1911)
\forall continuous function $f: B \rightarrow B$ of an n-dimensional ball B, \exists a fixed point $x=f(x)$.

Averaging Principle

Pigeonhole Principle

" $n+1$ pigeons cannot sit in n holes so that every pigeon is alone in its hole."

Pigeonhole Principle

If $>m n$ objects are partitioned into n
classes, then some class receives >m objects.

Schubfachprinzip

"drawer principle"

Dirichlet Principle

Johann Peter Gustav Lejeune Dirichlet (1805-1859)

Dirichlet's approximation

Approximate any irrational x by a rational with bounded denominator.

Theorem (Dirichlet 1879)
\forall irrational x and natural number n, \exists a rational $\frac{p}{q}$ such that $1 \leq q \leq n$ and

$$
\left|x-\frac{p}{q}\right|<\frac{1}{n q}
$$

Theorem (Dirichlet 1879)

\forall irrational x and natural number n, \exists a rational $\frac{p}{q}$ such that $1 \leq q \leq n$ and

$$
\left|x-\frac{p}{q}\right|<\frac{1}{n q} \Longleftrightarrow|q x-p|<\frac{1}{n}
$$

fractional part: $\quad\{x\}=x-\lfloor x\rfloor$
$(n+1)$ pigeons: $\{k x\}$ for $k=1,2, \ldots, n+1$
n holes: $\left(0, \frac{1}{n}\right),\left(\frac{1}{n}, \frac{2}{n}\right), \ldots,\left(\frac{n-1}{n}, 1\right)$
fractional part: $\quad\{x\}=x-\lfloor x\rfloor$
$(n+1)$ pigeons: $\{k x\}$ for $k=1,2, \ldots, n+1$
n holes: $\left(0, \frac{1}{n}\right),\left(\frac{1}{n}, \frac{2}{n}\right), \ldots,\left(\frac{n-1}{n}, 1\right)$
$\exists 1 \leq b<a \leq n+1 \quad\{a x\},\{b x\}$ in the same hole
$|(a-b) x-(\lfloor a x\rfloor-\lfloor b x\rfloor)|=|\{a x\}-\{b x\}|<\frac{1}{n}$ integers: $q \leq n \quad p$

$$
|q x-p|<\frac{1}{n} \quad \square\left|x-\frac{p}{q}\right|<\frac{1}{n q} .
$$

An initiation question to Mathematics

$$
\forall S \subseteq\{1,2, \ldots, 2 n\} \text { that }|S|>n
$$

$\exists a, b \in S$ such that $a \mid b$

$$
\forall a \in\{1,2, \ldots, 2 n\}
$$

$$
a=2^{k} m \text { for an odd } m
$$

$$
C_{m}=\left\{2^{k} m \mid k \geq 0,2^{k} m \leq 2 n\right\}
$$

$>n$ pigeons: S

Paul Erdős
(1913-1996)
n pigeonholes: $C_{1}, C_{3}, C_{5}, \ldots, C_{2 n-1}$

$$
a<b \quad a, b \in C_{m} \quad \square \quad a \mid b
$$

Monotonic subsequences

sequence: $\left(a_{1}, \ldots, a_{n}\right)$ of n different numbers

$$
1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n
$$

subsequence:

$$
\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right)
$$

increasing:

$$
a_{i_{1}}<a_{i_{2}}<\ldots<a_{i_{k}}
$$

decreasing:

$$
a_{i_{1}}>a_{i_{2}}>\ldots>a_{i_{k}}
$$

Theorem (Erdős-Szekeres 1935)

A sequence of $>m n$ different numbers must contain either an increasing subsequence of length $m+1$, or a decreasing subsequence of length $n+1$.

$\left(a_{1}, \ldots, a_{N}\right)$ of N different numbers $\quad N>m n$

 associate each a_{i} with $\left(x_{i}, y_{i}\right)$$x_{i}$: length of longest increasing subsequence ending at a_{i}
y_{i} : length of longest decreasing subsequence starting at a_{i}

$$
\forall i \neq j, \quad\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)
$$

assume
Cases.I: $a_{i}<a_{j} \quad \neg x_{i}<x_{j}$

$$
i<j \quad \text { Cases.2: } a_{i}>a_{j} \quad \underset{y}{ }>y_{j}
$$

$\left(a_{1}, \ldots, a_{N}\right)$ of N different numbers $\quad N>m n$

x_{i} : length of longest increasing subsequence ending at a_{i} " N pigeons" $\left(a_{1}, \ldots, a_{N}\right)$
y_{i} : length of longest decreasing subsequence starting at a_{i}
$\forall i \neq j, \quad\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$

"One pigeon per each hole."
No way to put N pigeons into $m n$ holes.
a_{i} is in hole $\left(x_{i}, y_{i}\right)$

Theorem (Erdős-Szekeres 1935)

A sequence of $>m n$ different numbers must contain either an increasing subsequence of length $m+1$, or a decreasing subsequence of length $n+1$.

$$
\left(a_{1}, \ldots, a_{N}\right) \quad N>m n
$$

x_{i} : length of longest increasing subsequence ending at a_{i}
y_{i} : length of longest decreasing subsequence starting at a_{i}

