Combinatorics

The Sieve Methods

尹一通 Nanjing University， 2023 Spring

PIE (Principle of Inclusion-Exclusion)

$$
\begin{aligned}
& |A \cup B|=|A|+|B|-|A \cap B| \\
& |A \cup B \cup C|=|A|+|B|+|C| \\
& \quad-|A \cap B|-|A \cap C|-|B \cap C| \\
& \quad+|A \cap B \cap C|
\end{aligned}
$$

PIE (Principle of Inclusion-Exclusion)

$$
\begin{aligned}
\left|\bigcup_{i=1}^{n} A_{i}\right|= & \sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+ \\
& \cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right| \\
= & \sum_{\substack{I \subseteq\{1, \ldots, n\} \\
I \neq \emptyset}}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right|
\end{aligned}
$$

PIE (Principle of Inclusion-Exclusion)

$$
A_{1}, A_{2}, \ldots, A_{n} \subseteq U \longleftarrow \text { universe }
$$

$$
\begin{gathered}
\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{n}}\right|=\left|U-\bigcup_{i=1}^{n} A_{i}\right| \\
=|U|-\sum_{\substack{I \subseteq\{1, \ldots, n\} \\
I \neq \emptyset}}(-1)^{|I|-1}\left|\bigcap_{i \in I} A_{i}\right| \\
A_{I}=\bigcap_{i \in I} A_{i} \quad A_{\emptyset}=U
\end{gathered}
$$

PIE (Principle of Inclusion-Exclusion)

$$
A_{1}, A_{2}, \ldots, A_{n} \subseteq U \longleftarrow \text { universe }
$$

$$
\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{n}}\right|=\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{|I|}\left|A_{I}\right|
$$

$$
\text { where } \quad A_{I}=\bigcap_{i \in I} A_{i} \quad A_{\emptyset}=U
$$

PIE (Principle of Inclusion-Exclusion)

$$
A_{1}, A_{2}, \ldots, A_{n} \subseteq U \longleftarrow \text { universe }
$$

$$
\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{n}}\right|=S_{0}-S_{1}+S_{2}+\cdots+(-1)^{n} S_{n}
$$

where $\quad S_{k}=\sum_{|I|=k}\left|A_{I}\right|$

$$
A_{I}=\bigcap_{i \in I} A_{i}
$$

$$
S_{0}=\left|A_{\emptyset}\right|=|U| \quad A_{\emptyset}=U
$$

Surjections

\# of

$$
\begin{aligned}
& f:[n] \xrightarrow{\text { onto }}[m] \\
& U=[n] \rightarrow[m] \quad A_{i}=[n] \rightarrow([m] \backslash\{i\}) \\
& \\
& \quad\left|\bigcap_{i \in[m]} \overline{A_{i}}\right|=\sum_{I \subseteq[m]}(-1)^{[I \mid}\left|A_{I}\right|
\end{aligned}
$$

$$
A_{I}=\bigcap_{i \in I} A_{i} \quad A_{\emptyset}=U
$$

Surjections

$$
\begin{array}{r}
U=[n] \rightarrow[m] \quad A_{i}=[n] \rightarrow([m] \backslash\{i\}) \\
A_{\emptyset}=U \quad A_{I}=\bigcap_{i \in I} A_{i}=[n] \rightarrow([m] \backslash I) \\
\left|\bigcap_{i \in[m]} \overline{A_{i}}\right|=A_{I} \mid=(m-|I|)^{n} \\
=\sum_{I \subseteq[m]}(-1)^{|I|}\left|A_{I}\right| \\
(-1)^{|I|}(m-|I|)^{n}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n} \\
=\sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k} k^{n}
\end{array}
$$

Surjections

$$
|[n] \xrightarrow{\text { onto }}[m]|=\sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k}^{n}
$$

$$
\left(f^{-1}(0), f^{-1}(1), \ldots, f^{-1}(m-1)\right)
$$ ordered m-partition of [n]

$$
\begin{aligned}
|[n] \xrightarrow{\text { onto }}[m]| & =m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \\
\left\{\begin{array}{c}
n \\
m
\end{array}\right\} & =\frac{1}{m!} \sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k} k^{n}
\end{aligned}
$$

Derangement

les problèmes des rencontrés:

Two decks, A and B, of cards:
The cards of A are laid out in a row, and those of B are placed at random, one at the top on each card of A.

What is the probability that no 2 cards are the same in each pair?

Derangement

permutation π of [n]

$$
\forall i \in[n], \quad \pi(i) \neq i
$$

"permutations with no fixed point" !n
$U=S_{n}$ symmetric group $A_{i}=\{\pi \mid \pi(i)=i\}$

$$
\left|\bigcap_{i \in[n]} \overline{A_{i}}\right|=\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|
$$

$$
A_{I}=\{\pi \mid \forall i \in I, \pi(i)=i\} \quad\left|A_{I}\right|=(n-|I|)!
$$

Derangement

$$
\begin{aligned}
& U=S_{n} \quad A_{i}=\{\pi \mid \pi(i)=i\} \\
& A_{I}=\{\pi \mid \forall i \in I, \pi(i)=i\} \quad\left|A_{I}\right|=(n-|I|)! \\
& =\bigcap_{i \in[n]} \overline{A_{i}}\left|=\sum_{I \subseteq[n]}(-1)^{|I|}\right| A_{I} \mid \\
& =\sum_{I \subseteq[n]}(-1)^{|I|}(n-|I|)!=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =n!\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right) \approx \frac{n!}{e}
\end{aligned}
$$

Permutations with restricted positions

permutation π of $[n]$
derangement: $\quad \forall i \in[n], \quad \pi(i) \neq i$
generally: $\quad \pi\left(i_{1}\right) \neq j_{1}, \pi\left(i_{2}\right) \neq j_{2}, \ldots$
forbidden positions $\quad B \subseteq[n] \times[n]$

$$
\forall i \in[n], \quad(i, \pi(i)) \notin B
$$

Chess board

permutation π of $[n]$

$$
\{(i, \pi(i)) \mid i \in[n]\}
$$

"A placement of non-attacking rooks"
forbidden positions $\quad B \subseteq[n] \times[n]$
derangement:

$$
B=\{(i, i) \mid i \in[n]\}
$$

Chess board

For a particular set of forbidden positions

$$
B \subseteq[n] \times[n]
$$

N_{0} :
the \# of placements of n non-attacking rooks?

Chess board

For a particular set of forbidden positions

$$
B \subseteq[n] \times[n]
$$

$r_{k}:$
\# of ways of placing k non-attacking rooks in B
N_{0} :
the \# of placements of n non-attacking rooks?

Chess board

\# of ways of placing k non-attacking rooks in B
N_{0} : \# of placements of n non-attacking rooks

$$
N_{0}=\sum_{k=0}^{n}(-1)^{k} r_{k}(n-k)!
$$

Derangement again

r_{k} : \# of ways of placing k non-attacking rooks in B

$$
\binom{n}{k}
$$

$$
\begin{aligned}
N_{0} & =\sum_{k=0}^{n}(-1)^{k} r_{k}(n-k)!=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}=n!\sum_{k=0}^{n}(-1)^{k} \frac{1}{k!} \quad \approx \frac{n!}{e}
\end{aligned}
$$

Problème des ménages

n couples sit around a table

- male-female alternative
- no one sit next to spouse

Problème des ménages

"Lady first!"
 2(n!) ways

"Gentlemen, please sit." permutation π of $[n$]
i : husband of the lady at the i-th position
$\pi(i)$: his seat $\quad \pi(i) \neq i$

$$
\pi(i) \quad \not \equiv i+1 \quad(\bmod n)
$$

Problème des ménages

$$
B=\{(i, i),(i,(i+1) \bmod n)\}
$$

\# of ways of placing k non-attacking rooks in B

Problème des ménages

$$
B=\{(i, i),(i,(i+1) \bmod n)\}
$$

\# of ways of choosing k r_{k} : non-consecutive points from a circle of $2 n$ points
$2 n$ objects in a circle
choose k
non-consecutive objects

m objects in a line

$L(m, k)$: choose k non-consecutive objects

choose k from $m-k+1$ space

$$
L(m, k)=\binom{m-k+1}{k}
$$

m objects in a circle

$C(m, k)$: choose k non-consecutive objects

$(m-k) C(m, k)$: 1.choose k non-consecutive objects from a circle
 2. mark one of the remaining objects

$m L(m-1, k)$: 1. mark one object in the circle, cut the circle by removing the object
2. choose k non-consecutive objects from the $m-1$ objects in a line

$$
\mathrm{C}(m, k)=\frac{m}{m-k}\binom{m-k}{k}
$$

Problème des ménages

$$
B=\{(i, i),(i,(i+1) \bmod n)\}
$$

r_{k} : \# of ways of choosing k non-consecutive points from a circle of $2 n$ points

$$
\frac{2 n}{2 n-k}\binom{2 n-k}{k}
$$

$$
\begin{aligned}
N_{0} & =\sum_{k=0}^{n}(-1)^{k} r_{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)!
\end{aligned}
$$

PIE (Principle of Inclusion-Exclusion)

$$
A_{1}, A_{2}, \ldots, A_{n} \subseteq U \longleftarrow \text { universe }
$$

$$
\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{n}}\right|=\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{|I|}\left|A_{I}\right|
$$

$$
A_{I}=\bigcap_{i \in I} A_{i} \quad A_{\emptyset}=U
$$

Inversion

$V: 2^{n}$-dimensional vector space of all mappings

$$
f: 2^{[n]} \rightarrow \mathbb{N}
$$

linear transformation $\phi: V \rightarrow V$

$$
\forall S \subseteq[n], \quad \phi f(S) \triangleq \sum_{\substack{T \supseteq S \\ T \subseteq[n]}} f(T)
$$

then its inverse:

$$
\forall S \subseteq[n], \quad \phi^{-1} f(S)=\sum_{\substack{T \supset S \\ T \subseteq[n]}}(-1)^{|T \backslash S|} f(T)
$$

$$
\begin{gathered}
\phi f(S) \triangleq \sum_{\substack{T \supseteq S \\
T \subseteq[n]}} f(T) \quad \phi^{-1} f(S)=\sum_{\substack{T \supseteq S \\
T \subseteq[n]}}(-1)^{|T \backslash S|} f(T) \\
A_{1}, A_{2}, \ldots, A_{n} \subseteq U \quad I \subseteq[n] \\
f_{=}(I)=\left|\left\{x \in U \mid \forall i \in I, x \in A_{i}, \forall j \notin I, x \notin A_{j}\right\}\right| \\
=\left|\left(\bigcap_{i \in I} A_{i}\right) \backslash\left(\bigcup_{j \notin I} A_{j}\right)\right| \\
f_{\geq}(I)=\sum_{\substack{J \supseteq I \\
J \subseteq[n]}} f_{=}(J)=\left|\bigcap_{i \in I} A_{i}\right|=\left|A_{I}\right| \\
\left|\bigcap_{i \in[n]} \overline{A_{i}}\right|=f_{=}(\emptyset)=\sum_{\substack{I \supseteq \emptyset \\
I \subseteq[n]}}(-1)^{|I \backslash \emptyset|} f_{\geq}(I)=\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|
\end{gathered}
$$

PIE (Principle of Inclusion-Exclusion)

$$
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

for $T \subseteq S$

$$
\sum_{T \subseteq I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=T \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\
0 & \text { otherwise }\end{cases} \\
A_{1}=A_{2}=\cdots=A_{n}=\{1\} \\
1=\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\
I \neq \emptyset}}(-1)^{|I|-1}\left|A_{I}\right| \\
A_{I}=\bigcap_{i \in I} A_{i}=\{1\}
\end{gathered}
$$

$$
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

$$
1=\sum_{\substack{I \subseteq\{1, \ldots, \ldots\}\} \\ I \neq \emptyset}}(-1)^{|I|-1}
$$

when $\{1,2, \ldots, n\} \neq \emptyset$

$$
\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{n-|I|}=0
$$

$$
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

$$
1=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\ I \neq \emptyset}}(-1)^{|I|-1}
$$

when $\{1,2, \ldots, n\} \neq \emptyset$

$$
\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{-|I|}=0
$$

$$
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

$$
1=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\ I \neq \emptyset}}(-1)^{|I|-1}
$$

when $\{1,2, \ldots, n\} \neq \emptyset$

$$
\sum_{I \subseteq\{1, \ldots, n\}}(-1)^{|I|}=0
$$

PIE

(Principle of Inclusion-Exclusion)

$$
\sum_{I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

for $T \subseteq S$

$$
\sum_{T \subseteq I \subseteq S}(-1)^{|S|-|I|}= \begin{cases}1 & S=T \\ 0 & \text { otherwise }\end{cases}
$$

Bipartite Perfect

bipartite graph
perfect matchings

$G([n],[n], E)$

permutation π of $[n] \quad$ s.t. $\quad(i, \pi(i)) \in E$ $n \times n$ matrix A :
$A_{i, j}= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}$
\# of P.M. in G

$$
=\sum_{\pi \in S_{n}} \prod_{i \in[n]} A_{i, \pi(i)}
$$

Permanent

$n \times n$ matrix A :

$$
\operatorname{perm}(A)=\sum_{\pi \in S_{n}} \prod_{i \in[n]} A_{i, \pi(i)}
$$

\#P-hard
determinant:

$$
\begin{array}{r}
\operatorname{det}(A)=\sum_{\pi \in S_{n}}(-1)^{r(\pi)} \prod_{i \in[n]} A_{i, \pi(i)} \\
\text { poly-time by Gaussian elimination }
\end{array}
$$

Ryser's formula

term in $: \prod A_{i, f(i)}$ for some $f:[n] \rightarrow[n]$

$$
T=f([n]) \subseteq I
$$

coefficient of $\prod_{i \in[n]} A_{i, f(i)}$ in :

$$
\sum_{T \subseteq I \subseteq[n]}(-1)^{n-|I|}= \begin{cases}1 & T=[n] \longleftarrow f \text { is a permutation } \\ 0 & \text { o.w. }\end{cases}
$$

Ryser's formula

$\mathrm{O}(n!)$ time
$\mathrm{O}\left(n 2^{n}\right)$ time

Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10	Prime numbers			
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13	17	19
31	32	33	34	35	36	37	38	39	40	23	29	31	37
41	42	43	44	45	46	47	48	49	50	59	61	67	71
51	52	53	54	55	56	57	58	59	60	73	79	83	89
61	62	63	64	65	66	67	68	69	70	97	101	103	107
71	72	73	74	75	76	77	78	79	80	109	113		
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

Euler Totient Function

prime decomposition: $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
$$

Euler Totient Function

$\phi(n)=|\{1 \leq a \leq n \mid \operatorname{gcd}(a, n)=1\}|$
prime decomposition: $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$
Universe: $U=\{1,2, \ldots, n\}$

$$
\begin{gathered}
i=1,2, \ldots, r \quad A_{i}=\left\{1 \leq a \leq n\left|p_{i}\right| a\right\} \\
I \subseteq\{1,2, \ldots, r\} \quad A_{I}=\left\{1 \leq a \leq n\left|\forall i \in I, p_{i}\right| a\right\} \\
\left|A_{i}\right|=\frac{n}{p_{i}} \quad\left|A_{I}\right|=\frac{n}{\prod_{i \in I} p_{i}} \\
\phi(n)=\left|\bigcap_{i \in\{1, \ldots, r\}} \overline{A_{i}}\right|=\sum_{I \subseteq\{1, \ldots, r\}}(-1)^{|I|}\left|A_{I}\right|
\end{gathered}
$$

Euler Totient Function

$\phi(n)=|\{1 \leq a \leq n \mid \operatorname{gcd}(a, n)=1\}|$
prime decomposition: $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$

$$
\begin{gathered}
I \subseteq\{1,2, \ldots, r\} \quad A_{I}=\left\{1 \leq a \leq n\left|\forall i \in I, p_{i}\right| a\right\} \\
\left|A_{I}\right|=\frac{n}{\prod_{i \in I} p_{i}} \\
\phi(n)=\sum_{I \subseteq\{1, \ldots, r\}}(-1)^{|I|}\left|A_{I}\right| \\
=n \sum_{k=0}^{r} \sum_{I \in(\{1, \ldots, r\})} \frac{(-1)^{|I|}}{\prod_{i \in I} p_{i}}=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
\end{gathered}
$$

Euler Totient Function

$$
\phi(n)=|\{1 \leq a \leq n \mid \operatorname{gcd}(a, n)=1\}|
$$

prime decomposition: $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
$$

