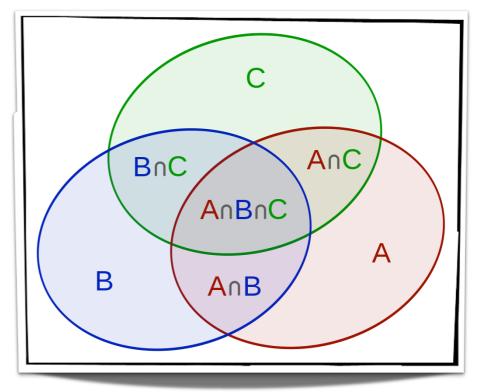
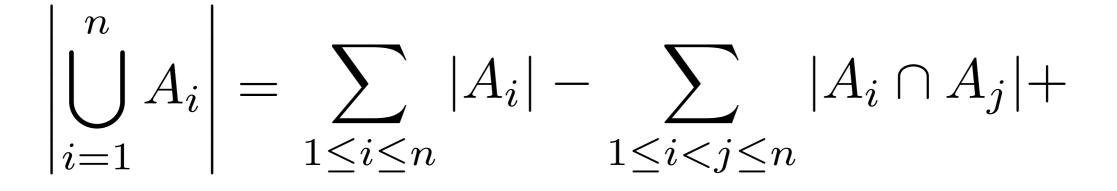
Combinatorics

The Sieve Methods

尹一通 Nanjing University, 2023 Spring

$$|A \cup B| = |A| + |B| - |A \cap B|$$
$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C|$$
$$+|A \cap B \cap C|$$





 $\cdots + (-1)^{n-1} |A_1 \cap \cdots \cap A_n|$

$$=\sum_{\substack{I\subseteq\{1,\ldots,n\}\\I\neq\emptyset}}(-1)^{|I|-1}\left|\bigcap_{i\in I}A_i\right|$$

$$A_1, A_2, \ldots, A_n \subseteq U \longleftarrow$$
universe

$$\overline{A_1} \cap \overline{A_2} \cap \cdots \overline{A_n} \Big| = \left| U - \bigcup_{i=1}^n A_i \right|$$
$$= \left| U \right| - \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|$$

$$A_I = \bigcap_{i \in I} A_i \qquad A_{\emptyset} = U$$

$$\left|\overline{A_1} \cap \overline{A_2} \cap \cdots \overline{A_n}\right| = \sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} |A_I|$$

where
$$A_I = \bigcap_{i \in I} A_i$$
 $A_{\emptyset} = U$

$$A_1, A_2, \ldots, A_n \subseteq U \longleftarrow$$
universe

$$\left|\overline{A_1} \cap \overline{A_2} \cap \cdots \overline{A_n}\right| = S_0 - S_1 + S_2 + \cdots + (-1)^n S_n$$

where
$$S_k = \sum_{|I|=k} |A_I|$$
 $A_I = \bigcap_{i \in I} A_i$
 $S_0 = |A_{\emptyset}| = |U|$ $A_{\emptyset} = U$

Surjections

of

$$f:[n] \xrightarrow{\text{onto}} [m]$$

$$U = [n] \to [m] \qquad A_i = [n] \to ([m] \setminus \{i\})$$

$$\left|\bigcap_{i\in[m]}\overline{A_i}\right| = \sum_{I\subseteq[m]} (-1)^{|I|} |A_I|$$

 $A_I = \bigcap_{i \in I} A_i \qquad A_{\emptyset} = U$

Surjections

$$U = [n] \rightarrow [m] \qquad A_i = [n] \rightarrow ([m] \setminus \{i\})$$

$$A_{\emptyset} = U \qquad A_I = \bigcap_{i \in I} A_i = [n] \rightarrow ([m] \setminus I)$$

$$|A_I| = (m - |I|)^n$$

$$\left| \bigcap_{i \in [m]} \overline{A_i} \right| = \sum_{I \subseteq [m]} (-1)^{|I|} |A_I|$$

$$= \sum_{I \subseteq [m]} (-1)^{|I|} (m - |I|)^n = \sum_{k=0}^m (-1)^k {m \choose k} (m - k)^n$$

$$= \sum_{k=1}^m (-1)^{m-k} {m \choose k} k^n$$

Surjections

$$\left| [n] \xrightarrow{\text{onto}} [m] \right| = \sum_{k=1}^{m} (-1)^{m-k} {m \choose k} k^n$$

$$(f^{-1}(0), f^{-1}(1), \dots, f^{-1}(m-1))$$

ordered *m*-partition of [*n*]

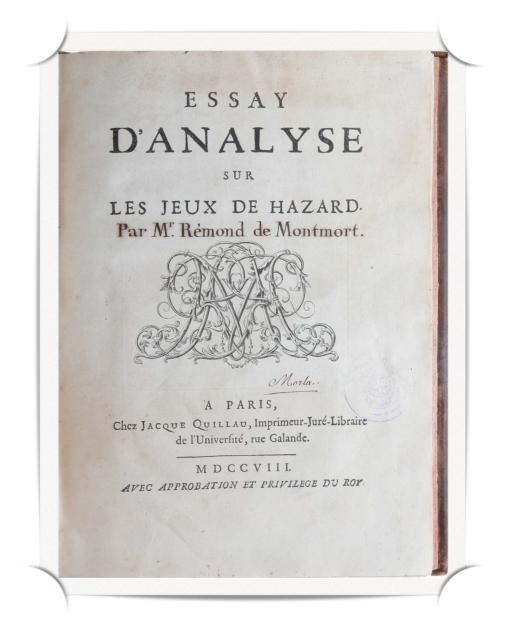
$$\begin{bmatrix} n \end{bmatrix} \xrightarrow{\text{onto}} [m] = m! \begin{Bmatrix} n \\ m \end{Bmatrix}$$
$$\begin{cases} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{k=1}^{m} (-1)^{m-k} \binom{m}{k} k^{n}$$

Derangement

les problèmes des rencontrés:

Two decks, *A* and *B*, of cards: The cards of *A* are laid out in a row, and those of *B* are placed at random, one at the top on each card of *A*.

What is the probability that no 2 cards are the same in each pair?



Derangement

permutation π of [n]

$$\forall i \in [n], \quad \pi(i) \neq i$$

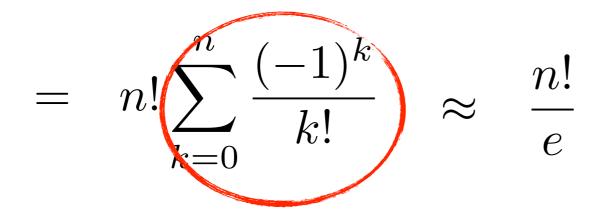
"permutations with no fixed point" !n

 $U = S_n \quad \text{symmetric group} \quad A_i = \{\pi \mid \pi(i) = i\}$ $\left| \bigcap_{i \in [n]} \overline{A_i} \right| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$ $A_I = \{\pi \mid \forall i \in I, \pi(i) = i\} \quad |A_I| = (n - |I|)!$

Derangement

 $U = S_n \qquad A_i = \{\pi \mid \pi(i) = i\}$ $A_I = \{\pi \mid \forall i \in I, \pi(i) = i\} \qquad |A_I| = (n - |I|)!$ $\left| \bigcap_{i \in [n]} \overline{A_i} \right| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$

$$= \sum_{I \subseteq [n]} (-1)^{|I|} (n - |I|)! = \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n - k)!$$

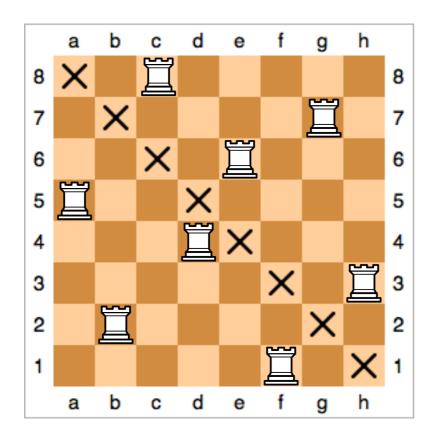


Permutations with restricted positions

permutation π of [n]derangement: $\forall i \in [n], \quad \pi(i) \neq i$

generally: $\pi(i_1) \neq j_1, \pi(i_2) \neq j_2, ...$

forbidden positions $B \subseteq [n] \times [n]$ $\forall i \in [n], (i, \pi(i)) \notin B$



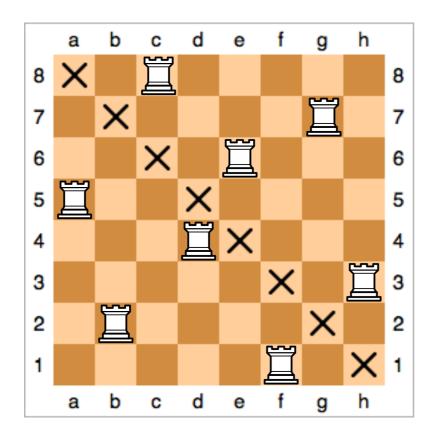
permutation π of [n] $\{(i, \pi(i)) \mid i \in [n]\}$

"A placement of non-attacking rooks"

forbidden positions $B \subseteq [n] \times [n]$

derangement:

$$B = \{(i,i) \mid i \in [n]\}$$

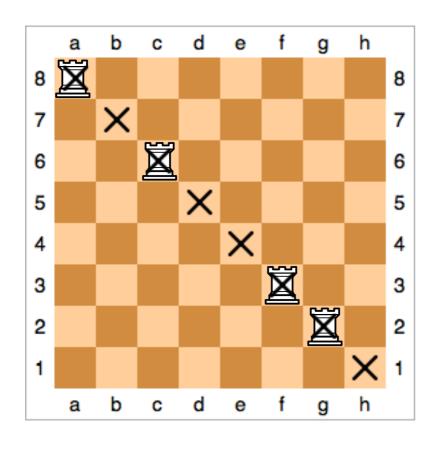


For a particular set of forbidden positions

 $B \subseteq [n] \times [n]$

 N_0 :

the # of placements of *n* non-attacking rooks?



For a particular set of forbidden positions

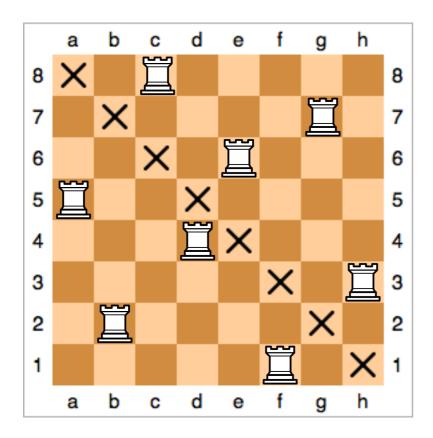
 $B \subseteq [n] \times [n]$

of ways of placing k non-attacking rooks in B

 N_0 :

the # of placements of n non-attacking rooks?

 r_k :



$$B \subseteq [n] \times [n]$$

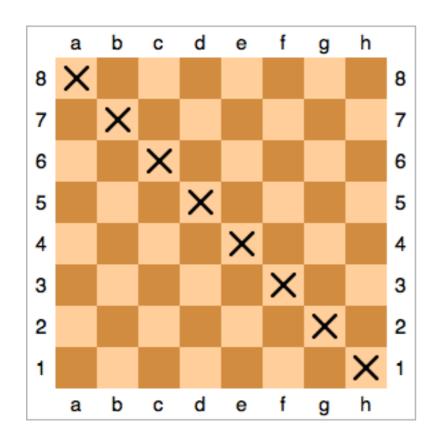
$$r_k:$$

of ways of placing k
non-attacking rooks in B

 N_0 : # of placements of *n* non-attacking rooks

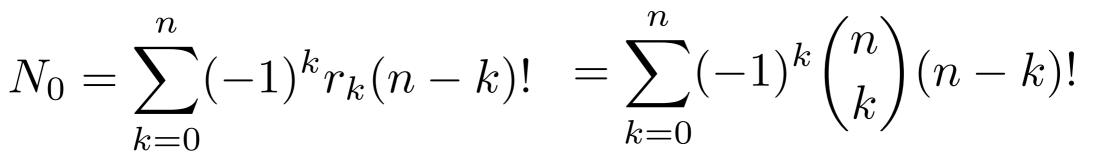
$$N_0 = \sum_{k=0}^{n} (-1)^k r_k (n-k)!$$

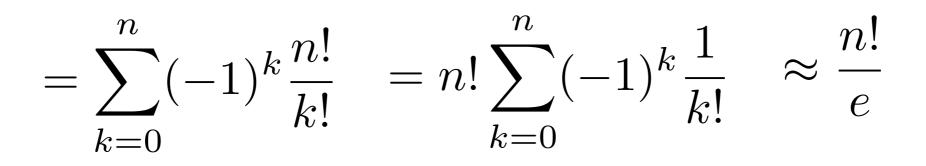
Derangement again

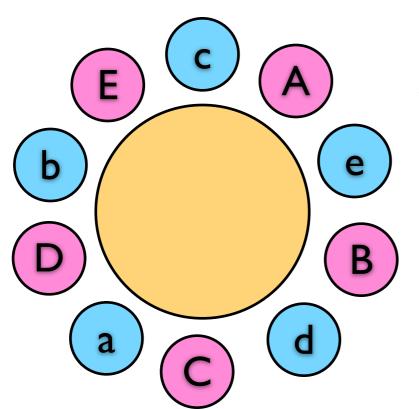


$$B = \{(i,i) \mid i \in [n]\}$$

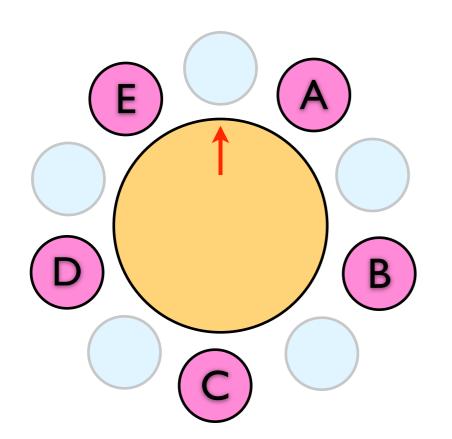
 r_k : # of ways of placing k non-attacking rooks in B







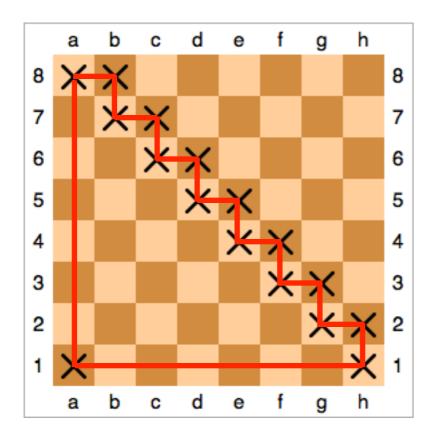
- n couples sit around a table
 - male-female alternative
 no one sit next to spouse



"Lady first!" 2(n!) ways "Gentlemen, please sit." permutation π of [n]

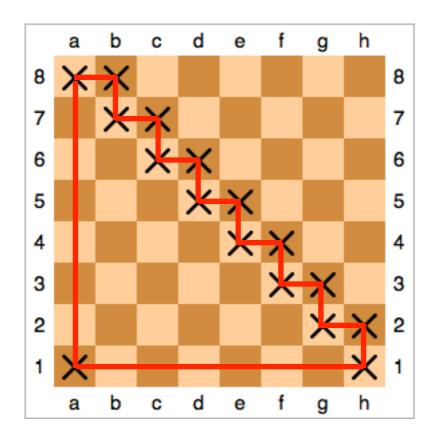
i : husband of the lady at the *i*-th position

 $\begin{aligned} \pi(i): \ \text{his seat} & \pi(i) \neq i \\ & \pi(i) \not\equiv i+1 \pmod{n} \end{aligned}$



$$B = \{(i, i), (i, (i + 1) \bmod n)\}\$$

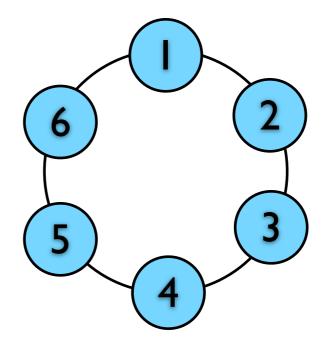
 r_k : # of ways of placing k non-attacking rooks in B



$$B = \{(i, i), (i, (i + 1) \bmod n)\}$$

of ways of choosing k r_k : non-consecutive points from a circle of 2n points

2n objects in a circle choose k non-consecutive objects



m objects in a line

L(*m*,*k*): choose *k* non-consecutive objects

m-k objects, *m-k*+1 space

choose k from m-k+1 space

$$L(m,k) = \binom{m-k+1}{k}$$

m objects in a circle

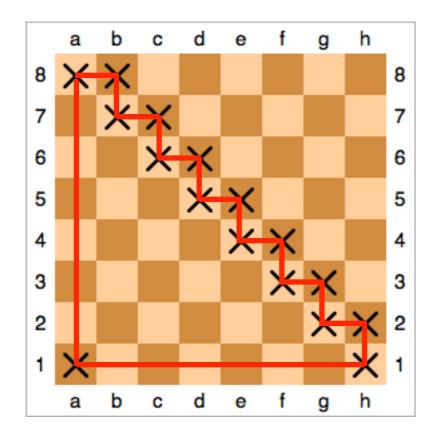
C(m,k): choose k non-consecutive objects

m L(*m*-1,*k*):

(m-k)C(m,k): 1. choose k non-consecutive objects from a circle 2. mark one of the remaining objects

> 1. mark one object in the circle, cut the circle by removing the object 2. choose k non-consecutive objects from the *m*-1 objects in a line

$$\mathbf{C}(\mathbf{m},\mathbf{k}) = \frac{m}{m-k} \binom{m-k}{k}$$



$$B = \{(i, i), (i, (i + 1) \bmod n)\}\$$

 r_k : # of ways of choosing k non-consecutive points from a circle of 2n points

$$\frac{2n}{2n-k}\binom{2n-k}{k}$$

$$N_0 = \sum_{k=0}^{n} (-1)^k r_k (n-k)!$$

$$=\sum_{k=0}^{n} (-1)^{k} \frac{2n}{2n-k} \binom{2n-k}{k} (n-k)!$$

 $A_1, A_2, \ldots, A_n \subseteq U \longleftarrow$ universe

$$\left|\overline{A_1} \cap \overline{A_2} \cap \cdots \overline{A_n}\right| = \sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} |A_I|$$

 $A_I = \bigcap_{i \in I} A_i \qquad A_{\emptyset} = U$

Inversion

V: 2^n -dimensional vector space of all mappings $f: 2^{[n]} \to \mathbb{N}$ linear transformation $\phi: V \to V$ $\forall S \subseteq [n], \qquad \phi f(S) \triangleq \sum f(T)$ $T \supseteq S \\ T \subseteq [n]$

then its inverse:

$$\forall S \subseteq [n], \quad \phi^{-1}f(S) = \sum_{\substack{T \supseteq S \\ T \subseteq [n]}} (-1)^{|T \setminus S|} f(T)$$

$$\begin{split} \phi f(S) &\triangleq \sum_{\substack{T \supseteq S \\ T \subseteq [n]}} f(T) \qquad \phi^{-1} f(S) = \sum_{\substack{T \supseteq S \\ T \subseteq [n]}} (-1)^{|T \setminus S|} f(T) \\ A_1, A_2, \dots, A_n \subseteq U \qquad I \subseteq [n] \\ f_{=}(I) &= |\{x \in U \mid \forall i \in I, x \in A_i, \forall j \notin I, x \notin A_j\}| \\ &= \left| \left(\bigcap_{i \in I} A_i \right) \setminus \left(\bigcup_{j \notin I} A_j \right) \right| \\ f_{\geq}(I) &= \sum_{\substack{J \supseteq I \\ J \subseteq [n]}} f_{=}(J) = \left| \bigcap_{i \in I} A_i \right| = |A_I| \\ &\left| \bigcap_{i \in [n]} \overline{A_i} \right| = |f_{=}(\emptyset)| = \sum_{\substack{I \supseteq \emptyset \\ I \subseteq [n]}} (-1)^{|I \setminus \emptyset|} f_{\geq}(I) = \sum_{\substack{I \subseteq [n]}} (-1)^{|I|} |A_I| \end{split}$$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

for $T \subseteq S$ $\sum_{T \subseteq I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = T \\ 0 & \text{otherwise} \end{cases}$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$A_1 = A_2 = \dots = A_n = \{1\}$$

$$1 = \left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|-1} |A_I|$$

$$A_I = \bigcap_{i \in I} A_i = \{1\}$$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$1 = \sum_{\substack{I \subseteq \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I|-1}$$

when
$$\{1, 2, \dots, n\} \neq \emptyset$$

$$\sum_{I \subseteq \{1, \dots, n\}} (-1)^{n - |I|} = 0$$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$1 = \sum_{\substack{I \subseteq \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I|-1}$$

when
$$\{1, 2, \ldots, n\} \neq \emptyset$$

$$\sum_{I \subseteq \{1, \dots, n\}} (-1)^{-|I|} = 0$$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$1 = \sum_{\substack{I \subseteq \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I|-1}$$

when
$$\{1, 2, \ldots, n\} \neq \emptyset$$

$$\sum_{I \subseteq \{1, \dots, n\}} (-1)^{|I|} = 0$$

$$\sum_{I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

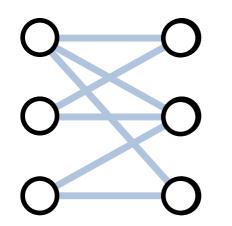
for
$$T \subseteq S$$

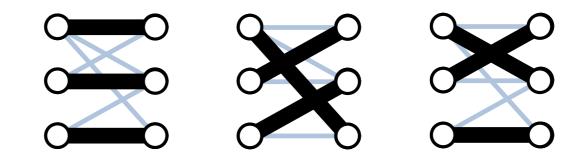
$$\sum_{T \subseteq I \subseteq S} (-1)^{|S| - |I|} = \begin{cases} 1 & S = T \\ 0 & \text{otherwise} \end{cases}$$

Bipartite Perfect

bipartite graph

perfect matchings





G([*n*],[*n*],*E*)

permutation π of [n] s.t. $(i, \pi(i)) \in E$ $n \times n$ matrix A: # of P.M. in G $A_{i,j} = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases} = \sum_{\pi \in S_n} \prod_{i \in [n]} A_{i,\pi(i)}$

Permanent

 $n \times n$ matrix A:

$$\operatorname{perm}(A) = \sum_{\pi \in S_n} \prod_{i \in [n]} A_{i,\pi(i)}$$

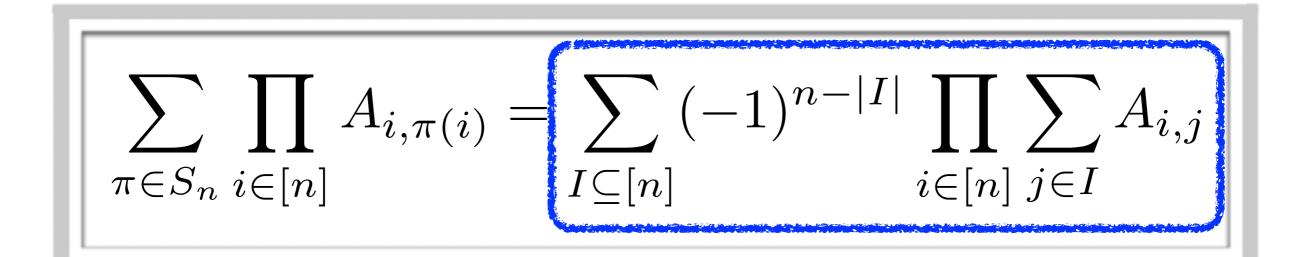
#P-hard

determinant:

$$\det(A) = \sum_{\pi \in S_n} (-1)^{r(\pi)} \prod_{i \in [n]} A_{i,\pi(i)}$$

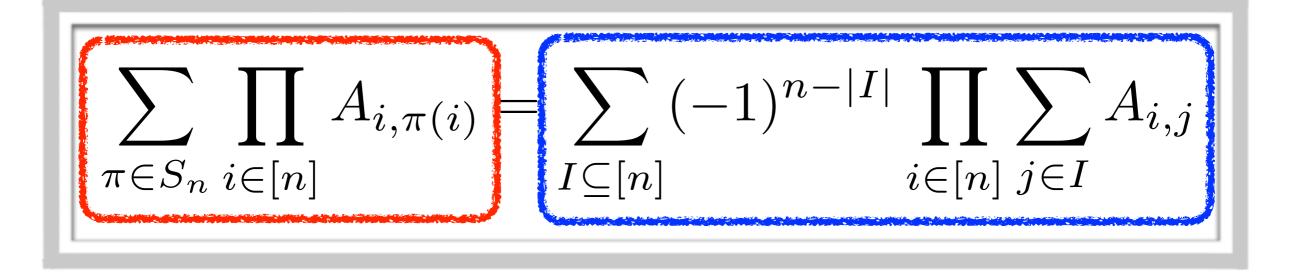
poly-time by Gaussian elimination

Ryser's formula



$$\begin{array}{ll} \text{term in} \bigodot : & \prod_{i \in [n]} A_{i,f(i)} & \text{for some } f:[n] \to [n] \\ & T = f([n]) & \subseteq I \\ \text{coefficient of } & \prod_{i \in [n]} A_{i,f(i)} & \text{in} & \bigcirc : \\ & \sum_{T \subseteq I \subseteq [n]} (-1)^{n-|I|} & = \begin{cases} 1 & T = [n] \twoheadleftarrow f \text{ is a permutation} \\ 0 & o.w. \end{cases} \end{array}$$

Ryser's formula



O(n!) time

 $O(n2^n)$ time

Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10	Prime numbers			
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13	17	19
31	32	33	34	35	36	37	38	39	40	23	29	31	37
										41	43	47	53
41	42	43	44	45	46	47	48	49	50	59	61	67	71
51	52	53	54	55	56	57	58	59	60	73	79	83	89
61	62	63	64	65	66	67	68	69	70	97	101	103	107
71	72	73	74	75	76	77	78	79	80	109	113		
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

 $\phi(n) : \# \{ d \leq k \} \}$

prime decomposition:
$$n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$

 $\phi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$

 $\phi(n) = |\{1 \le a \le n \mid gcd(a,n)=1 \}|$ prime decomposition: $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ Universe: $U = \{1, 2, ..., n\}$ $i = 1, 2, \dots, r$ $A_i = \{1 \le a \le n \mid p_i \mid a\}$ $I \subseteq \{1, 2, \dots, r\}$ $A_I = \{1 \le a \le n \mid \forall i \in I, p_i | a\}$ $|A_i| = \frac{n}{p_i} \qquad |A_I| = \frac{n}{\prod_{i \in I} p_i}$ $\phi(n) = \left| \bigcap_{i \in \{1, \dots, r\}} \overline{A_i} \right| = \sum_{I \subseteq \{1, \dots, r\}} (-1)^{|I|} |A_I|$

$$\phi(n) = |\{1 \le a \le n \mid \gcd(a, n) = 1\}|$$
prime decomposition: $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$

$$I \subseteq \{1, 2, \dots, r\} \quad A_I = \{1 \le a \le n \mid \forall i \in I, p_i | a\}$$

$$|A_I| = \frac{n}{\prod_{i \in I} p_i}$$

$$\phi(n) = \sum_{I \subseteq \{1, \dots, r\}} (-1)^{|I|} |A_I|$$

= $n \sum_{k=0}^r \sum_{I \in \binom{\{1, \dots, r\}}{k}} \frac{(-1)^{|I|}}{\prod_{i \in I} p_i} = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$

$$\phi(n) = |\{1 \le a \le n \mid \gcd(a,n) = 1\}|$$

prime decomposition:
$$n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$

 $\phi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$