Combinatorics The Probabilistic Method

尹一通 Nanjing University， 2023 Spring

The Probabilistic Method

Paul Erdős
(1913-1996)

Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

- For any edge-2-coloring of K_{6}, there is a monochromatic K_{3}.

Ramsey Theorem

If $n \geq R(k, k)$, for any edge-2-coloring of K_{n}, there is a monochromatic K_{k}.

Ramsey number: $R(k, k)$

Theorem (Erdős 1947)

If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$ then it is possible to color the edges of K_{n} with 2 colors so that there is no monochromatic K_{k} subgraph.

Each edge $e \in K_{n}$ is colored
with prob $1 / 2$
with prob 1/2

For any K_{k} subgraph:
$\operatorname{Pr}\left[\right.$ the K_{k} is monochromatic $]=\operatorname{Pr}\left[K_{k}\right.$ or $\left.K_{k}\right]$

$$
=2^{1-\binom{k}{2}}
$$

Theorem (Erdős 1947)

If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$ then it is possible to color the edges of K_{n} with 2 colors so that there is no monochromatic K_{k} subgraph.

Each edge $e \in K_{n}$ is colored
with prob $1 / 2$
with prob 1/2
$\operatorname{Pr}\left[\exists K_{k}\right.$ is monochromatic $] \leq\binom{ n}{k} 2^{1-\binom{k}{2}}<1$
$\Longrightarrow \operatorname{Pr}\left[\right.$ no K_{k} is monochromatic $]>0$
$\Longrightarrow \exists$ a 2-coloring of edges of K_{n} without monochromatic K_{k}

Tournament

$T(V, E)$
n players, each pair has a match. $u \rightarrow v$ iff u beats v.
k-paradoxical:
For every k-subset S of V, there is a player in $V \backslash S$ who
 beats all players in S.
"Does there exist a k-paradoxical tournament for every finite k ?"

Theorem (Erdős 1963)

If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then there is a k-paradoxical tournament of n players.

Pick a random tournament T on n players $[n]$.
Fixed any $S \in\binom{[n]}{k}$
Event A_{S} : no player in $V \backslash S$ beat all players in S.

$$
\operatorname{Pr}\left[A_{S}\right]=\left(1-2^{-k}\right)^{n-k}
$$

Theorem (Erdős 1963)

If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then there is a k-paradoxical tournament of n players.

Pick a random tournament T on n players $[n]$.
Event A_{S} : no player in $V \backslash S$ beat all players in S.

$$
\begin{gathered}
\forall S \in\binom{[n]}{k}: \quad \operatorname{Pr}\left[A_{S}\right]=\left(1-2^{-k}\right)^{n-k} \\
\operatorname{Pr}\left[\bigvee_{S \in\binom{[n]}{k}} A_{S}\right] \leq \sum_{S \in\binom{[n]}{k}}\left(1-2^{-k}\right)^{n-k}<1
\end{gathered}
$$

Theorem (Erdős 1963)

If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then there is a k-paradoxical tournament of n players.

Pick a random tournament T on n players $[n]$.
Event A_{S} : no player in $V \backslash S$ beat all players in S.
$\operatorname{Pr}[T$ is k-paradoxical $]=1-\operatorname{Pr}\left[\underset{S \in\binom{[n n)}{k}}{ } A_{S}\right]>0$

Theorem (Erdős 1963)

If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$ then there is a k-paradoxical tournament of n players.

Pick a random tournament T on n players $[n]$.

$$
\operatorname{Pr}[T \text { is } k \text {-paradoxical }]>0
$$

There is a k-paradoxical tournament on n players.

The Probabilistic Method

- Pick random ball from a box, $\operatorname{Pr}[$ the ball is blue $]>0$. \Rightarrow There is a blue ball.

- Define a probability space Ω, and a property P :

$$
\operatorname{Pr}[P(x)]>0
$$

$$
x
$$

$\Longrightarrow \exists$ a sample $x \in \Omega$ with property P.

Averaging Principle

- Average height of the students in class is l.
\Rightarrow There is a student of height $\geq l(\leq l)$

- For a random variable X,
- $\exists x \leq \mathrm{E}[X]$, such that $X=x$ is possible;
- $\exists x \geq \mathrm{E}[X]$, such that $X=x$ is possible.

Hamiltonian Paths in Tournament

Hamiltonian path:
a path visiting every vertex exactly once.

Theorem (Szele 1943)
There is a tournament on n players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Theorem (Szele 1943)

There is a tournament on n players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Pick a random tournament T on n players $[n]$.
For every permutation π of $[n]$,

$$
X_{\pi}= \begin{cases}1 & \pi \text { is a Hamiltonian path } \\ 0 & \pi \text { is not a Hamiltonian path }\end{cases}
$$

\# Hamiltonian paths: $\quad X=\sum_{\pi} X_{\pi}$

$$
\mathrm{E}\left[X_{\pi}\right]=\operatorname{Pr}\left[X_{\pi}=1\right]=2^{-(n-1)}
$$

Theorem (Szele 1943)

There is a tournament on n players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Pick a random tournament T on n players $[n]$.
\# Hamiltonian paths: $\quad X=\sum_{\pi} X_{\pi}$

$$
\begin{aligned}
& \mathrm{E}\left[X_{\pi}\right]=\operatorname{Pr}\left[X_{\pi}=1\right]=2^{-(n-1)} \\
& \mathrm{E}[X]=\sum_{\pi} \mathrm{E}\left[X_{\pi}\right]=n!2^{-(n-1)}
\end{aligned}
$$

Large Independent Set

- Graph $G(V, E)$
- independent set
$S \subseteq V$
- no adjacent vertices in S
- max independent set is NP-hard

Theorem: G has n vertices and m edges $\Rightarrow \exists$ an independent set S of size $\frac{n^{2}}{4 m}$

- Draw a random independent set $S \subseteq V$ (How?)
- each $v \in V$ is selected into a random set R independently with probability p (to be fixed later)
- for every $u v \in E$: delete one of u, v from R if $u, v \in R$
- the resulting set is an independent set S
- Show that $\mathbf{E}[|S|] \geq \frac{n^{2}}{4 m}$
$G(V, E): \quad n$ vertices, m edges

1. sample a random R : each vertex is chosen independently with probability p
2. modify R to S : independent set!

$$
\forall u v \in E \quad \text { if } u, v \in R
$$ delete one of u, v from R

$Y: ~ \# ~ o f ~ e d g e s ~ i n ~ R \quad Y=\sum_{u v \in E} Y_{u v} \quad Y_{u v}= \begin{cases}1 & u, v \in S \\ 0 & \text { o.w. }\end{cases}$
$\mathbf{E}[|S|] \geq \mathbf{E}[|R|-Y]=\mathbf{E}[|R|]-\mathbf{E}[Y]$
$\mathbf{E}[|R|]=n p \quad \mathbf{E}[Y]=\sum_{u v \in E} \mathbf{E}\left[Y_{u v}\right]=m p^{2}$
$G(V, E): \quad n$ vertices, m edges

1. sample a random R : each vertex is chosen independently with probability p
2. modify R to S : independent set!

$$
\forall u v \in E \quad \text { if } u, v \in R
$$ delete one of u, v from R

$$
\mathbf{E}[|S|] \geq n p-m p^{2}=\frac{n^{2}}{4 m}
$$

when $p=\frac{n}{2 m}$
$G(V, E): \quad n$ vertices, m edges $\quad \begin{gathered}\text { average } \\ \text { degree }\end{gathered} d=\frac{2 m}{n}$ random independent set S :

$$
\mathbf{E}[|S|] \geq \frac{n^{2}}{4 m}=\frac{n}{2 d}
$$

Theorem: G has n vertices and m edges $\exists \exists$ an independent set S of size $\frac{n^{2}}{4 m}$

Theorem: G has n vertices and m edges $\neg \exists$ an independent set S of size $\frac{n^{2}}{2 m+n}$

- Draw a random independent set $S \subseteq V$
- each $v \in V$ draws a real number $r_{v} \in[0,1]$ uniform and independent at random
- each $v \in V$ joins S iff r_{v} is local maximal within the neighborhood of v
- S must be an independent set
- $\forall v \in V: \operatorname{Pr}[v \in S]=\frac{1}{d_{v}+1} \Longrightarrow \mathbf{E}[|S|]=\sum_{v \in V} \frac{1}{d_{v}+1}$
(Cauchy-Schwarz) $\geq \frac{n^{2}}{2 m+n}$

Lovász Local Lemma

Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

- For any edge-2-coloring of K_{6}, there is a monochromatic K_{3}.

Ramsey Theorem

If $n \geq R(k, k)$, for any edge-2-coloring of K_{n}, there is a monochromatic K_{k}.

Ramsey number: $R(k, k)$

$$
R(k, k)>?
$$

" \exists a 2-coloring of K_{n} with no monochromatic K_{k}." The Probabilistic Method:
a random 2-coloring of K_{n}
$\forall S \in\binom{[n]}{k}$
event $A_{S}: S$ is a monochromatic K_{k}
To prove:

Lovász Sieve

- Bad events: $A_{1}, A_{2}, \ldots, A_{n}$
- None of the bad events occurs:

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right]
$$

- The probabilistic method: being good is possible

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right]>0
$$

events: $A_{1}, A_{2}, \ldots, A_{n}$
dependency graph: $D(V, E)$

$$
V=\{1,2, \ldots, n\}
$$

$i j \in E \leadsto A_{i}$ and A_{j} are dependent d : max degree of dependency graph

X_{1}, \ldots, X_{4} mutually independent
events: $A_{1}, A_{2}, \ldots, A_{n}$
d : max degree of dependency graph

Lovász Local Lemma

- $\forall i, \operatorname{Pr}\left[A_{i}\right] \leq p$
$-\mathrm{e} p(d+1) \leq 1$

General Lovász Local Lemma

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned}
$$

$$
\leadsto \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

$$
R(k, k) \geq n
$$

" \exists a 2-coloring of K_{n} with no monochromatic K_{k}." a random 2-coloring of K_{n} :
$\forall\{u, v\} \in K_{n}$, uniformly and independently $\left\{\begin{array}{l}u v \\ u v\end{array}\right.$
$\forall S \in\binom{[n]}{k}$ event $A_{S}: S$ is a monochromatic K_{k}

$$
\operatorname{Pr}\left[A_{S}\right]=2 \cdot 2^{-\binom{k}{2}}=2^{1-\binom{k}{2}}
$$

A_{S}, A_{T} dependent $\leadsto|S \cap T| \geq 2$
max degree of dependency graph $d \leq\binom{ k}{2}\binom{n}{k-2}$
To prove: $\operatorname{Pr}\left[\bigwedge_{S \in\binom{[n]}{k}} \overline{A_{S}}\right]>0$

Lovász Local Lemma

$$
\begin{aligned}
& \text { - } \forall i, \operatorname{Pr}\left[A_{i}\right] \leq p \\
& \text { - ep } p(d+1) \leq 1
\end{aligned} \quad \leadsto \operatorname{Pr}\left[\begin{array}{l}
n \\
i=1 \\
A_{i}
\end{array}\right]>0
$$

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[A_{S}\right]=2^{1-\binom{k}{2}} \\
d \leq\binom{ k}{2}\binom{n}{k-2}
\end{array}\right\} \measuredangle \begin{aligned}
& \text { for some } n=c k 2^{k / 2} \\
& \begin{array}{l}
\text { with constant } c \\
\mathrm{e} 2^{1-\binom{k}{2}}(d+1) \leq 1
\end{array}
\end{aligned}
$$

To prove: $\operatorname{Pr}\left[\bigwedge_{S \in\binom{(n)}{k}} \overline{A_{S}}\right]>0$

$$
R(k, k) \geq n=\Omega\left(k 2^{k / 2}\right)
$$

events: $A_{1}, A_{2}, \ldots, A_{n}$

General Lovász Local Lemma

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned} \quad \checkmark \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\overline{A_{i}} \mid \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]=\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left[A_{i} \mid \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]\right)
$$

Lemma For any $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$, $\operatorname{Pr}\left[\bigwedge_{i=1}^{n} \mathcal{E}_{i}\right]=\prod_{k=1}^{n} \operatorname{Pr}\left[\mathcal{E}_{k} \mid \bigwedge_{i<k} \mathcal{E}_{i}\right]$.
proof:
recursion!
events: $A_{1}, A_{2}, \ldots, A_{n}$

General Lovász Local Lemma

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned} \quad \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

I.H.

$$
\operatorname{Pr}\left[A_{i_{1}} \mid \overline{A_{i_{2}}} \cdots \overline{A_{i_{m}}}\right] \leq x_{i_{1}} \text { for any }\left\{i_{1}, \ldots, i_{m}\right\}
$$

induction on m :

$$
m=1, \text { trivial }
$$

events: $A_{1}, A_{2}, \ldots, A_{n}$

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned}
$$

I.H. $\operatorname{Pr}\left[A_{i_{1}} \mid \overline{A_{i_{2}}} \cdots \overline{A_{i_{m}}}\right] \leq x_{i_{1}}$ for any $\left\{i_{1}, \ldots, i_{m}\right\}$ suppose i_{1} adjacent to i_{2}, \ldots, i_{k}

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i_{1}} \mid \overline{A_{i_{2}}} \cdots \overline{A_{i_{m}}}\right]=\frac{\operatorname{Pr}\left[A_{i_{1}} \overline{A_{i_{2}}} \cdots \overline{A_{i_{k}}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_{m}}}\right]}{\operatorname{Pr}\left[\overline{A_{i_{2}}} \cdots \overline{A_{i_{k}}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_{m}}}\right]} \\
& \leq \operatorname{Pr}\left[A_{i_{1}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_{m}}}\right]=\operatorname{Pr}\left[A_{i_{1}}\right] \leq x_{i_{1}}^{k} \prod_{j=2}^{k}\left(1-x_{\left.i_{j}\right)}\right) \\
& =\prod_{j=2}^{k} \operatorname{Pr}\left[\overline{A_{i_{j}}} \mid \overline{A_{i_{j+1}}} \cdots \overline{A_{i_{m}}}\right]=\prod_{j=2}^{k}\left(1-\operatorname{Pr}\left[A_{i_{j}} \mid \overline{\left.\left.A_{i_{j+1}} \cdots \overline{A_{i_{m}}}\right]\right)}\right.\right. \\
& \text { I.H. } \geq \prod_{j=2}^{k}\left(1-x_{i_{j}}\right)
\end{aligned}
$$

events: $A_{1}, A_{2}, \ldots, A_{n}$

General Lovász Local Lemma

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned} \quad \checkmark \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i_{1}} \mid \overline{A_{i_{2}}} \cdots \overline{A_{i_{m}}}\right] \leq x_{i_{1}} \text { for any }\left\{i_{1}, \ldots, i_{m}\right\} \\
& \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\overline{A_{i}} \mid \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]=\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left[A_{i} \mid \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]\right) \\
& \geq \prod_{i=1}^{n}\left(1-x_{i}\right)>0
\end{aligned}
$$

events: $A_{1}, A_{2}, \ldots, A_{n}$
d : max degree of dependency graph

Lovász Local Lemma

- $\forall i, \operatorname{Pr}\left[A_{i}\right] \leq p$
$-\mathrm{e} p(d+1) \leq 1$

General Lovász Local Lemma

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n} \in[0,1) \\
& \forall i, \operatorname{Pr}\left[A_{i}\right] \leq x_{i} \prod_{j \sim i}\left(1-x_{j}\right)
\end{aligned}
$$

$$
\leadsto \operatorname{Pr}\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] \geq \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

Constraint Satisfaction Problem (CSP)

- Variables: $x_{1}, \ldots, x_{n} \in[q]$
- (local) Constraints: C_{1}, \ldots, C_{m}
- each C_{i} is defined on a subset $\mathrm{vbl}\left(C_{i}\right)$ of variables

$$
C_{i}:[q]^{\mathrm{vbl}\left(C_{i}\right)} \rightarrow\{\text { True, False }\}
$$

- Any $\boldsymbol{x} \in[q]^{n}$ is a CSP solution if it satisfies all C_{1}, \ldots, C_{m}
- Examples:
- k-CNF, (hyper)graph coloring, set cover, unique games...
- vertex cover, independent set, matching, perfect matching, ...

Hypergraph Coloring

- k-uniform hypergraph $H=(V, E)$:
- V is vertex set, $E \subseteq\binom{V}{k}$ is set of hyperedges
- degree of vertex $v \in V$: \# of hyperedges $e \ni v$

- proper q-coloring of H :
- $f: V \rightarrow[q]$ such that no hyperedge is monochromatic

$$
\forall e \in E, \quad|f(e)|>1
$$

Theorem: For any k-uniform hypergraph H of max-degree Δ,

$$
\Delta \leq \frac{q^{k-1}}{\mathrm{e} k} \Longrightarrow H \text { is } q \text {-colorable }
$$

$k \geq \log _{q} \Delta+\log _{q} \log _{q} \Delta+O(1)$

Hypergraph Coloring

Theorem: For any k-uniform hypergraph H of max-degree Δ,

$$
\Delta \leq \frac{q^{k-1}}{\mathrm{e} k} \Longrightarrow H \text { is } q \text {-colorable }
$$

- Uniformly and independently color each $v \in V$ a random color $\in[q]$
- Bad event A_{e} for each hyperedge $e \in E \subseteq\binom{V}{k}: e$ is monochromatic
- $\operatorname{Pr}\left[A_{e}\right] \leq p=q^{1-k}$
- Dependency degree for bad events $d \leq k(\Delta-1)$
- $\Delta \leq \frac{q^{k-1}}{\mathrm{e} k} \Longrightarrow \mathrm{e} p(d+1) \leq 1 \quad$ Apply LLL

