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Ramsey Number

• For any edge-2-coloring of , 
there is a monochromatic .

K6
K3

“In any party of six people, either at least three of them are mutual 
strangers or at least three of them are mutual acquaintances”

Ramsey Theorem 
If , for any edge-
2-coloring of , there is a 
monochromatic .

n ≥ R(k, k)
Kn

Kk

Ramsey number: R(k, k)



Theorem (Erdős 1947) 
If  then it is possible to color 
the edges of  with 2 colors so that there is 
no monochromatic  subgraph.

(n
k) ⋅ 21−(k

2) < 1
Kn

Kk

Each edge  is colored e ∈ Kn { 
 with prob 1/2

with prob 1/2

For any  subgraph:Kk




                         

Pr[the Kk is monochromatic] = Pr[Kk or Kk]

= 21−(k
2)



Theorem (Erdős 1947) 
If  then it is possible to color 
the edges of  with 2 colors so that there is 
no monochromatic  subgraph.

(n
k) ⋅ 21−(k

2) < 1
Kn

Kk

Each edge  is colored e ∈ Kn { 
 with prob 1/2

with prob 1/2

Pr[∃Kk is monochromatic] ≤ (n
k)21−(k

2) < 1
  ⟹ Pr[no Kk is monochromatic] > 0

  a 2-coloring of edges of  without monochromatic ⟹ ∃ Kn Kk



Tournament

 players, each pair has a match.

 iff  beats .

n
u → v u v

-paradoxical:k
For every -subset  of , 

there is a player in  who 
beats all players in .

k S V
V∖S

S

T(V, E)

“Does there exist a -paradoxical tournament for every finite ?”k k



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pick a random tournament  on  players .T n [n]

Fixed any S ∈ ([n]
k )

Event :  no player in  beat all players in .AS V∖S S

Pr[AS ] =
�
1� 2�k

⇥n�k



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pr[AS ] =
�
1� 2�k

⇥n�k

< 1Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ ⇥
�

S⇥([n]
k )

(1� 2�k)n�k

Pick a random tournament  on  players .T n [n]
Event :  no player in  beat all players in .AS V∖S S

∀S ∈ ([n]
k ) :



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

< 1Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅

Pr[T is k-paradoxical] = 1� Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

Pick a random tournament  on  players .T n [n]
Event :  no player in  beat all players in .AS V∖S S



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pr[T is k-paradoxical] > 0

There is a -paradoxical tournament on  players.k n

Pick a random tournament  on  players .T n [n]



The Probabilistic Method

• Pick random ball from a box, 
Pr[the ball is blue]>0.

⇒ There is a blue ball.

• Define a probability space Ω, and a property P:

  a sample  with property .

Pr
x

[P(x)] > 0

⟹ ∃ x ∈ Ω P



• Average height of the students in class is l.

⇒ There is a student of height ≥ l  ( ≤ l ) 

Averaging Principle

min
maxavg

• For a random variable X,

• ∃ x ≤ E[X], such that X = x is possible;
• ∃ x ≥ E[X], such that X = x is possible.



Hamiltonian Paths in Tournament

There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

Hamiltonian path:
a path visiting every

vertex exactly once.



There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

For every permutation  of ,π [n]
 is a Hamiltonian pathπ
 is not a Hamiltonian pathπ

X� =
�

1

0

X =
�

�
X�# Hamiltonian paths:

E[X�] = Pr[X� = 1] = 2�(n�1)

Pick a random tournament  on  players .T n [n]



There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

E[X�] = Pr[X� = 1] = 2�(n�1)

E[X ] =
�

�
E[X�] = n!2�(n�1)

Pick a random tournament  on  players .T n [n]

X =
�

�
X�# Hamiltonian paths:



Large Independent Set

• Graph 


• independent set 



• no adjacent 
vertices in 


• max independent set 
is NP-hard

G(V, E)

S ⊆ V

S



 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

4m

• Draw a random independent set 


• each  is selected into a random set  
independently with probability  (to be fixed later)


• for every : delete one of  from  if 



• the resulting set is an independent set 

S ⊆ V
v ∈ V R

p
uv ∈ E u, v R

u, v ∈ R
S

(How?)

• Show that E[ |S | ] ≥
n2

4m



:    vertices,   edgesG(V, E) n m

1. sample a random  :  R each vertex is chosen 

independently with probability p

2. modify  to  :R S
    if ∀uv ∈ E u, v ∈ R

delete one of  from  u, v R

independent set!

:  # of edges in Y R Yuv =

(
1 u, v 2 S

0 o.w.
Y =

X

uv2E

Yuv

E[ |S | ] ≥ E[ |R | − Y] = E[ |R | ] − E[Y]

E[ |R | ] = np = ∑
uv∈E

E[Yuv]E[Y] = mp2



p =
n

2m

=
n2

4m

when

:    vertices,   edgesG(V, E) n m

1. sample a random  :  R each vertex is chosen 

independently with probability p

2. modify  to  :R S
    if ∀uv ∈ E u, v ∈ R

delete one of  from  u, v R

independent set!

E[ |S | ] ≥ np − mp2



random independent set :S

average 
degree d =

2m

n

=
n

2d

 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

4m

E[ |S | ] ≥
n2

4m

:    vertices,   edgesG(V, E) n m



 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

2m + n

• Draw a random independent set 


• each  draws a real number  
uniform and independent at random


• each  joins  iff  is local maximal within 
the neighborhood of 


•  must be an independent set

S ⊆ V
v ∈ V rv ∈ [0,1]

v ∈ V S rv
v

S

• :   ∀v ∈ V Pr[v ∈ S] =
1

dv + 1
⟹ E[ |S | ] = ∑

v∈V

1
dv + 1

≥
n2

2m + n
(Cauchy-Schwarz)



Lovász Local Lemma



Ramsey Number

• For any edge-2-coloring of , 
there is a monochromatic .

K6
K3

“In any party of six people, either at least three of them are mutual 
strangers or at least three of them are mutual acquaintances”

Ramsey Theorem 
If , for any edge-
2-coloring of , there is a 
monochromatic .

n ≥ R(k, k)
Kn

Kk

Ramsey number: R(k, k)



“∃ a 2-coloring of   with no monochromatic .”Kn Kk

The Probabilistic Method:

a random 2-coloring of Kn

⇥S �
�[n]

k

⇥

event  :   is a monochromatic AS S Kk

Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

To prove:

Dependency!

R(k,k) > ?



Lovász Sieve 

• Bad events:


• None of the bad events occurs:


• The probabilistic method: being good is possible

A1, A2, . . . , An

Pr

�
n⇤

i=1
Ai

⇥

Pr

�
n⇤

i=1
Ai

⇥

> 0



A1

A2

A3

A4A5 mutually independentX1, . . . , X4

A1(X1, X4)
A2(X1, X2)
A3(X2, X3)

A4(X4)
A5(X3)

events:   A1, A2, …, An

 :  max degree of dependency graph d

dependency graph: D(V, E)
V = {1,2,…, n}

ij ∈ E  and  are dependentAi Aj



Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An

 :  max degree of dependency graph d



a random 2-coloring of  :Kn

⇥S �
�[n]

k

⇥

Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

R(k,k) ≥ n

, uniformly and independently∀{u, v} ∈ Kn

� uv
uv

  dependentAS, AT |S ⇥ T | � 2

To prove:

Pr[AS ] = 2 · 2�(k
2) = 21�(k

2)

max degree of dependency graph d ⇥
�

k

2

⇥�
n

k � 2

⇥

“∃ a 2-coloring of   with no monochromatic .”Kn Kk

event AS :  S is a monochromatic Kk



Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0To prove:

Pr[AS ] = 21�(k
2)

d ⇥
�

k

2

⇥�
n

k � 2

⇥

Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

�

R(k,k) ≥ n = �(k2k/2)

for some

e21�(k
2) (d + 1) � 1

with constant c
n = ck2k/2



Pr

�
n⌅

i=1
Ai

⇥

=
n⇤

i=1
Pr

�

Ai

⇧⇧⇧⇧
i�1⌅

j=1
A j

⇥

=
n⌅

i=1

⌥

1�Pr

⇥

Ai

⌃⌃⌃⌃
i�1⇧

j=1
A j

⇤�

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

For any E1, E2, . . . , En,

Pr

�
n⌅

i=1

Ei

⇥
=

n⇤

k=1

Pr

�
Ek |

⌅

i<k

Ei

⇥
.

Lemma proof:
Pr

�
n⇤

i=1

Ei

⇥

Pr

�
n�1⇤

i=1

Ei

⇥Pr

⇥
En

���
n�1⌅

i=1

Ei

⇤

=

recursion!

events:   A1, A2, …, An



{i1, . . . , im}for any

induction on :m

I.H.

, trivialm = 1

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

Pr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

events:   A1, A2, …, An



I.H.

Pr
�

Ai1 | Ai2 · · · Aim

⇥
=

Pr
�

Ai1 Ai2 · · · Aik | Aik+1 · · · Aim

⇥

Pr
�

Ai2 · · · Aik | Aik+1 · · · Aim

⇥

suppose  adjacent to i1 i2, …, ik

� Pr
�

Ai1 | Aik+1 · · · Aim

⇥
= Pr

�
Ai1

⇥

I.H.

=
kY

j=2
Pr

h
Ai j | Ai j+1 · · · Aim

i

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)

9x1, . . . , xn 2 [0, 1)

{i1, . . . , im}for anyPr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

 xi1

kY

j=2

(1� xij )

=
kY

j=2

≥
1°Pr

h
Ai j | Ai j+1 · · · Aim

i¥

�
kY

j=2

(1� xij )

events:   A1, A2, …, An



Pr

�
n⌅

i=1
Ai

⇥

=
n⇤

i=1
Pr

�

Ai

⇧⇧⇧⇧
i�1⌅

j=1
A j

⇥

=
n⌅

i=1

⌥

1�Pr

⇥

Ai

⌃⌃⌃⌃
i�1⇧

j=1
A j

⇤�

> 0

{i1, . . . , im}for anyPr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

∏
nY

i=1
(1°xi )

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An



Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An

 :  max degree of dependency graph d



• Variables: 


• (local) Constraints: 


• each  is defined on a subset  of variables


 


• Any  is a CSP solution if it satisfies all 


• Examples:


• -CNF,  (hyper)graph coloring, set cover, unique games… 


• vertex cover, independent set, matching, perfect matching, …

x1, …, xn ∈ [q]

C1, …, Cm

Ci 𝗏𝖻𝗅(Ci)

Ci : [q]𝗏𝖻𝗅(Ci) → {𝚃𝚛𝚞𝚎, 𝙵𝚊𝚕𝚜𝚎}

x ∈ [q]n C1, …, Cm

k

Constraint Satisfaction Problem (CSP)



Hypergraph Coloring
• -uniform hypergraph :


•  is vertex set,  is set of hyperedges


• degree of vertex :  # of hyperedges 


• proper -coloring of :


•  such that no hyperedge is monochromatic


k H = (V, E)
V E ⊆ (V

k )
v ∈ V e ∋ v

q H
f : V → [q]

∀e ∈ E, | f(e) | > 1

k ≥ logq Δ + logq logq Δ + O(1)

Theorem:   For any -uniform hypergraph  of max-degree ,


  is -colorable

k H Δ

Δ ≤
qk−1

ek
⟹ H q



Hypergraph Coloring

• Uniformly and independently color each  a random color 


• Bad event  for each hyperedge :  is monochromatic


• 


• Dependency degree for bad events 


•

v ∈ V ∈ [q]

Ae e ∈ E ⊆ (V
k ) e

Pr[Ae] ≤ p = q1−k

d ≤ k(Δ − 1)

Δ ≤ qk−1

ek ⟹ ep(d + 1) ≤ 1 Apply LLL

Theorem:   For any -uniform hypergraph  of max-degree ,


  is -colorable

k H Δ

Δ ≤
qk−1

ek
⟹ H q


