Combinatorics

Extremal Graph Theory

尹一通 Nanjing University， 2024 Spring

Extremal Combinatorics

"how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions"

Extremal Problem:

"What is the largest number of edges that an n-vertex cycle-free graph can have?"

$$
(n-1)
$$

Extremal Graph:

spanning tree

Triangle-Freeness

Triangle-free graph

contains no \AA as subgraph
Example: bipartite graph

$|E|$ is maximized for complete balanced bipartite graph Extremal?

Mantel's Theorem

Theorem (Mantel 1907)
If $G(V, E)$ has $|V|=n$ and is triangle-free,
then $|E| \leq \frac{n^{2}}{4}$.

For n is even, extremal graph:

$$
K_{\frac{n}{2}, \frac{n}{2}}
$$

Ω_{-}-free $\Longrightarrow|E| \leq n^{2} / 4$

First Proof. Induction on n.
Basis: $n=1,2$. trivial
Induction Hypothesis: for any $n<N$

$$
|E|>\frac{n^{2}}{4} \Longrightarrow G \supseteq \AA
$$

Induction step: for $n=N$

Ω_{-}-free $\Longrightarrow|E| \leq n^{2} / 4$

Second Proof.

Ω_{0}-free

$$
\underset{v}{\lessgtr} \frac{\left(d_{u}+d_{v}\right)}{v} \underset{\Downarrow}{\wp} \Longrightarrow d_{u}+d_{v} \leq n, \quad \forall u v \in E
$$

Double counting: $\sum_{v \in V} d_{v}^{2}=\sum_{u v \in E}\left(d_{u}+d_{v}\right) \leq n|E|$
Cauchy-Schwarz
(handshaking)

$$
\begin{gathered}
n^{2}|E| \geq n \sum_{v \in V} d_{v}^{2}=\left(\sum_{v \in V} 1^{2}\right)\left(\sum_{v \in V} d_{v}^{2}\right) \geq\left(\sum_{v \in V} d_{v}\right)^{2}=4|E|^{2} \\
\Longrightarrow|E| \leq n^{2} / 4
\end{gathered}
$$

Ω_{-}-free $\Longrightarrow|E| \leq n^{2} / 4$

Third Proof.

A : maximum independent set $\quad \alpha=|A|$

$$
\forall v \in V, \quad d_{v} \leq \alpha
$$

$B=V \backslash A \quad B$ incident to all edges $\quad \beta=|B|$
Inequality of the arithmetic and geometric mean

$$
|E| \leq \sum_{v \in B} d_{v} \leq \alpha \beta \leq\left(\frac{\alpha+\beta}{2}\right)^{2}=\frac{n^{2}}{4}
$$

Turán's Theorem

Turán's Theorem

"Suppose G is a K_{r}-free graph. What is the largest number of edges that G can have?"

Theorem (Turán 1941)

If $G(V, E)$ has $|V|=n$ and is K_{r}-free, then

$$
|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$

$$
K_{2,2,3}
$$

Turán graph $T(n, r)$:

$$
T(n, r)=K_{n_{1}, n_{2}, \ldots, n_{r}}
$$

where $n_{1}+\cdots+n_{r}=n$ and $n_{i} \in\left\{\left\lfloor\frac{n}{r}\right\rfloor,\left\lceil\frac{n}{r}\right\rceil\right\}$

Turán graph $T(n, r)$:

$$
T(n, r)=K_{n_{1}, n_{2}, \ldots, n_{r}}
$$

where $n_{1}+\cdots+n_{r}=n$ and $n_{i} \in\left\{\left\lfloor\frac{n}{r}\right\rfloor,\left\lceil\frac{n}{r}\right\rceil\right\}$
$T(n, r-1)$ has no K_{r}

$$
\begin{aligned}
|T(n, r-1)| & \leq\binom{ r-1}{2}\left(\frac{n}{r-1}\right)^{2} \\
& =\frac{r-2}{2(r-1)} n^{2}
\end{aligned}
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

First Proof. (Induction)

Basis: $n=1,2, \ldots, r-1$.
Induction Hypothesis: true for any $n<N$ Induction step: for $n=N$, suppose G is maximum K_{r}-free

$$
B 00 \cdots \quad 0
$$

$$
\exists(r-1) \text {-clique }
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

First Proof. (Induction)

 suppose G is maximum K_{r}-free(r-1)-clique I.H.: $|E(B)| \leq \frac{r-2}{2(r-1)}(n-r+1)^{2}$
A - $\quad K_{r}$-free \Longrightarrow no $u \in B \sim$ all $v \in A$
$\mathrm{B} \circ \circ \cdots \quad \mathrm{O} \quad \Longrightarrow|E(A, B)| \leq(r-2)(n-r+1)$

$$
\begin{aligned}
|E| & =|E(A)|+|E(B)|+|E(A, B)| \\
& \leq\binom{ r-1}{2}+\frac{r-2}{2(r-1)}(n-r+1)^{2}+(r-2)(n-r+1) \\
& =\frac{r-2}{2(r-1)} n^{2}
\end{aligned}
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Second Proof. (weight shifting)

Assign each vertex v a weight $w_{v}>0$ s.t. $\sum_{v \in V} w_{v}=1$ Evaluate $S(\vec{w})=\sum_{u v \in E} w_{u} w_{v}$

$$
\begin{aligned}
& \text { Let } W_{u}=\sum_{v \sim u} w_{v} \quad \text { For } u \nsim v \text { that } W_{u} \geq W_{v} \\
& \left(w_{u}+\epsilon\right) W_{u}+\left(w_{v}-\epsilon\right) \geq w_{u} W_{u}+w_{v} W_{v}
\end{aligned}
$$

shifting all weight of v to $u \Longrightarrow S(\vec{w})$ non-decreasing
$S(\vec{w})$ is maximized \Longrightarrow all weights on a clique

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Second Proof. (weight shifting)

Assign each vertex v a weight $w_{v}>0$ s.t. $\sum w_{v}=1$
Evaluate $S(\vec{w})=\sum_{u v \in E} w_{u} w_{v} \leq\binom{ r-1}{2} \frac{1}{(r-1)^{2}}{ }^{v \in V}$
$S(\vec{w})$ is maximized \Longrightarrow all weights on a clique

$$
\begin{aligned}
\text { when all } w_{v} & =\frac{1}{n} \\
\qquad(\vec{w}) & =\sum_{u v \in E} w_{u} w_{v}=\frac{|E|}{n^{2}}
\end{aligned}
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof. (The probabilistic method)

 clique number $\omega(G)$: size of the largest clique$$
\omega(G) \geq \sum_{v \in V} \frac{1}{n-d_{v}}
$$ random permutation π of V

$$
S=\left\{v \left\lvert\, \begin{array}{c}
\left.\pi_{u}<\pi_{v} \Longrightarrow u \sim v\right\} \\
\text { is a clique }
\end{array}\right.\right.
$$

Linearity of expectation:

$$
\begin{aligned}
\mathbb{E}[|S|]=\sum_{v \in V} \operatorname{Pr}[v \in S] & \geq \sum_{v \in V} \operatorname{Pr}\left[\forall u \nsim v: \pi_{u} \geq \pi_{v}\right] \\
& =\sum_{v \in V} \frac{1}{n-d_{v}}
\end{aligned}
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Third Proof. (The probabilistic method)

$$
\omega(G) \geq \sum_{v \in V} \frac{1}{n-d_{v}}
$$

Cauchy-Schwarz

$$
\begin{aligned}
n=\sum_{v \in V} 1 & \leq\left(\sum_{v \in V} \frac{1}{n-d_{v}}\right)\left(\sum_{v \in V}\left(n-d_{v}\right)\right) \\
& \leq \omega(G) \sum_{v \in V}\left(n-d_{v}\right)=(r-1)\left(n^{2}-2|E|\right) \\
& \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
\end{aligned}
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

By contradiction.
Case. $1 \quad d_{w}<d_{u}$ or $d_{w}<d_{v}$
duplicate u, delete w, still K_{r}-free

$$
\left|E^{\prime}\right|=|E|+d_{u}-d_{w}>|E|
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

Case. $2 d_{w} \geq d_{u} \wedge d_{w} \geq d_{v}$ delete u, v, duplicate w, twice still K_{r}-free

$$
\left|E^{\prime}\right|=|E|+2 d_{w}-\left(d_{u}+d_{v}-1\right)>|E|
$$

$$
K_{r} \text {-free } \Longrightarrow|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Fourth Proof.

Suppose G is K_{r}-free with maximum edges.
G does not have

$u \nsim v$ is an equivalence relation
G is a complete multipartite graph
optimize $K_{n_{1}, n_{2}, \ldots, n_{r-1}}$
subject to $n_{1}+n_{2}+\cdots+n_{r}=n$

Turán's Theorem (clique)

If $G(V, E)$ has $|V|=n$ and is K_{r}-free, then

$$
|E| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Turán's Theorem (independent set)
If $G(V, E)$ has $|V|=n$ and $|E|=m$, then
G has an independent set of size

$$
\geq \frac{n^{2}}{2 m+n}
$$

Parallel Max

- compute max of n distinct numbers
- computation model: parallel, comparison-based
- 1-round algorithm: $\binom{n}{2}$ comparisons of all pairs
- lower bound for one-round:
- $\binom{n}{2}$ comparisons are required in the worst case
adversary argument

Parallel Max

- 2-round algorithm:
- divide n numbers into k groups of n / k each
- 1st round: find max of each group;
$k\binom{n / k}{2}$ comparisons
- 2nd round: find the max of the k maxes
$\binom{k}{2}$ comparisons
- total comparisons: $\quad k\binom{n / k}{2}+\binom{k}{2}=O\left(n^{4 / 3}\right)$
for $k=n^{2 / 3}$
3 -round?
optimal?

1st round:

Alg: m comparisons
choose an independent set

$$
\text { of size } \geq \frac{n^{2}}{2 m+n} \text { (Turán) }
$$

make them local maximal

2nd round:

a parallel max problem of size $\geq \frac{n^{2}}{2 m+n}$
requires $\geq\binom{\frac{n^{2}}{2 m+n}}{2}$ comparisons
total comparisons $\geq m+\binom{\frac{n^{2}}{2 m+n}}{2}=\Omega\left(n^{4 / 3}\right)$

Fundamental Theorem of Extremal Graph Theory

Extremal Graph Theory

Fix a graph H.

$$
\operatorname{ex}(n, H)
$$

largest possible number of edges
of $G \nsupseteq H$ on n vertices

$$
\operatorname{ex}(n, H)=\max _{\substack{G \nexists H \\|V(G)|=n}}|E(G)|
$$

Turán's Theorem

$$
\operatorname{ex}\left(n, K_{r}\right)=|T(n, r-1)| \leq \frac{r-2}{2(r-1)} n^{2}
$$

Erdős-Stone theorem

(Fundamental theorem of extremal graph theory)

$$
\begin{aligned}
& K_{s}^{r}=K_{s} \underbrace{s, s, \cdots, s}_{r}=T(r s, r) \\
& \begin{array}{c}
\text { complete } r \text {-partite graph } \\
\text { with } s \text { vertices in each part }
\end{array}
\end{aligned}
$$

Theorem (Erdős-Stone 1946)

$$
\operatorname{ex}\left(n, K_{s}^{r}\right)=\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
$$

Theorem (Erdős-Stone 1946)

$$
\operatorname{ex}\left(n, K_{s}^{r}\right)=\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
$$

ex $(n, H) /\binom{n}{2}$ extremal density of subgraph H

Corollary

For any nonempty graph H

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$\chi(H)=r$
$H \nsubseteq T(n, r-1)$ for any n

$$
\operatorname{ex}(n, H) \geq|T(n, r-1)|
$$

$H \subseteq K_{s}^{r}$ for sufficiently large s

$$
\begin{aligned}
\operatorname{ex}(n, H) & \leq \operatorname{ex}\left(n, K_{s}^{r}\right) \\
& =\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

$$
\begin{aligned}
& \chi(H)=r \\
& |T(n, r-1)| \leq \operatorname{ex}(n, H) \leq\left(\frac{r-2}{2(r-1)}+o(1)\right) n^{2} \\
& \frac{r-2}{r-1}-o(1) \leq \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} \leq \frac{r-2}{r-1}+o(1)
\end{aligned}
$$

Cycles

Girth

girth $g(G)$: length of the shortest cycle in G

Theorem

If $G(V, E)$ has $|V|=n$ and girth $g(G) \geq 5$,

$$
\text { then }|E| \leq \frac{1}{2} n \sqrt{n-1}
$$

$$
g(G) \geq 5<\sim \Omega-\text { and !马-free }
$$

$$
g(G) \geq 5 \Rightarrow|E| \leq \frac{1}{2} n \sqrt{n-1}
$$

disjoint sets

$$
\begin{gathered}
(d+1)+\left(d\left(v_{1}\right)-1\right)+\cdots+\left(d\left(v_{d}\right)-1\right) \leq n \\
\sum_{v: v \sim u} d(v) \leq n-1
\end{gathered}
$$

$$
g(G) \geq 5 \Rightarrow|E| \leq \frac{1}{2} n \sqrt{n-1}
$$

$$
\begin{array}{r}
\forall u \in V, \quad \sum_{v: v \sim u} d(v) \leq n-1 \\
\left.\quad \geqslant \bigcirc_{u}^{\left(d_{u}+d_{v}\right)}\right)_{v}^{-6-} \\
n(n-1) \geq \sum_{u \in V} \sum_{v: v \sim u} d(v)=\sum_{v \in V} d(v)^{2} \\
\geq \frac{\left(\sum_{v \in V} d(v)\right)^{2}}{n}=\frac{4|E|^{2}}{n}
\end{array}
$$

Cauchy-Schwarz

Hamiltonian Cycle

Dirac's Theorem

$\forall v \in V, d_{v} \geq \frac{n}{2} \Rightarrow G(V, E)$ is Hamiltonian.

By contradiction, suppose G is the maximum non-Hamiltonian graph with $\forall v \in V, d_{v} \geq \frac{n}{2}$ adding 1 edge \Longrightarrow Hamiltonian
\exists a Hamiltonian path

$$
\text { say } v_{1} v_{2} \cdots v_{n}
$$

G is non-Hamiltonian

$$
\forall v \in V, d_{v} \geq \frac{n}{2}
$$

\exists a Hamiltonian path

$$
v_{1} v_{2} \cdots v_{n}
$$

$\left\{i \mid v_{i+1} \sim v_{1}\right\}$

$$
\geq \frac{n}{2}+\frac{n}{2} \text { pigeons in }\{1,2, \ldots, n-1\}
$$

Contradiction!

