Combinatorics

Extremal Graph Theory

尹一通 Nanjing University, 2024 Spring

Extremal Combinatorics

"how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions" **Extremal Problem:**

"What is the largest number of edges that an *n*-vertex cycle-free graph can have?"

$$(n - 1)$$

Extremal Graph:

spanning tree

Triangle-Freeness

Triangle-free graph

contains no \triangle as subgraph

Example: bipartite graph

|*E*| is maximized for complete balanced bipartite graph Extremal?

Mantel's Theorem

Theorem (Mantel 1907) If G(V, E) has |V| = n and is triangle-free, then $|E| \le \frac{n^2}{4}$.

For *n* is even, extremal graph: $K_{\frac{n}{2},\frac{n}{2}}$

 \bigtriangleup -free \Longrightarrow $|E| \le n^2/4$

First Proof. Induction on *n*.

Basis: n = 1,2. trivial Induction Hypothesis: for any n < N $|E| > \frac{n^2}{4} \implies G \supseteq \triangle$ Induction step: for n = Ndue to I.H. $|E(B)| \le (n-2)^2/4$ A |E(A,B)| = |E| - |E(B)| - 1B |E(A,B)| = |E| - |E(B)| - 1 $> \frac{n^2}{4} - \frac{(n-2)^2}{4} - 1 = n - 2$ pigeonhole!

Second Proof. ________--free

$$\sum_{u}^{(d_u+d_v)} \bigvee_{v}$$

Double counting:

$$\sum_{v \in V} d_v^2 = \sum_{uv \in E} (d_u + d_v) \le n |E|$$

 $\implies d_{\mu} + d_{\nu} \le n, \quad \forall uv \in E$

Cauchy-Schwarz

(handshaking)

$$n^{2} |E| \ge n \sum_{v \in V} d_{v}^{2} = \left(\sum_{v \in V} 1^{2}\right) \left(\sum_{v \in V} d_{v}^{2}\right) \ge \left(\sum_{v \in V} d_{v}\right)^{2} = 4 |E|^{2}$$

 $\implies |E| \le n^2/4$

Third Proof.

A: maximum independent set $\alpha = |A|$ $\downarrow v$ $\downarrow v$ $\downarrow v$ $\downarrow v$ $\downarrow v$ $\downarrow v$ $\downarrow v \in V, d_v \leq \alpha$ $B = V \setminus A$ B incident to all edges $\beta = |B|$ $\downarrow v$ $\downarrow u$ $\downarrow v \in V, d_v \leq \alpha$

$$|E| \le \sum_{v \in B} d_v \le \alpha\beta \le \left(\frac{\alpha + \beta}{2}\right)^2 = \frac{n^2}{4}$$

Turán's Theorem

Paul Turán (1910-1976)

Turán's Theorem

"Suppose G is a K_r -free graph. What is the largest number of edges that G can have?"

Theorem (Turán 1941) If G(V, E) has |V| = n and is K_r -free, then $|E| \le \frac{r-2}{2(r-1)}n^2$ Complete multipartite graph K_{n_1,n_2,\ldots,n_r}

Turán graph T(n, r):

$$T(n,r) = K_{n_1,n_2,\ldots,n_r}$$

where $n_1 + \dots + n_r = n$ and $n_i \in \left\{ \left\lfloor \frac{n}{r} \right\rfloor, \left\lceil \frac{n}{r} \right\rceil \right\}$

Turán graph T(n, r):

$$T(n, r) = K_{n_1, n_2, \dots, n_r}$$

where $n_1 + \dots + n_r = n$ and $n_i \in \left\{ \left\lfloor \frac{n}{r} \right\rfloor, \left\lceil \frac{n}{r} \right\rceil \right\}$

$$\begin{split} T(n,r-1) & \text{has no } K_r \\ |T(n,r-1)| \leq \binom{r-1}{2} \left(\frac{n}{r-1}\right)^2 \\ &= \frac{r-2}{2(r-1)} n^2 \end{split}$$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

First Proof. (Induction)

Basis:
$$n = 1, 2, ..., r - 1$$
.

Induction Hypothesis: true for any n < NInduction step: for n = N, suppose *G* is maximum K_r -free

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

First Proof. (Induction) suppose G is maximum K_r -free (r-1)-clique I.H.: $|E(B)| \le \frac{r-2}{2(r-1)}(n-r+1)^2$ A K_r -free \Longrightarrow no $u \in B \sim \text{all } v \in A$ B $\bullet \cdots \bullet \Rightarrow |E(A,B)| \le (r-2)(n-r+1)$

$$\begin{split} |E| &= |E(A)| + |E(B)| + |E(A,B)| \\ &\leq \binom{r-1}{2} + \frac{r-2}{2(r-1)}(n-r+1)^2 + (r-2)(n-r+1) \\ &= \frac{r-2}{2(r-1)}n^2 \end{split}$$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Second Proof. (weight shifting)

Assign each vertex v a weight $w_v > 0$ s.t. $\sum w_v = 1$ $v \in V$ Evaluate $S(\vec{w}) = \sum w_u w_v$ $uv \in E$ Let $W_u = \sum w_v$ For $u \not\sim v$ that $W_u \ge W_v$ $v \sim u$ $(w_{\mu} + \epsilon)W_{\mu} + (w_{\nu} - \epsilon) \ge w_{\mu}W_{\mu} + w_{\nu}W_{\nu}$ shifting all weight of v to $u \Longrightarrow S(\vec{w})$ non-decreasing $S(\vec{w})$ is maximized \implies all weights on a clique

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Second Proof. (weight shifting)

Assign each vertex v a weight $w_v > 0$ s.t. $\sum w_v = 1$ Evaluate $S(\vec{w}) = \sum w_u w_v \le {\binom{r-1}{2}} \frac{1}{(r-1)^2}^{v \in V}$ $uv \in E$ $S(\vec{w})$ is maximized \implies all weights on a clique when all $w_v =$ n $S(\vec{w}) = \sum w_u w_v = \frac{|E|}{m^2}$ $uv \in E$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Third Proof. (The probabilistic method) clique number $\omega(G)$: size of the largest clique

$$\omega(G) \ge \sum_{v \in V} \frac{1}{n - d_v}$$

random permutation
$$\pi$$
 of V
 $S = \{ v \mid \pi_u < \pi_v \implies u \sim v \}$
is a clique

Linearity of expectation:

$$\mathbb{E}[|S|] = \sum_{v \in V} \Pr[v \in S] \ge \sum_{v \in V} \Pr[\forall u \nsim v : \pi_u \ge \pi_v]$$
$$= \sum_{v \in V} \frac{1}{n - d_v}$$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Third Proof. (The probabilistic method)

$$\omega(G) \ge \sum_{v \in V} \frac{1}{n - d_v}$$

Cauchy-Schwarz

$$n = \sum_{v \in V} 1 \le \left(\sum_{v \in V} \frac{1}{n - d_v}\right) \left(\sum_{v \in V} (n - d_v)\right)$$
$$\le \omega(G) \sum_{v \in V} (n - d_v) = (r - 1)(n^2 - 2|E|)$$
(handshaking)
$$\implies |E| \le \frac{r - 2}{2(r - 1)}n^2$$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Fourth Proof.

Suppose G is K_r -free with maximum edges.

By contradiction. **Case.1** $d_w < d_u$ or $d_w < d_v$ duplicate u, delete w, still K_r -free

 $|E'| = |E| + d_u - d_w > |E|$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Fourth Proof.

Suppose G is K_r -free with maximum edges.

Case.2 $d_w \ge d_u \land d_w \ge d_v$ delete u, v, duplicate w, twice still K_r -free

 $|E'| = |E| + 2d_w - (d_u + d_v - 1) > |E|$

$$K_r$$
-free $\Longrightarrow |E| \le \frac{r-2}{2(r-1)}n^2$

Fourth Proof.

Suppose G is K_r -free with maximum edges.

 $u \not\sim v$ is an equivalence relation

G is a complete multipartite graph

optimize $K_{n_1,n_2,\ldots,n_{r-1}}$ subject to $n_1 + n_2 + \cdots + n_r = n$

Turán's Theorem (clique)

If G(V, E) has |V| = n and is K_r -free, then

$$|E| \le \frac{r-2}{2(r-1)}n^2$$

Turán's Theorem (independent set) If G(V, E) has |V| = n and |E| = m, then G has an independent set of size $\geq \frac{n^2}{2m+n}$

Parallel Max

- compute max of *n* distinct numbers
 - computation model: parallel, comparison-based
- 1-round algorithm: $\binom{n}{2}$ comparisons of all pairs
- lower bound for one-round:
 - $\binom{n}{2}$ comparisons are required in the worst case

Parallel Max

- 2-round algorithm:
 - divide n numbers into k groups of n/k each
 - **1st round**: find max of each group; $\binom{n/k}{2}$ comparisons
 - 2nd round: find the max of the k maxes $\binom{k}{2}$ comparisons
- total comparisons:

3-round?

$$k \binom{n/k}{2} + \binom{k}{2} = O\left(n^{4/3}\right)$$

for $k = n^{2/3}$
optimal?

1st round:

Alg: *m* comparisons

choose an independent set of size $\geq \frac{n^2}{2m+n}$ (Turán)

make them local maximal

2nd round:

a parallel max problem of size $\geq \frac{n^2}{2m+n}$ requires $\geq \left(\frac{n^2}{2m+n}\right)$ comparisons

total comparisons $\geq m + \begin{pmatrix} \frac{n^2}{2m+n} \\ 2 \end{pmatrix} = \Omega(n^{4/3})$

Fundamental Theorem of Extremal Graph Theory

Extremal Graph Theory

Fix a graph H.

ex(n, H)

largest possible number of edges of $G \not\supseteq H$ on n vertices

$$\exp(n, H) = \max_{\substack{G \not\supseteq H \\ |V(G)| = n}} |E(G)|$$

Erdős–Stone theorem

(Fundamental theorem of extremal graph theory)

$$K_s^r = K_{\underbrace{s, s, \cdots, s}_r} = T(rs, r)$$

complete *r*-partite graph with *s* vertices in each part

Theorem (Erdős–Stone 1946) $ex(n, K_s^r) = \left(\frac{r-2}{2(r-1)} + o(1)\right) n^2$

Theorem (Erdős–Stone 1946)

$$ex(n, K_s^r) = \left(\frac{r-2}{2(r-1)} + o(1)\right)n^2$$

 $ex(n, H)/{\binom{n}{2}}$ extremal density of subgraph H

$$\lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} = \frac{\chi(H) - 2}{\chi(H) - 1}$$

$$\begin{split} \chi(H) &= r \\ H \not\subseteq T(n, r-1) \text{ for any } n \\ &= x(n, H) \geq |T(n, r-1)| \\ H \subseteq K_s^r \text{ for sufficiently large } s \\ &= x(n, H) \leq ex(n, K_s^r) \\ &= \left(\frac{r-2}{2(r-1)} + o(1)\right) n^2 \end{split}$$

$$\lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} = \frac{\chi(H) - 2}{\chi(H) - 1}$$

$$\chi(H) = r$$

$$|T(n, r-1)| \le \exp(n, H) \le \left(\frac{r-2}{2(r-1)} + o(1)\right) n^2$$

$$\frac{r-2}{r-1} - o(1) \le \frac{\exp(n, H)}{\binom{n}{2}} \le \frac{r-2}{r-1} + o(1)$$

Girth

girth g(G): length of the shortest cycle in G

$$g(G) \ge 5 \implies |E| \le \frac{1}{2}n\sqrt{n-1}$$

$$u = d(u)$$

$$disjoint sets$$

$$(d+1) + (d(v_1) - 1) + \dots + (d(v_d) - 1) \le n$$

$$\sum d(v) \le n - 1$$

 $v:v \sim u$

$$g(G) \ge 5 \implies |E| \le \frac{1}{2}n\sqrt{n-1}$$

$$\forall u \in V, \quad \sum_{v:v \sim u} d(v) \le n-1$$

Cauchy-Schwarz

Hamiltonian Cycle

Dirac's Theorem
$$\forall v \in V, \ d_v \geq \frac{n}{2} \Rightarrow G(V, E)$$
 is Hamiltonian.

By contradiction, suppose *G* is the maximum non-Hamiltonian graph with $\forall v \in V, d_v \geq \frac{n}{2}$

adding 1 edge \implies Hamiltonian

∃ a Hamiltonian path

say $v_1v_2\cdots v_n$

G is non-Hamiltonian

3 a Hamiltonian path

$$\forall v \in V, \ d_v \geq \frac{n}{2}$$

 $v_1v_2\cdots v_n$

 $\geq \frac{n}{2} + \frac{n}{2}$ pigeons in $\{1, 2, \dots, n-1\}$

Contradiction!