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Combinatorics
Extremal Graph Theory



Extremal Combinatorics

“how large or how small a collection of finite 
objects can be, if it has to satisfy certain 

restrictions”



“What is the largest number of edges that

an -vertex cycle-free graph can have?”n

Extremal Problem:

Extremal Graph:

(n − 1)

spanning tree



Triangle-Freeness



Triangle-free graph

contains no  as subgraph

Example:  bipartite graph

 is maximized for

complete balanced bipartite graph

|E |

Extremal?



Mantel’s Theorem

Theorem (Mantel 1907)
If  has  and is triangle-free, 


then .

G(V, E) |V | = n

|E | ≤
n2

4

For  is even,

extremal graph:


n

K n
2 , n

2



Induction on .n

Induction Hypothesis:   for any n < N

Induction step:  for n = N

Basis:    trivialn = 1,2.

-free  ⟹ |E | ≤ n2/4

     |E | >
n2

4
⟹ G ⊇

First Proof.

A

B

due to I.H.  |E(B) | ≤ (n − 2)2/4

pigeonhole!

|E(A, B) | = |E | − |E(B) | − 1

>
n2

4
−

(n − 2)2

4
− 1 = n − 2



Second Proof.

u v

(du + dv)

Cauchy-Schwarz

-free

(handshaking)

-free  ⟹ |E | ≤ n2/4

(∑
v∈V

12) (∑
v∈V

d2
v ) ≥ (∑

v∈V

dv)
2

= 4 |E |2

 ,   ⟹ du + dv ≤ n ∀uv ∈ E

∑
uv∈E

(du + dv) ≤ n |E |Double counting:   ∑
v∈V

d2
v =

⟹

n∑
v∈V

d2
v =n2 |E | ≥

|E | ≤ n2/4⟹



Third Proof.
:  maximum independent setA

B = V \ A

α = |A|

β = |B|

v

⇤ ⇥� ⌅
dv

independent ⇤v ⇥ V, dv � �

B

 incident to all edgesB

� �⇥ �
�

� + ⇥

2

⇥2

|E| �
�

v�B

dv =
n2

4

Inequality of the arithmetic and geometric mean

-free  ⟹ |E | ≤ n2/4



Turán’s  
Theorem

Paul Turán

(1910-1976)



Turán’s Theorem

Theorem (Turán 1941)
If  has  and is -free, thenG(V, E) |V | = n Kr

|E | ≤
r − 2

2(r − 1)
n2

“Suppose  is a  -free graph.

What is the largest number of 

edges that  can have?”

G Kr

G



K2,2,3

Complete multipartite graph Kn1,n2,…,nr

Turán graph :T(n, r)
T(n, r) = Kn1,n2,…,nr

where   and  n1 + ⋯ + nr = n ni ∈ {⌊ n
r ⌋, ⌈ n

r ⌉}



 has no  T(n, r − 1) Kr

|T (n, r � 1)| ⇥
�

r � 1
2

⇥�
n

r � 1

⇥2

=
r � 2

2(r � 1)
n2

Turán graph :T(n, r)
T(n, r) = Kn1,n2,…,nr

where   and  n1 + ⋯ + nr = n ni ∈ {⌊ n
r ⌋, ⌈ n

r ⌉}



First Proof. (Induction)

Induction Hypothesis:  true for any n < N
Basis:  . n = 1,2,…, r − 1

A

B

(r-1)-clique

Induction step:  for ,n = N
suppose  is maximum  -freeG Kr

-clique∃(r − 1)

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2



First Proof.

A

B

(r-1)-clique I.H.:  |E(B) | ≤ r − 2
2(r − 1) (n − r + 1)2

-free  no   all Kr ⟹ u ∈ B ∼ v ∈ A

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

suppose  is maximum  -freeG Kr

⟹ |E(A, B) | ≤ (r − 2)(n − r + 1)

|E | = |E(A) | + |E(B) | + |E(A, B) |

≤ (r − 1
2 ) +

r − 2
2(r − 1)

(n − r + 1)2 + (r − 2)(n − r + 1)

= r − 2
2(r − 1) n2

(Induction)



Second Proof. (weight shifting)
Assign each vertex  a weight   s.t. v wv > 0 ∑

v∈V

wv = 1

Evaluate S( ⃗w ) = ∑
uv∈E

wuwv

Let Wu = ∑
v∼u

wv For  that u ≁ v Wu ≥ Wv

 is maximized  all weights on a cliqueS( ⃗w ) ⟹
shifting all weight of  to    non-decreasingv u ⟹ S( ⃗w )

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

(wu + ϵ)Wu + (wv − ϵ) ≥ wuWu + wvWv



Second Proof. (weight shifting)
Assign each vertex  a weight   s.t. v wv > 0 ∑

v∈V

wv = 1

Evaluate S( ⃗w ) = ∑
uv∈E

wuwv

 is maximized  all weights on a cliqueS( ⃗w ) ⟹

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

≤ (r − 1
2 ) 1

(r − 1)2

when all  wv =
1
n

S( ⃗w ) = ∑
uv∈E

wuwv =
|E |
n2



Third Proof. (The probabilistic method)
clique number :  size of the largest cliqueω(G)

random permutation  of π V

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

ω(G) ≥ ∑
v∈V

1
n − dv 


is a clique
S = {v ∣ πu < πv ⟹ u ∼ v}

𝔼[ |S | ] = ∑
v∈V

Pr[v ∈ S] ≥ ∑
v∈V

Pr[∀u ≁ v : πu ≥ πv]

Linearity of expectation:

= ∑
v∈V

1
n − dv



Third Proof.

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

(The probabilistic method)

ω(G) ≥ ∑
v∈V

1
n − dv

Cauchy-Schwarz

∑
v∈V

1 ≤ (∑
v∈V

1
n − dv ) (∑

v∈V

(n − dv))n =

≤ ω(G)∑
v∈V

(n − dv) = (r − 1)(n2 − 2 |E | )
(handshaking)

  ⟹ |E | ≤ r − 2
2(r − 1) n2



Fourth Proof.
Suppose  is -free with maximum edges.G Kr

 does not haveG u v
w

w

v

uu� By contradiction.
Case.1 dw < du or dw < dv

duplicate , delete ,u w
|E�| = |E| + du � dw > |E|

still -freeKr

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2



Fourth Proof.

w
v

u
delete ,u, v

still -freeKr

duplicate , twicew
w� w��

|E�| = |E| + 2dw � (du + dv � 1) > |E|

Case.2 dw � du ⇥ dw � dv

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

Suppose  is -free with maximum edges.G Kr

 does not haveG u v
w



Fourth Proof.

 is an equivalence relationu ≁ v

 is a complete multipartite graphG

optimize   Kn1,n2,…,nr−1

subject to n1 + n2 + ⋯ + nr = n

-free   Kr ⟹ |E | ≤ r − 2
2(r − 1) n2

Suppose  is -free with maximum edges.G Kr

 does not haveG u v
w



Turán’s Theorem (clique)
If  has  and is -free, thenG(V, E) |V | = n Kr

|E | ≤
r − 2

2(r − 1)
n2

Turán’s Theorem (independent set)
If  has  and , then 

 has an independent set of size
G(V, E) |V | = n |E | = m

G

≥
n2

2m + n



Parallel Max

• compute max of  distinct numbers


• computation model: parallel, comparison-based


• 1-round algorithm:  comparisons of all pairs 


• lower bound for one-round:


•  comparisons are required in the worst case

n

(n
2)

(n
2)

adversary argument



Parallel Max
• 2-round algorithm:


• divide  numbers into  groups of  each


• 1st round:  find max of each group;


• 2nd round:  find the max of the k maxes 


• total comparisons:  

n k n/k

 comparisonsk(n /k
2 )

 comparisons(k
2)

k

✓
n/k

2

◆
+

✓
k

2

◆
= O

⇣
n
4/3

⌘

k = n2/3for
3-round? optimal?



1st round: 

2nd round:

Alg:   comparisonsm
choose an independent set

of size � n2

2m+ n

make them local maximal

a parallel max problem of size � n2

2m+ n

requires �
✓ n2

2m+n

2

◆
comparisons

� m+

✓ n2

2m+n

2

◆
= ⌦(n4/3)total comparisons

(Turán)



Fundamental Theorem 
of Extremal Graph Theory



Extremal Graph Theory

Fix a graph .H
ex(n, H)

largest possible number of edges
of G ⇥� H on n vertices

ex(n,H) = max
G ⇥�H

|V (G)|=n

|E(G)|

Turán’s Theorem
ex(n,Kr) = |T (n, r � 1)| ⇥ r � 2

2(r � 1)
n2



Erdős–Stone theorem
(Fundamental theorem of extremal graph theory)

Theorem (Erdős–Stone 1946)

ex(n,Kr
s ) =

�
r � 2

2(r � 1)
+ o(1)

⇥
n2

complete -partite graph 
with  vertices in each part

r
s

Kr
s = Ks, s, · · · , s⇤ ⇥� ⌅

r

= T (rs, r)

K3
2



Corollary

lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

For any nonempty graph H

ex(n,H)/
�n
2

⇥
extremal density of subgraph H

Theorem (Erdős–Stone 1946)

ex(n,Kr
s ) =

�
r � 2

2(r � 1)
+ o(1)

⇥
n2



lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

�(H) = r

H ⇤⇥ T (n, r � 1) for any n

ex(n,H) ⇥ |T (n, r � 1)|
H � Kr

s for su�ciently large s

ex(n,H) � ex(n,Kr
s )

=
�

r�2
2(r�1) + o(1)

⇥
n2



lim
n�⇥

ex(n,H)�n
2

⇥ =
�(H)� 2
�(H)� 1

�(H) = r

|T (n, r � 1)| ⇥ ex(n,H) ⇥
�

r � 2
2(r � 1)

+ o(1)
⇥

n2

r � 2
r � 1

� o(1) ⇥ ex(n,H)�n
2

⇥ ⇥ r � 2
r � 1

+ o(1)



Cycles



If  has  and girth ,G(V, E) |V | = n g(G) ≥ 5

|E| ⇥ 1
2
n
⌅

n� 1

Theorem

then

Girth
girth :  length of the shortest cycle in g(G) G

g(G) ≥ 5 and -free-



g(G) ⇤ 5 ⌅ |E| ⇥ 1
2n
⌃

n� 1

u

v1 vd

d = d(u)

disjoint sets

(d + 1) + (d(v1)� 1) + · · · + (d(vd)� 1) ⇤ n

�

v:v�u

d(v) ⇥ n� 1



g(G) ⇤ 5 ⌅ |E| ⇥ 1
2n
⌃

n� 1

�

v:v�u

d(v) ⇥ n� 1

=
�

v�V

d(v)2n(n� 1) ⇥
�

u⇥V

�

v:v�u

d(v)

=
4|E|2

n

Cauchy-Schwarz

⇥u � V,

u v

(du + dv)

�
�P

v2V d(v)
�2

n



Hamiltonian Cycle

Dirac’s Theorem
⌅v ⇤ V, dv �

n

2
⇥ G(V, E) is Hamiltonian.

By contradiction, suppose  is the maximum

non-Hamiltonian graph with

G
⇤v ⇥ V, dv � n

2

adding 1 edge    Hamiltonian⟹

 a Hamiltonian path∃
v1v2 · · · vnsay



 is non-HamiltonianG ⇤v ⇥ V, dv � n
2

 a Hamiltonian path∃ v1v2 · · · vn

{i | vi � vn} {i | vi+1 � v1}

⇥ n
2 + n

2 pigeons in {1, 2, . . . , n� 1}

Contradiction!


