Combinatorics Extremal Set Theory

尹一通 Nanjing University， 2024 Spring

Extremal Combinatorics

"how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions"
set system (family) $\mathscr{F} \subseteq 2^{[n]}$ with ground set [n]

Sunflowers

$\mathscr{F} \subseteq 2^{[n]}$ is a sunflower of size r with center C :

$$
|\mathscr{F}|=r \quad \forall S, T \in \mathscr{F}: \quad S \cap T=C
$$

a sunflower of size 6 with core C

Sunflowers

$\mathscr{F} \subseteq 2^{[n]}$ is a sunflower of size r with center C :

$$
|\mathscr{F}|=r \quad \forall S, T \in \mathscr{F}: \quad S \cap T=C
$$

a sunflower of size 6 with core \varnothing

Sunflower Lemma (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
Induction on k. Basis: $k=1$

$$
\mathcal{F} \subseteq\binom{[n]}{1} \quad|\mathcal{F}|>r-1
$$

$\exists r$ singletons:

Sunflower Lemma (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
For $k \geq 2$,
take largest $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members

$$
\forall S, T \in \mathcal{G} \text { that } S \neq T, S \cap T=\emptyset
$$

Case.1: $|\mathcal{G}| \geq r, \quad \mathcal{G}$ is a sunflower of size r
Case.2: $|\mathcal{G}| \leq r-1$,
Goal: find a popular $x \in[n]$

Sunflower Lemma (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
$|\mathcal{G}| \leq r-1, \quad$ Goal: find a popular $x \in[n]$

consider

$$
\{S \in \mathcal{F} \mid x \in S\}
$$

remove x

$$
\mathcal{H}=\{S \backslash\{x\} \mid S \in \mathcal{F} \wedge x \in S\}
$$

$$
\mathcal{H} \subseteq\binom{[n]}{k-1} \quad \text { if }|\mathcal{H}|>(k-1)!(r-1)^{k-1} \quad \text { І.Н. }
$$

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

take maximal $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members
$|\mathcal{G}| \leq r-1, \quad$ let $\quad Y=\bigcup_{S \in \mathcal{G}} S \quad|Y| \leq k(r-1)$
claim: $\quad Y$ intersects all $S \in \mathcal{F}$
if otherwise: $\quad \exists T \in \mathcal{F}, T \cap Y=\emptyset$
T is disjoint with all $S \in \mathcal{G}$
contradiction!

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

take maximal $\mathcal{G} \subseteq \mathcal{F}$ with disjoint members

$$
|\mathcal{G}| \leq r-1, \quad \text { let } \quad Y=\bigcup_{S \in \mathcal{G}} S \quad|Y| \leq k(r-1)
$$

Y intersects all $S \in \mathcal{F}$

Pigeonhole: $\exists x \in Y, \#$ of $S \in \mathcal{F}$ containing x

Sunflower Lemma (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
$\exists x \in Y$, let $\mathcal{H}=\{S \backslash\{x\} \mid S \in \mathcal{F} \wedge x \in S\}$

$$
\begin{aligned}
& \mathcal{H} \subseteq\binom{[n]}{k-1} \\
& |\mathcal{H}|>(k-1)!(r-1)^{k-1}
\end{aligned}
$$

I.H.: \mathcal{H} contains a sunflower of size r adding x back, it is a sunflower in \mathcal{F}

Sunflower Lemma (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>k!(r-1)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
Induction on k. Basis: $k=1$ trivial
For $k \geq 2$, take maximal disjoint $\mathcal{G} \subseteq \mathcal{F}$ case.I: $|\mathcal{G}| \geq r, \quad \mathcal{G}$ is a sunflower of size r case.2: $|\mathcal{G}| \leq r-1, \quad \exists x \in Y$,

$$
\mathcal{H}=\{S \backslash\{x\} \mid S \in \mathcal{F} \wedge x \in S\}
$$

\mathcal{H} contains a sunflower of size r
$\Rightarrow \mathcal{F}$ contains a sunflower of size r

Sunflower Conjecture (Erdős-Rado 1960)

$$
\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>c(r)^{k}
$$

\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$
$c(r)$: constant depending only on r

Alweiss-Lovett-Wu-Zhang (2019):
$\mathcal{F} \subseteq\binom{[n]}{k} . \quad|\mathcal{F}|>O(r \log (r k))^{k} \quad \square$
\exists a sunflower $\mathcal{G} \subseteq \mathcal{F}$, such that $|\mathcal{G}|=r$

Mathematicians Begin to Tame Wild 'Sunflower' Problem

Q A major advance toward solving the 60-year-old sunflower conjecture is shedding light on how order begins to appear as random systems grow in
size.

Erdős-Ko-Rado Theorem

Paul Erdős (1913-1996)

柯召
(1910-2002)

Richard Rado (1906-1989)

Intersecting Families

$\mathcal{F} \subseteq\binom{[n]}{k} \quad$ intersecting: $\quad \forall S, T \in \mathcal{F}, \quad S \cap T \neq \emptyset$
trivial case: $n<2 k$
nontrivial examples:

"How large can a nontrivial intersecting family be?"

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.
$\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \longmapsto|\mathcal{F}| \leq\binom{ n-1}{k-1}$
proved in 1938; published in 1961;

Shifting (Symmetrization)

Isoperimetric problem:
With fixed perimeter, what plane figure has the largest area?

Steiner's symmetrization

Shifting (Symmetrization)

Isoperimetric problem:
With fixed area, what plane figure has the smallest perimeter?

Steiner's symmetrization

Erdős-Ko-Rado Theorem

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \square|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

induction on n and k

$$
\mathcal{F}_{0}=\{S \in \mathcal{F} \mid n \notin S\} \quad \begin{aligned}
& \mathcal{F}_{1}=\{S \in \mathcal{F} \mid n \in S\} \\
& \mathcal{F}_{1}^{\prime}=\left\{S \backslash\{n\} \mid S \in \mathcal{F}_{1}\right\}
\end{aligned}
$$

$$
|\mathcal{F}|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}\right|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}^{\prime}\right| \leq\binom{ n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1}
$$

Shifting (compression)

$$
\text { special } \mathcal{F} \subseteq\binom{[n]}{k}
$$

\mathcal{F} remains intersecting after deleting n

Shifting (compression)

$$
\begin{aligned}
\mathcal{F} & \subseteq 2^{[n]} \quad \text { for } 1 \leq i<j \leq n \\
& \forall T \in \mathcal{F}, \\
, & \text { write } T_{i j}=(T \backslash\{j\}) \cup\{i\}
\end{aligned}
$$

(i, j)-shift: $\quad S_{i j}(\cdot)$

$$
\forall T \in \mathcal{F},
$$

$S_{i j}(T)= \begin{cases}T_{i j} & \text { if } j \in T, i \notin T, \text { and } T_{i j} \notin \mathcal{F}, \\ T & \text { otherwise } .\end{cases}$

$$
S_{i j}(\mathcal{F})=\left\{S_{i j}(T) \mid T \in \mathcal{F}\right\}
$$

$$
\begin{aligned}
& 1 \leq i<j \leq n \quad \forall T \in \mathcal{F}, \text { write } T_{i j}=(T \backslash\{j\}) \cup\{i\} \\
& S_{i j}(T)= \begin{cases}T_{i j} & \text { if } j \in T, i \notin T, \text { and } T_{i j} \notin \mathcal{F}, \\
T & \text { otherwise. }\end{cases} \\
& S_{i j}(\mathcal{F})=\left\{S_{i j}(T) \mid T \in \mathcal{F}\right\}
\end{aligned}
$$

$$
\text { 1. }\left|S_{i j}(T)\right|=|T| \quad \text { and } \quad\left|S_{i j}(\mathcal{F})\right|=|\mathcal{F}|
$$

2. \mathcal{F} intersecting $\leadsto S_{i j}(\mathcal{F})$ intersecting
(2) the only bad case: $A, B \in \mathcal{F} \quad A \cap B=\{j\}$

$$
A_{i j}=A \backslash\{j\} \cup\{i\} \in \mathcal{F} \quad B_{i j}=B \backslash\{j\} \cup\{i\} \notin \mathcal{F} \quad i \notin B
$$

$\Rightarrow A_{i j} \cap B=\emptyset \quad$ contradiction!

$$
\begin{aligned}
& 1 \leq i<j \leq n \quad \forall T \in \mathcal{F}, \text { write } T_{i j}=(T \backslash\{j\}) \cup\{i\} \\
& S_{i j}(T)= \begin{cases}T_{i j} & \text { if } j \in T, i \notin T, \text { and } T_{i j} \notin \mathcal{F}, \\
T & \text { otherwise. }\end{cases} \\
& S_{i j}(\mathcal{F})=\left\{S_{i j}(T) \mid T \in \mathcal{F}\right\}
\end{aligned}
$$

1. $\left|S_{i j}(T)\right|=|T|$ and $\left|S_{i j}(\mathcal{F})\right|=|\mathcal{F}|$
2. \mathcal{F} intersecting $\Rightarrow S_{i j}(\mathcal{F})$ intersecting
repeat applying (i, j)-shifting $S_{i j}(\mathcal{F})$ for $1 \leq i<j \leq n$ eventually, \mathcal{F} is unchanged by any $S_{i j}(\mathcal{F})$ called: \mathcal{F} is shifted

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \longmapsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Erdős-Ko-Rado's proof:

true for $k=1$;
when $n=2 k$,
$\forall S \in\binom{[n]}{k} \quad$ at most one of S and \bar{S} is in \mathcal{F}

$$
\begin{aligned}
|\mathcal{F}| & \leq \frac{1}{2}\binom{n}{k}=\frac{n!}{2 \cdot k!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-k)!}=\binom{n-1}{k-1}
\end{aligned}
$$

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \leadsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

arbitrary $\quad|\mathcal{F}|=\left|\mathcal{F}^{\prime}\right|$ intersecting \mathcal{F}
shifted \mathcal{F}^{\prime} keep intersecting

\checkmark

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1} \quad \lessdot \quad\left|\mathcal{F}^{\prime}\right| \leq\binom{ n-1}{k-1}
$$

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \longmapsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

when $n>2 k$, induction on n WLOG: \mathcal{F} is shifted

$$
\mathcal{F}_{1}=\{S \in \mathcal{F} \mid n \in S\} \quad \mathcal{F}_{1}^{\prime}=\left\{S \backslash\{n\} \mid S \in \mathcal{F}_{1}\right\}
$$

\mathcal{F}_{1}^{\prime} is intersecting

otherwise, $\quad \exists A, B \in \mathcal{F} \quad A \cap B=\{n\}$

$$
\begin{gathered}
|A \cup B| \leq 2 k-1<n-1 \quad \exists i<n, i \notin A \cup B \\
C=A \backslash\{n\} \cup\{i\} \in \mathcal{F} \nrightarrow \mathcal{F} \text { is shifted } \\
C \cap B=\emptyset \quad \text { contradiction! }
\end{gathered}
$$

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \longmapsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

when $n>2 k$, induction on n WLOG: \mathcal{F} is shifted

$$
\mathcal{F}_{0}=\{S \in \mathcal{F} \mid n \notin S\} \quad \mathcal{F}_{1}=\{S \in \mathcal{F} \mid n \in S\}
$$

$\mathcal{F}_{0} \subseteq\binom{[n-1]}{k}$ and intersecting $\stackrel{\text { I.H. }}{\sim}\left|\mathcal{F}_{0}\right| \leq\binom{ n-2}{k-1}$
$\mathcal{F}_{1}^{\prime}=\left\{S \backslash\{n\} \mid S \in \mathcal{F}_{1}\right\}$
$\mathcal{F}_{1}^{\prime} \subseteq\binom{[n-1]}{k-1}$ and intersecting $\stackrel{\text { I.H. }}{\sim}\left|\mathcal{F}_{1}^{\prime}\right| \leq\binom{ n-2}{k-2}$

$$
|\mathcal{F}|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}\right|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}^{\prime}\right| \leq\binom{ n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1}
$$

Katona's proof (1972)

n-cycle:

Lemma

If $n \geq 2 k$ and $A_{1}, A_{2}, \ldots, A_{t}$ are distinct pairwise intersecting k-arcs, then $t \leq k$.
every node can be endpoint of at most 1 arc take $A_{1}: A_{1}$ has $k+1$ nodes

2 endpoints of itself

$$
\text { Let } \mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k
$$

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \leadsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

take an n-cycle π of [n]
family of all k-arcs in π

$$
\mathcal{G}_{\pi}=\left\{\left\{\pi_{(i+j) \bmod n} \mid j \in[k]\right\} \mid i \in[n]\right\}
$$

double counting: $X=\left\{(S, \pi) \mid S \in \mathcal{F} \cap \mathcal{G}_{\pi}\right\}$
each n-cycle $\pi \quad$ an n-cycle has $\leq k$ intersecting k-arcs

$$
\left|\mathcal{F} \cap \mathcal{G}_{\pi}\right| \leq k
$$

\# of n-cycles: $(n-1)$!

$$
|X|=\sum_{n \text {-cycle } \pi}\left|\mathcal{F} \cap \mathcal{G}_{\pi}\right| \leq k(n-1)!
$$

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \leadsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

take an n-cycle π of $[n]$
family of all k-arcs in π

$$
\mathcal{G}_{\pi}=\left\{\left\{\pi_{(i+j) \bmod n} \mid j \in[k]\right\} \mid i \in[n]\right\}
$$

double counting: $X=\left\{(S, \pi) \mid S \in \mathcal{F} \cap \mathcal{G}_{\pi}\right\}$

$$
|X| \leq k(n-1)!
$$

each S is a k-arc in

$$
\begin{gathered}
k!(n-k)!\text { cycles } \\
|X|=\sum_{S \in \mathcal{F}}\left|\left\{\pi \mid S \in \mathcal{G}_{\pi}\right\}\right|=|\mathcal{F}| k!(n-k)!
\end{gathered}
$$

Let $\mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k$.

$$
\forall S, T \in \mathcal{F}, S \cap T \neq \emptyset \leadsto|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

take an n-cycle π of $[n]$
family of all k-arcs in π

$$
\mathcal{G}_{\pi}=\left\{\left\{\pi_{(i+j) \bmod n} \mid j \in[k]\right\} \mid i \in[n]\right\}
$$

double counting: $X=\left\{(S, \pi) \mid S \in \mathcal{F} \cap \mathcal{G}_{\pi}\right\}$

$$
|\mathcal{F}| \leq \frac{k(n-1)!}{k!(n-k)!}=\frac{(n|=|\mathcal{F}| k!(n-k)!}{(k-1)!(n-k)!}=\binom{n-1}{k-1}
$$

Antichains

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain
$\forall A, B \in \mathcal{F}, \quad A \nsubseteq B$

"Is this the largest size for all antichains?"

Sperner's Theorem

Theorem (Sperner 1928)
$\mathcal{F} \subseteq 2^{[n]}$ is an antichain.

$$
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor} .
$$

Emanuel Sperner (1905-1980)

Sperner's proof

$\mathcal{F} \subseteq\binom{[n]}{k}$
shade: $\quad \nabla \mathcal{F}=\left\{\left.T \in\binom{[n]}{k+1} \right\rvert\, \exists S \in \mathcal{F}, S \subset T\right\}$
shadow: $\quad \Delta \mathcal{F}=\left\{\left.T \in\binom{[n]}{k-1} \right\rvert\, \exists S \in \mathcal{F}, T \subset S\right\}$

$$
[n]=\{1,2,3,4,5\}
$$

$$
\mathcal{F}=\{\{1,2,3\},\{1,3,4\},\{2,3,5\}\}
$$

$\nabla \mathcal{F}=\{\{1,2,3,4\},\{1,2,3,5\},\{1,3,4,5\},\{2,3,4,5\}\}$
$\Delta \mathcal{F}=\{\{1,2\},\{2,3\},\{1,3\},\{3,4\},\{1,4\},\{2,5\},\{3,5\}\}$

Lemma (Sperner)

Let $\mathcal{F} \subseteq\binom{[n]}{k}$. Then

$$
\begin{array}{ll}
|\nabla \mathcal{F}| \geq \frac{n-k}{k+1}|\mathcal{F}| & (\text { for } k<n) \\
|\Delta \mathcal{F}| \geq \frac{k}{n-k+1}|\mathcal{F}| & (\text { for } k>0)
\end{array}
$$

double counting

$$
\mathcal{R}=\{(S, T) \mid S \in \mathcal{F}, T \in \nabla \mathcal{F}, S \subset T\}
$$

$\forall S \in \mathcal{F}, \quad n-k T \in\binom{[n]}{k+1}$ have $T \supset S$

$$
|\mathcal{R}|=(n-k)|\mathcal{F}|
$$

$\forall T \in \nabla \mathcal{F}, \quad T$ has $\binom{k+1}{k}=k+1$ many k-subsets

$$
|\mathcal{R}| \leq(k+1)|\nabla \mathcal{F}|
$$

Lemma (Sperner)

Let $\mathcal{F} \subseteq\binom{[n]}{k}$. Then

$$
\begin{array}{ll}
|\nabla \mathcal{F}| \geq \frac{n-k}{k+1}|\mathcal{F}| & (\text { for } k<n) \\
|\Delta \mathcal{F}| \geq \frac{k}{n-k+1}|\mathcal{F}| & (\text { for } k>0)
\end{array}
$$

Corollary:

$$
\begin{aligned}
& \text { If } k \leq \frac{1}{2}(n-1) \text {, then }|\nabla \mathcal{F}| \geq|\mathcal{F}| . \\
& \text { If } k \geq \frac{1}{2}(n+1) \text {, then }|\Delta \mathcal{F}| \geq|\mathcal{F}| .
\end{aligned}
$$

Sperner's Theorem

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

$$
\text { let } \quad \mathcal{F}_{k}=\mathcal{F} \cap\binom{[n]}{k}
$$

If $k \leq \frac{1}{2}(n-1)$, then $|\nabla \mathcal{F}| \geq|\mathcal{F}|$. If $k \geq \frac{1}{2}(n+1)$, then $|\Delta \mathcal{F}| \geq|\mathcal{F}|$.

replace \mathcal{F}_{k} by $\left\{\begin{array}{ll}\nabla \mathcal{F}_{k} & \text { if } k<\frac{1}{2}(n-1) \\ \Delta \mathcal{F}_{k} & \text { if } k \geq \frac{1}{2}(n+1)\end{array}\right.$ still antichain!
repeat until $\mathcal{F} \subseteq\binom{[n]}{\lfloor n / 2\rfloor}$ with no decreasing of $|\mathcal{F}|$

Sperner's Theorem

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Lubell's proof (double counting)

 maximal chain:$$
\emptyset \subset S_{1} \subset \cdots \subset S_{n-1} \subset[n]
$$

\# of maximal chains in $2^{[n]}: n$!
$\forall S \subseteq[n]$,

\# of maximal chains containing S : $|S|!(n-|S|)$!
\mathcal{F} is antichain $\Rightarrow \forall$ chain $C, \quad|\mathcal{F} \cap C| \leq 1$
\# maximal chains crossing $\mathcal{F} \leq$ \# all maximal chains

Sperner's Theorem

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Lubell's proof (double counting)

 maximal chain:$$
\emptyset \subset S_{1} \subset \cdots \subset S_{n-1} \subset[n]
$$

\# of maximal chains in $2^{[n]}: n$!
$\forall S \subseteq[n]$,

\# of maximal chains containing $S:|S|!(n-|S|)$!
\mathcal{F} is antichain $\Rightarrow \forall$ chain $C, \quad|\mathcal{F} \cap C| \leq 1$

$$
\sum_{S \in \mathcal{F}}|S|!(n-|S|)!\leq n!
$$

Sperner's Theorem

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Lubell's proof (double counting)

$$
\begin{gathered}
\sum_{S \in \mathcal{F}}|S|!(n-|S|)!\leq n! \\
\frac{|\mathcal{F}|}{\binom{n}{\lfloor n / 2\rfloor}} \leq \sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}}=\sum_{S \in \mathcal{F}} \frac{|S|!(n-|S|)!}{n!} \leq 1 \\
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}
\end{gathered}
$$

LYM Inequality

(Lubell-Yamamoto 1954, Meschalkin 1963)

LYM inequality

$$
\begin{gathered}
\mathcal{F} \subseteq 2^{[n]} \text { is an antichain. } \\
\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \leq 1
\end{gathered}
$$

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. $\left.\sum_{S \in \mathcal{F}} \frac{1}{(|S|} \right\rvert\,=1$
Alon's proof (the probabilistic method) let π be a random permutation $[n]$

$$
\begin{aligned}
& \mathcal{C}_{\pi}=\left\{\left\{\pi_{1}\right\},\left\{\pi_{1}, \pi_{2}\right\}, \ldots,\left\{\pi_{1}, \ldots, \pi_{n}\right\}\right\} \\
& \forall S \in \mathcal{F}, \quad X_{S}= \begin{cases}1 & S \in \mathcal{C}_{\pi} \\
0 & \text { otherwise }\end{cases} \\
& \text { let } X=\sum_{S \in \mathcal{F}} X_{S}=\left|\mathcal{F} \cap \mathcal{C}_{\pi}\right|
\end{aligned}
$$

$$
\mathbf{E}\left[X_{S}\right]=\operatorname{Pr}\left[S \in \mathcal{C}_{\pi}\right]=\frac{1}{\binom{n}{|S|}} \begin{gathered}
\text { precisely } 1|S| \text {-set } \\
\text { uniform over } \\
\text { all }|S| \text {-sets }
\end{gathered}
$$

$\mathcal{F} \subseteq 2^{[n]}$ is an antichain. $\sum_{S \in \mathcal{F}} \frac{1}{(|S|} \leq \leq 1$
Alon's proof (the probabilistic method) let π be a random permutation [n]

$$
\begin{aligned}
\mathcal{C}_{\pi} & =\left\{\left\{\pi_{1}\right\},\left\{\pi_{1}, \pi_{2}\right\}, \ldots,\left\{\pi_{1}, \ldots, \pi_{n}\right\}\right\} \\
X & =\sum_{S \in \mathcal{F}} X_{S}=\left|\mathcal{F} \cap \mathcal{C}_{\pi}\right| \leq 1 \\
\mathcal{F} \text { is antichain } & \mathcal{C}_{\pi} \text { is chain }
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{E}\left[X_{S}\right]=\frac{1}{\binom{n}{|S|}} \\
1 \geq \quad \mathbf{E}[X]=\sum_{S \in \mathcal{F}} \mathbf{E}\left[X_{S}\right]=\sum_{S \in \mathcal{F}} \frac{1}{\left({ }_{|S|}^{n}\right)}
\end{gathered}
$$

Sperner's Theorem

Sperner's proof (shadows)

Lubell's proof (counting)

Alon's proof (probabilistic)

Shattering

$\mathcal{F} \subseteq 2^{[n]}$
trace $\left.\mathcal{F}\right|_{R}$:
$\left.\mathcal{F}\right|_{R}=\{S \cap R \mid S \in \mathcal{F}\}$

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}
$$

\mathcal{F} shatters R

Sauer's Lemma

$|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i} \leadsto \exists R \in\binom{[n]}{k}, \mathcal{F}$ shatters R

Sauer; Shelah-Perles; Vapnik-Cervonenkis;

VC-dimension of \mathcal{F}
size of the largest R shattered by \mathcal{F}

$$
\left.\mathcal{F} \subseteq 2^{[n]} \quad \mathcal{F}\right|_{R}=\{S \cap R \mid S \in \mathcal{F}\}
$$

$$
\mathrm{VC}-\operatorname{dim}(\mathcal{F})=\max \left\{|R||R \subseteq[n], \mathcal{F}|_{R}=2^{R}\right\}
$$

Heredity (ideal, simplicial complex)

\mathcal{F} is hereditary if $\quad \forall B \subseteq A \in \mathcal{F}, \quad B \in \mathcal{F}$

Heredity (ideal, simplicial complex)

Sauer's Lemma

$|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i} \longmapsto \exists R \in\binom{[n]}{k}, \mathcal{F}$ shatters R

$$
|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i} \longmapsto \exists R \in \mathcal{F},|R| \geq k
$$

for hereditary $\mathcal{F}: \quad \forall B \subseteq A \in \mathcal{F}, \quad B \in \mathcal{F}$

$$
R \in \mathcal{F} \quad \leadsto \mathcal{F} \text { shatters } R
$$

Sauer's Lemma

$|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i} \triangleleft \exists R \in\binom{[n]}{k}, \mathcal{F}$ shatters R

$$
|\mathcal{F}| \leq\left|\mathcal{F}^{\prime}\right|
$$

arbitrary \mathcal{F}
hereditary \mathcal{F}^{\prime}

$$
\mathrm{VC}-\operatorname{dim}(\mathcal{F}) \geq \mathrm{VC}-\operatorname{dim}\left(\mathcal{F}^{\prime}\right)
$$

\mathcal{F} shatters a k-set $<\mathcal{F}^{\prime}$ shatters a k-set

Down Shift

$\mathcal{F} \subseteq 2^{[n]} \quad$ for $i \in[n]$
down-shift: $\quad S_{i}(\cdot)$
$S_{i}(T)= \begin{cases}T \backslash\{i\} & \text { if } i \in T \in \mathcal{F}, \\ T & \text { and } T \backslash\{i\} \notin \mathcal{F}, \\ & \text { otherwise }\end{cases}$

$$
\begin{aligned}
&\left.\mathcal{F} \subseteq 2^{[n]} \quad \mathcal{F}\right|_{R}=\{S \cap R \mid S \in \mathcal{F}\} \quad \text { for } i \in[n] \\
& S_{i}(T)= \begin{cases}T \backslash\{i\} & \text { if } i \in T \in \mathcal{F}, \text { and } T \backslash\{i\} \notin \mathcal{F}, \\
T & \text { otherwise. }\end{cases} \\
& S_{i}(\mathcal{F})=\left\{S_{i}(T) \mid T \in \mathcal{F}\right\}
\end{aligned}
$$

$$
\text { 1. }\left|S_{i}(\mathcal{F})\right|=|\mathcal{F}|
$$

$$
\text { 2. }\left|S_{i}(\mathcal{F})\right|_{R}\left|\leq|\mathcal{F}|_{R}\right| \text { for all } R \subseteq[n]
$$

$\left.S_{i}(\mathcal{F})\right|_{R} \subseteq S_{i}\left(\left.\mathcal{F}\right|_{R}\right)$
by case analysis
$A \in S_{i}(\mathcal{F}) \triangleleft\left\{\begin{array}{l}A=S_{i}(A \cup\{i\}) \\ A=S_{i}(A)\end{array}\right\} \triangleleft A \cap R \in S_{i}\left(\left.\mathcal{F}\right|_{R}\right)$

$$
\begin{aligned}
&\left.\mathcal{F} \subseteq 2^{[n]} \quad \mathcal{F}\right|_{R}=\{S \cap R \mid S \in \mathcal{F}\} \quad \text { for } i \in[n] \\
& S_{i}(T)= \begin{cases}T \backslash\{i\} & \text { if } i \in T \in \mathcal{F}, \text { and } T \backslash\{i\} \notin \mathcal{F}, \\
T & \text { otherwise. }\end{cases} \\
& S_{i}(\mathcal{F})=\left\{S_{i}(T) \mid T \in \mathcal{F}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. }\left|S_{i}(\mathcal{F})\right|=|\mathcal{F}| \\
& \text { 2. }\left|S_{i}(\mathcal{F})\right|_{R}\left|\leq|\mathcal{F}|_{R}\right| \text { for all } R \subseteq[n]
\end{aligned}
$$

repeat applying down-shifting $S_{i}(\mathcal{F})$ for $i \in[n]$ eventually, \mathcal{F} is unchanged by any $S_{i}(\mathcal{F})$

$$
\forall A \in \mathcal{F} \quad \text { if } B \subseteq A \sqsubset B \in \mathcal{F}
$$

\mathcal{F} is hereditary

Sauer's Lemma

$|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i} \leadsto \exists R \in\binom{[n]}{k}, \mathcal{F}$ shatters R
repeat down-shift \mathcal{F} until unchanged
\mathcal{F} is hereditary
$\left.|\mathcal{F}|>\sum_{0 \leq i<k}\binom{n}{i}\right\}$

$$
\begin{gathered}
\exists S \in\binom{[n]}{\ell} \text { with } \ell \geq k \\
2^{S} \subseteq \mathcal{F}
\end{gathered}
$$

take any $R \in\binom{S}{k} \quad \mathcal{F}$ shatters R

Kruskal-Katona Theorem

shadow: $\Delta \mathcal{F}=\left\{\left.T \in\binom{[n]}{k-1} \right\rvert\, \exists S \in \mathcal{F}, T \subseteq S\right\}$
$|\mathcal{F}|=m \quad$ How small can the shadow $\Delta \mathcal{F}$ be?

Colex order of sets

lexicographic order

$$
\begin{array}{cc}
\binom{[5]}{3} & \{1,2,3\} \\
& \{1,2,4\} \\
& \{1,2,5\} \\
& \{1,3,4\} \\
& \{1,3,5\} \\
& \{1,4,5\} \\
& \{2,3,4\} \\
& \{2,3,5\} \\
& \{2,4,5\} \\
& \{3,4,5\}
\end{array}
$$

elements in increasing order sets in lexicographic order
co-lexicographic(colex) order (reversed lexicographic order)

elements in decreasing order sets in lexicographic order

Colex order of sets

co-lexicographic(colex) order

(reversed lexicographic order)
$\mathcal{R}(m, k):$
first m members
of $\binom{\mathbb{N}}{k}$ in colex order

elements in decreasing order sets in lexicographic order

k-cascade Representation

\forall positive integers m and k m can be uniquely represented as

$$
m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t}
$$

with $m_{k}>m_{k-1}>\cdots>m_{t} \geq t \geq 1$

k-cascade Representation

\forall positive integers m and k m can be uniquely represented as

$$
m=\sum_{\ell=t}^{k}\binom{m_{\ell}}{\ell}
$$

with $m_{k}>m_{k-1}>\cdots>m_{t} \geq t \geq 1$
greedy algorithm:
for $\ell=k, k-1, k-2, \ldots$
take the $\max m_{\ell}$ with $\binom{m_{\ell}}{\ell} \leq m$
$m \leftarrow m-\binom{m_{\ell}}{\ell}$
until $m=0$

Colex order of sets

$\mathcal{R}(m, k)$:
first m members
of $\binom{\mathbb{N}}{k}$ in colex order k-cascade

$$
m=\sum_{\ell=t}^{k}\binom{m_{\ell}}{\ell}
$$

$$
\mathcal{R}(m, k):
$$

$\binom{\left[m_{\ell}\right]}{\ell}$ adjoining $\left\{m_{r}+1 \mid \ell<r \leq k\right\}$
$|\Delta \mathcal{R}(m, k)|=\sum_{\ell=t}^{k}\binom{m_{\ell}}{\ell-1}$

Kruskal-Katona Theorem

$\mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m$, where

$$
m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t},
$$

for $m_{k}>m_{k-1}>\cdots>m_{t} \geq t \geq 1$. Then

$$
|\Delta \mathcal{F}| \geq\binom{ m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\cdots+\binom{m_{t}}{t-1} .
$$

(Frankl 1984) induction on m, and for given m, on k

$$
\begin{aligned}
& \mathcal{F}_{0}=\{A \in \mathcal{F} \mid 1 \notin A\} \quad \mathcal{F}_{1}=\{A \in \mathcal{F} \mid 1 \in A\} \\
& \mathcal{F}_{1}^{\prime}=\left\{A \backslash\{1\} \mid A \in \mathcal{F}_{1}\right\} \quad \mathcal{F}_{1}^{\prime} \subseteq\binom{[n-1]}{k-1}
\end{aligned}
$$

$$
|\Delta \mathcal{F}| \geq\left|\Delta \mathcal{F}_{1}^{\prime}\right|+\left|\mathcal{F}_{1}^{\prime}\right|
$$

can apply I.H. if we know

$$
\left|\mathcal{F}_{1}^{\prime}\right| \geq ?
$$

$$
\begin{aligned}
& \mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m, \\
& m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t}, \\
& \Rightarrow|\Delta \mathcal{F}| \geq\binom{ m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\cdots+\binom{m_{t}}{t-1} .
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathcal{F}_{0}=\{A \in \mathcal{F} \mid 1 \notin A\} & \mathcal{F}_{1}=\{A \in \mathcal{F} \mid 1 \in A\} \\
\mathcal{F}_{1}^{\prime}=\left\{A \backslash\{1\} \mid A \in \mathcal{F}_{1}\right\} & \mathcal{F}_{1}^{\prime} \subseteq\binom{[n]}{k-1}
\end{array}
$$

$|\Delta \mathcal{F}| \geq\left|\Delta \mathcal{F}_{1}^{\prime}\right|+\left|\mathcal{F}_{1}^{\prime}\right| \quad \quad \mathcal{F}$ shifted

$$
\left|\mathcal{F}_{1}^{\prime}\right| \geq\binom{ m_{k}-1}{k-1}+\binom{m_{k-1}-1}{k-2}+\cdots+\binom{m_{t}-1}{t-1}
$$

I.H. $\left|\Delta \mathcal{F}_{1}^{\prime}\right| \geq\binom{ m_{k}-1}{k-2}+\binom{m_{k-1}-1}{k-3}+\cdots+\binom{m_{t}-1}{t-2}$

$$
\begin{aligned}
\mathcal{F} & \subseteq 2^{[n]} \quad \text { for } 1 \leq i<j \leq n \\
& \forall T \in \mathcal{F}, \quad \text { write } T_{i j}=(T \backslash\{j\}) \cup\{i\}
\end{aligned}
$$

(i,j)-shift: $\quad S_{i j}(\cdot)$
$\forall T \in \mathcal{F}$,

$$
\begin{aligned}
& S_{i j}(T)= \begin{cases}T_{i j} & \text { if } j \in T, i \notin T, \text { and } T_{i j} \notin \mathcal{F}, \\
T & \text { otherwise. }\end{cases} \\
& S_{i j}(\mathcal{F})=\left\{S_{i j}(T) \mid T \in \mathcal{F}\right\}
\end{aligned}
$$

1. $\left|S_{i j}(T)\right|=|T|$ and $\left|S_{i j}(\mathcal{F})\right|=|\mathcal{F}|$
2. $\left|\Delta S_{i j}(\mathcal{F})\right| \leq|\Delta \mathcal{F}|$ by-case analysis

$$
\begin{aligned}
& \mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m, \\
& m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t}, \\
& \mathcal{F}_{0}=\{A \in \mathcal{F} \mid 1 \notin A\} \quad \mathcal{F}_{1}=\{A \in \mathcal{F} \mid 1 \in A\} \\
& \mathcal{F}_{1}^{\prime}=\left\{A \backslash\{1\} \mid A \in \mathcal{F}_{1}\right\} \quad \mathcal{F}_{1}^{\prime} \subseteq\binom{[n-1]}{k-1} \\
& \text { Lemma 1: }|\Delta \mathcal{F}| \geq\left|\Delta \mathcal{F}_{1}^{\prime}\right|+\left|\mathcal{F}_{1}^{\prime}\right|
\end{aligned}
$$

Lemma 1.5: \mathcal{F} is shifted $\square \Delta \mathcal{F}_{0} \subseteq \mathcal{F}_{1}^{\prime}$

Lemma 2:

\mathcal{F} is shifted $\longmapsto\left|\mathcal{F}_{1}^{\prime}\right| \geq \sum_{\ell=t}^{k}\binom{m_{\ell}-1}{\ell-1}$

$$
\begin{aligned}
& \mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m, \\
& m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t}, \\
& \Rightarrow|\Delta \mathcal{F}| \geq\binom{ m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\cdots+\binom{m_{t}}{t-1} .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}_{0} & =\{A \in \mathcal{F} \mid 1 \notin A\} & \mathcal{F}_{1}=\{A \in \mathcal{F} \mid 1 \in A\} \\
\mathcal{F}_{1}^{\prime}=\left\{A \backslash\{1\} \mid A \in \mathcal{F}_{1}\right\} & & \mathcal{F}_{1}^{\prime} \subseteq\binom{[n]}{k-1} \\
& |\Delta \mathcal{F}| \geq\left|\Delta \mathcal{F}_{1}^{\prime}\right|+\left|\mathcal{F}_{1}^{\prime}\right| & \geq \sum_{\ell=t}^{k}\left\{\binom{m_{e}-1}{\ell-1}+\binom{m_{\ell}-1}{\ell-2}\right\}
\end{aligned}
$$

$$
\left|\mathcal{F}_{1}^{\prime}\right| \geq \sum_{\ell=t}^{k}\binom{m_{\ell}-1}{\ell-1}
$$

I.H.
$\left|\Delta \mathcal{F}_{1}^{\prime}\right| \geq \sum_{\ell=t}^{k}\binom{m_{\ell}-1}{\ell-2}$

$$
\begin{aligned}
& \mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m, \\
& m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t}, \\
& \Rightarrow|\Delta \mathcal{F}| \geq\binom{ m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\cdots+\binom{m_{t}}{t-1} .
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathcal{F}_{0}=\{A \in \mathcal{F} \mid 1 \notin A\} & \mathcal{F}_{1}=\{A \in \mathcal{F} \mid 1 \in A\} \\
\mathcal{F}_{1}^{\prime}=\left\{A \backslash\{1\} \mid A \in \mathcal{F}_{1}\right\} & & \mathcal{F}_{1}^{\prime} \subseteq\binom{[n]}{k-1} \\
& |\Delta \mathcal{F}| \geq\left|\Delta \mathcal{F}_{1}^{\prime}\right|+\left|\mathcal{F}_{1}^{\prime}\right| & \geq \sum_{\ell=t}^{k}\binom{m_{\ell}}{\ell-1}
\end{array}
$$

$$
\left|\mathcal{F}_{1}^{\prime}\right| \geq \sum_{\ell=t}^{k}\binom{m_{\ell}-1}{\ell-1}
$$

I.H.
$\left|\Delta \mathcal{F}_{1}^{\prime}\right| \geq \sum_{\ell=t}^{k}\binom{m_{\ell}-1}{\ell-2}$

Kruskal-Katona Theorem

$$
\begin{gathered}
\mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m, \text { the } k \text {-cascade of } m \text { is } \\
m=\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\cdots+\binom{m_{t}}{t} .
\end{gathered}
$$

Then $|\Delta \mathcal{F}| \geq\binom{ m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\cdots+\binom{m_{t}}{t-1}$.

The first $m k$-sets in colex order have the smallest shadow.
$\mathcal{R}(m, k)$: first $m k$-sets in colex order
K-K Theorem: $\quad|\Delta \mathcal{F}| \geq|\Delta \mathcal{R}(|\mathcal{F}|, k)|$

Kruskal-Katona Theorem

$\mathcal{F} \subseteq\binom{[n]}{k},|\mathcal{F}|=m$, the k-cascade of m is

$$
m=\sum_{\ell=t}^{k}\binom{m_{\ell}}{\ell}
$$

Then $\left|\Delta_{r} \mathcal{F}\right| \geq \sum_{\ell=t-k+r}^{r}\binom{m_{\ell}}{\ell}$.
r-shadow:

$$
\Delta_{r} \mathcal{F}=\left\{\left.S \in\binom{[n]}{r} \right\rvert\, \exists T \in \mathcal{F}, S \subset T\right\}
$$

$$
\Delta_{r} \mathcal{F}=\underbrace{\Delta \cdots \Delta}_{k-r} \mathcal{F}
$$

Erdős-Ko-Rado Theorem

$$
\begin{aligned}
& \text { Let } \mathcal{F} \subseteq\binom{[n]}{k}, n \geq 2 k . \\
& \forall S, T \in \mathcal{F}, S \cap T \neq \emptyset
\end{aligned}|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Suppose $|\mathcal{F}|>\binom{n-1}{k-1} \quad$ let $\mathcal{G}=\{\bar{S} \mid S \in \mathcal{F}\}$

$$
\begin{gathered}
|\mathcal{G}|>\binom{n-1}{k-1}=\binom{n-1}{n-k} \\
S \cap T \neq \emptyset \Rightarrow S \nsubseteq \bar{T} \Rightarrow \begin{array}{c}
\mathcal{F} \text { and } \Delta_{k} \mathcal{G} \\
\text { are disjoint }
\end{array} \\
\begin{array}{c}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}<|\mathcal{F}|+\left|\Delta_{k} \mathcal{G}\right| \leq\binom{ n}{k} \\
\text { Contradiction! }
\end{array}
\end{gathered}
$$

