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Ramsey Number

• For any edge-2-coloring of , 
there is a monochromatic .

K6
K3

“In any party of six people, either at least three of them are mutual 
strangers or at least three of them are mutual acquaintances”

Ramsey Theorem 
If , for any edge-
2-coloring of , there is a 
monochromatic .

n ≥ R(k, k)
Kn

Kk

Ramsey number: R(k, k)



Theorem (Erdős 1947) 
If  then it is possible to color 
the edges of  with 2 colors so that there is 
no monochromatic  subgraph.

(n
k) ⋅ 21−(k

2) < 1
Kn

Kk

Each edge  is colored e ∈ Kn { 
 with prob 1/2

with prob 1/2

For any  subgraph:Kk




                         

Pr[the Kk is monochromatic] = Pr[Kk or Kk]

= 21−(k
2)



Theorem (Erdős 1947) 
If  then it is possible to color 
the edges of  with 2 colors so that there is 
no monochromatic  subgraph.

(n
k) ⋅ 21−(k

2) < 1
Kn

Kk

Each edge  is colored e ∈ Kn { 
 with prob 1/2

with prob 1/2

Pr[∃Kk is monochromatic] ≤ (n
k)21−(k

2) < 1
  ⟹ Pr[no Kk is monochromatic] > 0

  a 2-coloring of edges of  without monochromatic ⟹ ∃ Kn Kk



Tournament

 players, each pair has a match.

 iff  beats .

n
u → v u v

-paradoxical:k
For every -subset  of , 

there is a player in  who 
beats all players in .

k S V
V∖S

S

T(V, E)

“Does there exist a -paradoxical tournament for every finite ?”k k



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pick a random tournament  on  players .T n [n]

Fixed any S ∈ ([n]
k )

Event :  no player in  beat all players in .AS V∖S S

Pr[AS ] =
�
1� 2�k

⇥n�k



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pr[AS ] =
�
1� 2�k

⇥n�k

< 1Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ ⇥
�

S⇥([n]
k )

(1� 2�k)n�k

Pick a random tournament  on  players .T n [n]
Event :  no player in  beat all players in .AS V∖S S

∀S ∈ ([n]
k ) :



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

< 1Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅

Pr[T is k-paradoxical] = 1� Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

Pick a random tournament  on  players .T n [n]
Event :  no player in  beat all players in .AS V∖S S



If
�n

k

⇥ �
1� 2�k

⇥n�k
< 1 then there is a

k-paradoxical tournament of n players.

Theorem (Erdős 1963)

Pr[T is k-paradoxical] > 0

There is a -paradoxical tournament on  players.k n

Pick a random tournament  on  players .T n [n]



The Probabilistic Method

• Pick random ball from a box, 
Pr[the ball is blue]>0.

⇒ There is a blue ball.

• Define a probability space Ω, and a property P:

  a sample  with property .

Pr
x

[P(x)] > 0

⟹ ∃ x ∈ Ω P



• Average height of the students in class is l.

⇒ There is a student of height ≥ l  ( ≤ l ) 

Averaging Principle

min
maxavg

• For a random variable X,

• ∃ x ≤ E[X], such that X = x is possible;
• ∃ x ≥ E[X], such that X = x is possible.



Hamiltonian Paths in Tournament

There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

Hamiltonian path:
a path visiting every

vertex exactly once.



There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

For every permutation  of ,π [n]
 is a Hamiltonian pathπ
 is not a Hamiltonian pathπ

X� =
�

1

0

X =
�

�
X�# Hamiltonian paths:

E[X�] = Pr[X� = 1] = 2�(n�1)

Pick a random tournament  on  players .T n [n]



There is a tournament on n players with at
least n!2�(n�1) Hamiltonian paths.

Theorem (Szele 1943)

E[X�] = Pr[X� = 1] = 2�(n�1)

E[X ] =
�

�
E[X�] = n!2�(n�1)

Pick a random tournament  on  players .T n [n]

X =
�

�
X�# Hamiltonian paths:



Large Independent Set

• Graph 


• independent set 



• no adjacent 
vertices in 


• max independent set 
is NP-hard

G(V, E)

S ⊆ V

S



 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

4m

• Draw a random independent set 


• each  is selected into a random set  
independently with probability  (to be fixed later)


• for every : delete one of  from  if 



• the resulting set is an independent set 

S ⊆ V
v ∈ V R

p
uv ∈ E u, v R

u, v ∈ R
S

(How?)

• Show that E[ |S | ] ≥
n2

4m



:    vertices,   edgesG(V, E) n m

1. sample a random  :  R each vertex is chosen 

independently with probability p

2. modify  to  :R S
    if ∀uv ∈ E u, v ∈ R

delete one of  from  u, v R

independent set!

:  # of edges in Y R Yuv =

(
1 u, v 2 S

0 o.w.
Y =

X

uv2E

Yuv

E[ |S | ] ≥ E[ |R | − Y] = E[ |R | ] − E[Y]

E[ |R | ] = np = ∑
uv∈E

E[Yuv]E[Y] = mp2



p =
n

2m

=
n2

4m

when

:    vertices,   edgesG(V, E) n m

1. sample a random  :  R each vertex is chosen 

independently with probability p

2. modify  to  :R S
    if ∀uv ∈ E u, v ∈ R

delete one of  from  u, v R

independent set!

E[ |S | ] ≥ np − mp2



random independent set :S

average 
degree d =

2m

n

=
n

2d

 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

4m

E[ |S | ] ≥
n2

4m

:    vertices,   edgesG(V, E) n m



 has  vertices and  edgesG n m

 an independent set  of size ∃ S

Theorem:
n2

2m + n

• Draw a random independent set 


• each  draws a real number  
uniform and independent at random


• each  joins  iff  is local maximal within 
the neighborhood of 


•  must be an independent set

S ⊆ V
v ∈ V rv ∈ [0,1]

v ∈ V S rv
v

S

• :   ∀v ∈ V Pr[v ∈ S] =
1

dv + 1
⟹ E[ |S | ] = ∑

v∈V

1
dv + 1

≥
n2

2m + n
(Cauchy-Schwarz)



Markov’s Inequality

Markov’s Inequality:

Pr[X ⇥ t ] � E[X ]
t

.

For nonnegative X , for any t > 0,



Markov’s Inequality

Markov’s Inequality:

Pr[X ⇥ t ] � E[X ]
t

.

For nonnegative X , for any t > 0,

� Y ⇥
�

X
t

⇥
⇥ X

t
,

Pr[X � t ] = E[Y ] � E
�

X
t

⇥
= E[X ]

t
.

Proof:

Y =
�

1 if X � t ,

0 otherwise.
Let

QED



Graph

girth g(G):

chromatic number χ(G):

G(V, E)

length of the shortest cycle

minimum number of color to 
properly color the vertices of G.

g(G) = 3 χ(G)=3

g(G) = 4 χ(G)=2

Intuition: Large cycles are easy to color!



For all k, ⌅, there exists a finite graph G with
�(G) � k and g(G) � ⌅.

Theorem (Erdős 1959)

independence number α(G):
size of the largest independent set in G.

coloring classes: 

equivalence classes of vertices

“Independent sets!”

⇥(G) � n

�(G) � n

k

� kn vertices



|V | = n ⇥{u, v} �
�

V

2

⇥

Pr[{u, v} � E] = pindependently

For all k, ⌅, there exists a graph G on n vertices
with �(G) � n

k and g(G) ⇥ ⌅.



Random Graphs

Alfréd Rényi
(1921 - 1970)

Paul Erdős
(1913 - 1996)



ON THE EVOLUTION OF RANDOM GRAPHS 

P. ERD& and A. RBNYI 

Institute of h4fathematics 
Hmgarian Academy of Sciences, Hungary 

1. Definition of a random graph 
Let E,, .V denote the set of all graphs having n given labelled vertices VI, L’s;,., 

Vn and N edges. The graphs considered are supposed to be not oriented, without 
parallel edges and without slings (such graphs are sometimes called linear graphs). 
Thus a graph belonging to the set En, N is obtained by choosing N out of the 
possible (5) edges between the points VI, VZ, ..., Vn, and therefore the number of 

n 
elements of En, ?V is equal to 2 (’ ‘> . 

AT 
A random graph r,, N can be defined as an 

element of En, N chosen at random, so that each of the elements of E,, N have the 

same probability to be chosen, namely 1 
/( > 

‘I;l . There is however an other slightly 

different point of view, which has some advantages. We may conszder the forma- 
tion of u random graph as a stochastic process defined as follows : At time t=l 

we choose one out of the (;) p ossible edges connecting the points VI, VZ,..., V,, 
each of these edges having the same probability to be chosen ; let this edge be denoted 
by el. At time t=2 we choose one of the possible (z) -1 edges, different from er, 
all these being equiprobable. Continuing this process at time t=k+l we choose 
one of the (a) 4 p ossible edges different from the edges er, ez, ..., ek already 
chosen, each of the remaining edges being equiprobable, i.e. having the probability 
1 /I(;)-k). We d enote by r,, .V the graph consisting of the vertices VI, Vt, .. ., 
LTfi and the edges el, e2, ‘.., eN. 

11 Other not equivalent but closely connected notions of random graphs are as follows: 
1) \Ve may define a random graph i’z, G by dropping the restriction that there should 
be no parallel edges; thus we may suppose that e,+t may be equal with probability 

1 /(z) with each of the [z) edg es, independently of whether they are contained in the 
sequence of edges e,, e?, .‘., e,t or not. These randum graphs are considered in the paper 
131. 2) T%‘e may decide with respect to each of the (?J) edges, whether they should form 
part of the random graph considered or not, the probability of including a given edge 
being p= lV/:( i) for each edge and the decisions concerning different edges being in- 
dependent. We denote the random graph thus obtained by rzf,%,. These random graphs 
have been considered in the paper [4J 

Erdős-Rényi 1960 paper:



|V | = n ⇥u, v � V

G(n, p)

Pr [ {u, v} � E ] = pindependently

uniform random graph: G(n, 1
2 )



For all k, ⌅, there exists a graph G on n vertices
with �(G) � n

k and g(G) ⇥ ⌅.

Pr[ α(G) > n/k ] < 1/2 

G~G(n,p)

Pr[ g(G) < l ] < 1/2 }
union
bound

Pr[ α(G)≤n/k ⋀ g(G)≥l ]>0

Pr[ α(G)>n/k ⋁ g(G)<l ]<1

Plan:

fix any large k, l exists n



G~G(n,p)

� 8Z[�S �
�

[n]

n/k

�
�{u, v} �

�
S

2

�
, uv �� G]

8Z[�(G) � n/k] � 8Z[�QVL� [M\�WN�[QbM n/k]

�
�

S�( [n]
n/k)

8Z[�{u, v} �
�

S

2

�
, uv �� G]

=
�

S�( [n]
n/k)

�

{u,v}�(S
2)

8Z[uv �� G] =

�
n

n/k

�
(1 � p)(

n/k
2 )

� nn/k(1 � p)(
n/k
2 )

union bound



G~G(n,p) 8Z[�(G) � n/k] � nn/k(1 � p)(
n/k
2 )

Pr[ g(G) > l ] < ?

for each i-cycle � : u1 � u2 � . . . � ui � u1

8Z[� Q[�I�KaKTM�QV G] = pi

X� =

�
1 � Q[�I�KaKTM�QV G

0 W\PMZ_Q[M

# of length≤l cycles in G

E[X]

X =
��

i=3

�

�:|�|=i

X�

=
��

i=3

�

�:|�|=i

E[X�] =
��

i=3

�

�:|�|=i

pi

=
��

i=3

n(n � 1) · · · (n � i + 1)

2i
pi �

��

i=3

ni

2i
pi



G~G(n,p)

8Z[�(G) � n/k] � nn/k(1 � p)(
n/k
2 )

# of length≤l cycles in G

E[X] �
��

i=3

ni

2i
pi

p = n��1 � <
1

2�

=
��

i=3

n�i

2i
= o(n)

k =
np

3 TVn
n/k =

3 TVn

p

� nn/kM�p(n/k
2 )

= (nM�p(n/k�1)/2)n/k = o(1)

8Z[X � n

2
] = o(1)

X :

Markov

� 2E[X]

n



G~G(n,p)

8Z[�(G) � n/k]

# of length≤l cycles in G

p = n��1 � <
1

2�
k =

np

3 TVn

= o(1)

8Z[X � n

2
] = o(1)

X :

=
n1/2�

3 TVn

delete 1 vertex per each length≤l cycle in G G’

g(G’) > l

∃ G: 
# of length≤l cycles in G < n/2

�(G) < n/k

�(G�) � �(G) < n/k



⇥(G) � n

�(G)

For all k, ⌅, there exists a finite graph G with
�(G) � k and g(G) � ⌅.

Theorem (Erdős 1959)

independence number α(G):
size of the largest independent set in G.

coloring classes: 

equivalence classes of vertices

“Independent sets!”

� n

k

� kn vertices



Lovász Local Lemma



Ramsey Number

• For any edge-2-coloring of , 
there is a monochromatic .

K6
K3

“In any party of six people, either at least three of them are mutual 
strangers or at least three of them are mutual acquaintances”

Ramsey Theorem 
If , for any edge-
2-coloring of , there is a 
monochromatic .

n ≥ R(k, k)
Kn

Kk

Ramsey number: R(k, k)



“∃ a 2-coloring of   with no monochromatic .”Kn Kk

The Probabilistic Method:

a random 2-coloring of Kn

⇥S �
�[n]

k

⇥

event  :   is a monochromatic AS S Kk

Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

To prove:

Dependency!

R(k,k) > ?



Lovász Sieve 

• Bad events:


• None of the bad events occurs:


• The probabilistic method: being good is possible

A1, A2, . . . , An

Pr

�
n⇤

i=1
Ai

⇥

Pr

�
n⇤

i=1
Ai

⇥

> 0



A1

A2

A3

A4A5 mutually independentX1, . . . , X4

A1(X1, X4)
A2(X1, X2)
A3(X2, X3)

A4(X4)
A5(X3)

events:   A1, A2, …, An

 :  max degree of dependency graph d

dependency graph: D(V, E)
V = {1,2,…, n}

ij ∈ E  and  are dependentAi Aj



Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An

 :  max degree of dependency graph d



a random 2-coloring of  :Kn

⇥S �
�[n]

k

⇥

Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0

R(k,k) ≥ n

, uniformly and independently∀{u, v} ∈ Kn

� uv
uv

  dependentAS, AT |S ⇥ T | � 2

To prove:

Pr[AS ] = 2 · 2�(k
2) = 21�(k

2)

max degree of dependency graph d ⇥
�

k

2

⇥�
n

k � 2

⇥

“∃ a 2-coloring of   with no monochromatic .”Kn Kk

event AS :  S is a monochromatic Kk



Pr

�

⇧⇤
⌥

S�([n]
k )

AS

⇥

⌃⌅ > 0To prove:

Pr[AS ] = 21�(k
2)

d ⇥
�

k

2

⇥�
n

k � 2

⇥

Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

�

R(k,k) ≥ n = �(k2k/2)

for some

e21�(k
2) (d + 1) � 1

with constant c
n = ck2k/2



Pr

�
n⌅

i=1
Ai

⇥

=
n⇤

i=1
Pr

�

Ai

⇧⇧⇧⇧
i�1⌅

j=1
A j

⇥

=
n⌅

i=1

⌥

1�Pr

⇥

Ai

⌃⌃⌃⌃
i�1⇧

j=1
A j

⇤�

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

For any E1, E2, . . . , En,

Pr

�
n⌅

i=1

Ei

⇥
=

n⇤

k=1

Pr

�
Ek |

⌅

i<k

Ei

⇥
.

Lemma proof:
Pr

�
n⇤

i=1

Ei

⇥

Pr

�
n�1⇤

i=1

Ei

⇥Pr

⇥
En

���
n�1⌅

i=1

Ei

⇤

=

recursion!

events:   A1, A2, …, An



{i1, . . . , im}for any

induction on :m

I.H.

, trivialm = 1

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

Pr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

events:   A1, A2, …, An



I.H.

Pr
�

Ai1 | Ai2 · · · Aim

⇥
=

Pr
�

Ai1 Ai2 · · · Aik | Aik+1 · · · Aim

⇥

Pr
�

Ai2 · · · Aik | Aik+1 · · · Aim

⇥

suppose  adjacent to i1 i2, …, ik

� Pr
�

Ai1 | Aik+1 · · · Aim

⇥
= Pr

�
Ai1

⇥

I.H.

=
kY

j=2
Pr

h
Ai j | Ai j+1 · · · Aim

i

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)

9x1, . . . , xn 2 [0, 1)

{i1, . . . , im}for anyPr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

 xi1

kY

j=2

(1� xij )

=
kY

j=2

≥
1°Pr

h
Ai j | Ai j+1 · · · Aim

i¥

�
kY

j=2

(1� xij )

events:   A1, A2, …, An



Pr

�
n⌅

i=1
Ai

⇥

=
n⇤

i=1
Pr

�

Ai

⇧⇧⇧⇧
i�1⌅

j=1
A j

⇥

=
n⌅

i=1

⌥

1�Pr

⇥

Ai

⌃⌃⌃⌃
i�1⇧

j=1
A j

⇤�

> 0

{i1, . . . , im}for anyPr
h

Ai1 | Ai2 · · · Aim

i
∑ xi1

∏
nY

i=1
(1°xi )

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An



Lovász Local Lemma 

• ∀i,  Pr[Ai] ≤ p
• ep(d + 1) ≤ 1

Pr

�
n⇤

i=1
Ai

⇥

> 0

General Lovász Local Lemma 
9x1, . . . , xn 2 [0, 1)

8i,Pr[Ai]  xi

Y

j⇠i

(1� xj)
Pr

"
n̂

i=1

Ai

#
�

nY

i=1

(1� xi)

events:   A1, A2, …, An

 :  max degree of dependency graph d



• Variables: 


• (local) Constraints: 


• each  is defined on a subset  of variables


 


• Any  is a CSP solution if it satisfies all 


• Examples:


• -CNF,  (hyper)graph coloring, set cover, unique games… 


• vertex cover, independent set, matching, perfect matching, …

x1, …, xn ∈ [q]

C1, …, Cm

Ci 𝗏𝖻𝗅(Ci)

Ci : [q]𝗏𝖻𝗅(Ci) → {𝚃𝚛𝚞𝚎, 𝙵𝚊𝚕𝚜𝚎}

x ∈ [q]n C1, …, Cm

k

Constraint Satisfaction Problem (CSP)



Hypergraph Coloring
• -uniform hypergraph :


•  is vertex set,  is set of hyperedges


• degree of vertex :  # of hyperedges 


• proper -coloring of :


•  such that no hyperedge is monochromatic


k H = (V, E)
V E ⊆ (V

k )
v ∈ V e ∋ v

q H
f : V → [q]

∀e ∈ E, | f(e) | > 1

k ≥ logq Δ + logq logq Δ + O(1)

Theorem:   For any -uniform hypergraph  of max-degree ,


  is -colorable

k H Δ

Δ ≤
qk−1

ek
⟹ H q



Hypergraph Coloring

• Uniformly and independently color each  a random color 


• Bad event  for each hyperedge :  is monochromatic


• 


• Dependency degree for bad events 


•

v ∈ V ∈ [q]

Ae e ∈ E ⊆ (V
k ) e

Pr[Ae] ≤ p = q1−k

d ≤ k(Δ − 1)

Δ ≤ qk−1

ek ⟹ ep(d + 1) ≤ 1 Apply LLL

Theorem:   For any -uniform hypergraph  of max-degree ,


  is -colorable

k H Δ

Δ ≤
qk−1

ek
⟹ H q


