Combinatorics

The Probabilistic Method

尹一通 Nanjing University, 2024 Spring

The Probabilistic Method

Paul Erdős (1913-1996)

Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

 For any edge-2-coloring of K₆, there is a *monochromatic* K₃.

Ramsey Theorem

If $n \ge R(k, k)$, for any edge-2-coloring of K_n , there is a monochromatic K_k .

Ramsey number: R(k, k)

Theorem (Erdős 1947) If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$ then it is possible to color the edges of K_n with 2 colors so that there is no monochromatic K_k subgraph.

Each edge
$$e \in K_n$$
 is colored
with prob 1/2 with prob 1/2

For any K_k subgraph:

Pr[the K_k is monochromatic] = Pr[K_k or K_k] = $2^{1 - \binom{k}{2}}$ **Theorem (Erdős 1947)** If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$ then it is possible to color the edges of K_n with 2 colors so that there is no monochromatic K_k subgraph.

Each edge
$$e \in K_n$$
 is colored
with prob 1/2
with prob 1/2
 $\Pr[\exists K_k \text{ is monochromatic}] \leq {n \choose k} 2^{1-{k \choose 2}} < 1$
 $\implies \Pr[\operatorname{no} K_k \text{ is monochromatic}] > 0$

 \implies \exists a 2-coloring of edges of K_n without monochromatic K_k

Tournament

T(V, E)

n players, each pair has a match.

 $u \rightarrow v \text{ iff } u \text{ beats } v.$

k-paradoxical:

For every k-subset S of V, there is a player in $V \setminus S$ who beats all players in S.

"Does there exist a k-paradoxical tournament for every finite k?"

Pick a random tournament *T* on *n* players [*n*]. Fixed any $S \in \binom{[n]}{k}$

Event A_S : no player in $V \setminus S$ beat all players in S.

$$\Pr[A_S] = (1 - 2^{-k})^{n-k}$$

Pick a random tournament T on n players [n]. Event A_S : no player in $V \setminus S$ beat all players in S. $\forall S \in \binom{[n]}{k} : \operatorname{Pr}[A_S] = \left(1 - 2^{-k}\right)^{n-k}$ $\Pr\left|\bigvee_{S\in\binom{[n]}{k}}A_S\right| \leq \sum_{S\in\binom{[n]}{k}}(1-2^{-k})^{n-k} < 1$

Pick a random tournament *T* on *n* players [*n*]. Event A_S : no player in $V \setminus S$ beat all players in *S*.

$$\Pr\left[\bigvee_{S \in \binom{[n]}{k}} A_S\right] < 1$$

$$\Pr[T \text{ is } k\text{-paradoxical}] = 1 - \Pr\left[\bigvee_{S \in \binom{[n]}{k}} A_S\right] > 0$$

Pick a random tournament T on n players [n].

$\Pr[T \text{ is } k \text{-paradoxical}] > 0$

There is a k-paradoxical tournament on n players.

The Probabilistic Method

 Pick random ball from a box, Pr[the ball is blue]>0.
 ⇒ There is a blue ball.

• Define a probability space Ω , and a property P: $\Pr[P(x)] > 0$ $\implies \exists \text{ a sample } x \in \Omega \text{ with property } P.$

Averaging Principle

• Average height of the students in class is *l*.

 \Rightarrow There is a student of height $\geq l (\leq l)$

- For a random variable *X*,
 - $\exists x \leq E[X]$, such that X = x is possible;
 - $\exists x \ge E[X]$, such that X = x is possible.

Hamiltonian Paths in Tournament

Hamiltonian path: a path visiting every vertex *exactly* once.

Theorem (Szele 1943)

There is a tournament on *n* players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Theorem (Szele 1943)

There is a tournament on *n* players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Pick a random tournament T on n players [n].

For every permutation π of [n],

 $X_{\pi} = \begin{cases} 1 & \pi \text{ is a Hamiltonian path} \\ 0 & \pi \text{ is not a Hamiltonian path} \end{cases}$

Hamiltonian paths: $X = \sum_{\pi} X_{\pi}$ $E[X_{\pi}] = Pr[X_{\pi} = 1] = 2^{-(n-1)}$

There is a tournament on *n* players with at least $n!2^{-(n-1)}$ Hamiltonian paths.

Pick a random tournament T on n players [n].

Hamiltonian paths:
$$X = \sum_{\pi} X_{\pi}$$

 $E[X_{\pi}] = \Pr[X_{\pi} = 1] = 2^{-(n-1)}$
 $E[X] = \sum_{\pi} E[X_{\pi}] = n!2^{-(n-1)}$

Large Independent Set

- Graph G(V, E)
- independent set $S \subseteq V$
 - no adjacent
 vertices in S
- max independent set is NP-hard

Theorem: G has n vertices and m edges

$$\exists$$
 an independent set S of size $\frac{n^2}{4m}$

- Draw a random independent set $S \subseteq V$ (How?)
 - each $v \in V$ is selected into a random set R independently with probability p (to be fixed later)

1

- for every $uv \in E$: delete one of u, v from R if $u, v \in R$
- the resulting set is an independent set S

• Show that
$$\mathbf{E}[|S|] \ge \frac{n^2}{4m}$$

G(V, E): *n* vertices, *m* edges

1. sample a random *R*: each vertex is chosen *independently* with probability *p*

2. modify *R* to *S*: independent set! $\forall uv \in E$ if $u, v \in R$ delete one of u, v from *R*

Y: # of edges in R $Y = \sum_{uv \in E} Y_{uv}$ $Y_{uv} = \begin{cases} 1 & u, v \in S \\ 0 & o.w. \end{cases}$

 $\mathbf{E}[|S|] \ge \mathbf{E}[|R| - Y] = \mathbf{E}[|R|] - \mathbf{E}[Y]$

 $\mathbf{E}[|R|] = np \qquad \mathbf{E}[Y] = \sum_{uv \in E} \mathbf{E}[Y_{uv}] = mp^2$

G(V, E): *n* vertices, *m* edges

1. sample a random *R*: each vertex is chosen *independently* with probability *p*

2. modify *R* to *S*: independent set! $\forall uv \in E$ if $u, v \in R$ delete one of u, v from *R*

$$\mathbf{E}[|S|] \ge np - mp^2 = \frac{n^2}{4m}$$

when
$$p = \frac{n}{2m}$$

 $\frac{2m}{2}$

random independent set S:

$$\mathbf{E}[|S|] \ge \frac{n^2}{4m} = \frac{n}{2d}$$

Theorem: G has n vertices and m edges

$$\exists$$
 an independent set S of size $\frac{n^2}{2m+n}$

- Draw a random independent set $S \subseteq V$
 - each $v \in V$ draws a real number $r_v \in [0,1]$ uniform and independent at random
 - each $v \in V$ joins S iff r_v is local maximal within the neighborhood of v
 - *S* must be an independent set

•
$$\forall v \in V$$
: $\Pr[v \in S] = \frac{1}{d_v + 1} \Longrightarrow \mathbb{E}[|S|] = \sum_{v \in V} \frac{1}{d_v + 1}$
(Cauchy-Schwarz) $\geq \frac{n^2}{2m + n}$

Markov's Inequality

Markov's Inequality: For *nonnegative* X, for any t > 0, $Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}$.

Markov's Inequality

Markov's Inequality:

For nonnegative X, for any t > 0, $Pr[X \ge t] \le \frac{E[X]}{t}.$

Proof:

Let
$$Y = \begin{cases} 1 & \text{if } X \ge t, \\ 0 & \text{otherwise.} \end{cases} \Rightarrow Y \le \left\lfloor \frac{X}{t} \right\rfloor \le \frac{X}{t}$$

 $\Pr[X \ge t] = \mathbf{E}[Y] \le \mathbf{E}\left[\frac{X}{t}\right] = \frac{\mathbf{E}[X]}{t}.$
QED

Graph G(V, E)

girth g(G): length of the shortest cycle

chromatic number $\chi(G)$:

minimum number of color to properly color the vertices of G.

$$\int g(G) = 3 \quad \chi(G) = 3$$

$$g(G) = 4 \quad \chi(G) = 2$$

Intuition: Large cycles are easy to color!

Theorem (Erdős 1959)

For all k, ℓ , there exists a finite graph G with $\chi(G) \ge k$ and $g(G) \ge \ell$.

coloring classes: equivalence classes of vertices "Independent sets!" independence number $\alpha(G)$: size of the largest independent set in G. *n* vertices $\chi(G) \ge \overline{C}$ $\overline{\alpha(G)} \le \frac{n}{L} \ge k$

For all k, ℓ , there exists a graph G on n vertices with $\alpha(G) \leq \frac{n}{k}$ and $g(G) \geq \ell$.

$$|V| = n$$
 $\forall \{u, v\} \in {\binom{V}{2}}$
independently $\Pr[\{u, v\} \in E] = p$

Random Graphs

Paul Erdős (1913 - 1996)

Alfréd Rényi (1921 - 1970)

Erdős-Rényi 1960 paper:

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDÖS and A. RÉNYI

Institute of Mathematics Hungarian Academy of Sciences, Hungary

1. Definition of a random graph

Let $E_{n,N}$ denote the set of all graphs having *n* given labelled vertices V_1, V_2, \cdots , V_n and *N* edges. The graphs considered are supposed to be not oriented, without parallel edges and without slings (such graphs are sometimes called linear graphs). Thus a graph belonging to the set $E_{n,N}$ is obtained by choosing *N* out of the possible $\binom{n}{2}$ edges between the points V_1, V_2, \cdots, V_n , and therefore the number of elements of $E_{n,N}$ is equal to $\binom{\binom{n}{2}}{N}$. A random graph $\Gamma_{n,N}$ can be defined as an element of $E_{n,N}$ chosen at random, so that each of the elements of $E_{n,N}$ have the same probability to be chosen, namely $1/\binom{\binom{n}{2}}{N}$. There is however an other slightly different point of view, which has some advantages. We may consider the formation of a random graph as a stochastic process defined as follows: At time t=1 we choose one out of the $\binom{n}{2}$ possible edges connecting the points V_1, V_2, \cdots, V_n ,

G(n,p)

$$|V| = n$$
 $\forall u, v \in V$
independently $\Pr[\{u, v\} \in E] = p$
uniform random graph: $G(n, \frac{1}{2})$

For all k, ℓ , there exists a graph G on n vertices with $\alpha(G) \leq \frac{n}{k}$ and $g(G) \geq \ell$.

fix any large k, l exists n

 $G \sim G(n,p)$

Plan:

Pr[$\alpha(G) > n/k \lor g(G) < l$]<1 Pr[$\alpha(G) \le n/k \land g(G) \ge l$]>0

 $G \sim G(n,p)$

$$\Pr[\alpha(G) \ge n/k] \le \Pr[\exists \text{ind. set of size } n/k]$$

$$\le \Pr[\exists S \in {\binom{[n]}{n/k}} \forall \{u, v\} \in {\binom{S}{2}}, uv \notin G]$$

$$\le \sum_{S \in {\binom{[n]}{n/k}}} \Pr[\forall \{u, v\} \in {\binom{S}{2}}, uv \notin G] \quad \text{union bound}$$

$$= \sum_{S \in {\binom{[n]}{n/k}}} \prod_{\{u, v\} \in {\binom{S}{2}}} \Pr[uv \notin G] \quad = {\binom{n}{n/k}} (1-p)^{\binom{n/k}{2}}$$

 $\leq n^{n/k} (1-p)^{\binom{n/k}{2}}$

 $G \sim G(n,p) \qquad \Pr[\alpha(G) \ge n/k] \le n^{n/k} (1-p)^{\binom{n/k}{2}}$ $\Pr[g(G) > l] < ?$ for each *i*-cycle $\sigma: u_1 \to u_2 \to \ldots \to u_i \to u_1$ $\Pr[\sigma \text{ is a cycle in } G] = p^i$ $X_{\sigma} = \begin{cases} 1 & \sigma \text{ is a cycle in } G \\ 0 & \text{otherwise} \end{cases}$ # of length $\leq l$ cycles in G $X = \sum X_{\sigma}$ $\mathbb{E}[X] = \sum_{i=0}^{\ell} \sum_{i=1}^{\ell} \mathbb{E}[X_{\sigma}] = \sum_{i=0}^{\ell} \sum_{i=1}^{\ell} p^{i}$ $\begin{aligned} X &= \sum_{i=3}^{N} \sum_{\sigma: |\sigma|=i}^{n} \sum_{i=3}^{n} \sum_{\sigma: |\sigma|=i}^{n} \sum_{i=3}^{n} \frac{1}{\sigma: |\sigma|=i} \\ &= \sum_{i=3}^{\ell} \frac{n(n-1)\cdots(n-i+1)}{2i} p^{i} \leq \sum_{i=3}^{\ell} \frac{n^{i}}{2i} p^{i} \end{aligned}$

$$G \sim G(n,p) \qquad k = \frac{np}{3\ln n} \qquad n/k = \frac{3\ln n}{p}$$
$$\Pr[\alpha(G) \ge n/k] \qquad \le n^{n/k} (1-p)^{\binom{n/k}{2}} \\ \le n^{n/k} e^{-p\binom{n/k}{2}} \\ = (ne^{-p(n/k-1)/2})^{n/k} = o(1)$$

 $X: \# of length \leq l cycles in G$

$$\mathbb{E}[X] \leq \sum_{i=3}^{\ell} \frac{n^{i}}{2i} p^{i} = \sum_{i=3}^{\ell} \frac{n^{\theta i}}{2i} = o(n)$$

$$p = n^{\theta - 1} \qquad \theta < \frac{1}{2\ell}$$

$$\Pr[X \geq \frac{n}{2}] \leq \frac{2\mathbb{E}[X]}{n} = o(1)$$

$$Markov$$

$$\begin{array}{l} G \sim G(n,p) \\ p = n^{\theta-1} \quad \theta < \frac{1}{2\ell} \quad k = \frac{np}{3\ln n} = \frac{n^{1/2\ell}}{3\ln n} \\ \Pr[\alpha(G) \ge n/k] = o(1) \\ X: \quad \text{# of length} \le l \text{ cycles in } G \\ \Pr[X \ge \frac{n}{2}] = o(1) \\ \exists \ G: \quad \alpha(G) < n/k \\ \quad \text{# of length} \le l \text{ cycles in } G < n/2 \\ \end{array}$$

$$\begin{array}{l} \text{delete 1 vertex per each length} \le l \text{ cycle in } G \\ \hline \end{array}$$

g(G') > l $\alpha(G') \le \alpha(G) < n/k$

Theorem (Erdős 1959)

For all k, ℓ , there exists a finite graph G with $\chi(G) \ge k$ and $g(G) \ge \ell$.

coloring classes: equivalence classes of vertices "Independent sets!" independence number $\alpha(G)$: size of the largest independent set in G. *n* vertices $\chi(G) \ge \overline{C}$ $\overline{\alpha(G)} \le \frac{n}{L} \ge k$

Lovász Local Lemma

Ramsey Number

"In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances"

 For any edge-2-coloring of K₆, there is a *monochromatic* K₃.

Ramsey Theorem

If $n \ge R(k, k)$, for any edge-2-coloring of K_n , there is a monochromatic K_k .

Ramsey number: R(k, k)

R(k,k) > ?

" \exists a 2-coloring of K_n with no monochromatic K_k ." The Probabilistic Method: a random 2-coloring of K_n $\forall S \in \binom{[n]}{\iota}$ event A_S : S is a monochromatic K_k To prove: Der e A_S $S \in \binom{[n]}{k}$

Lovász Sieve

- **Bad** events: $A_1, A_2, ..., A_n$
- None of the bad events occurs:

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right]$$

• The probabilistic method: being good is possible

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] > 0$$

events: A_1, A_2, \dots, A_n dependency graph: D(V, E) $V = \{1, 2, \dots, n\}$ $ij \in E \bigoplus A_i$ and A_j are dependent d: max degree of dependency graph

$$\begin{array}{ccc}
A_1(X_1, X_4) & & A_4(X_4) \\
A_2(X_1, X_2) & & A_5(X_3) \\
A_3(X_2, X_3) & & A_5(X_3)
\end{array}$$

 X_1, \ldots, X_4 mutually independent

events:
$$A_1, A_2, ..., A_n$$

 $d: \max degree of dependency graph$

 $R(k,k) \ge n$

" \exists a 2-coloring of K_n with no monochromatic K_k ." a random 2-coloring of K_n : $\forall \{u, v\} \in K_n$, uniformly and independently $\begin{cases} uv \\ uv \end{cases}$ $\forall S \in {\binom{[n]}{k}}$ event A_S : S is a monochromatic K_k $\Pr[A_S] = 2 \cdot 2^{\binom{k}{2}} = 2^{1 - \binom{k}{2}}$ $\begin{array}{l} A_S, A_T \text{ dependent } & \longmapsto & |S \cap T| \geq 2 \\ \text{max degree of dependency graph } d \leq \binom{k}{2} \binom{n}{k-2} \end{array}$ **To prove:** $\Pr \left| \bigwedge_{S \in \binom{[n]}{k}} \overline{A_S} \right| > 0$

Lovász Local Lemma
•
$$\forall i, \Pr[A_i] \le p$$

• $ep(d+1) \le 1$ $\Pr\left[\bigwedge_{i=1}^n \overline{A_i}\right] > 0$

$$\Pr[A_S] = 2^{1 - \binom{k}{2}} \qquad \text{for some } n = ck2^{k/2} \\ d \le \binom{k}{2}\binom{n}{k-2} \qquad \text{with constant } c \\ e2^{1 - \binom{k}{2}} (d+1) \le 1 \\ \text{To prove: } \Pr\left[\bigwedge_{S \in \binom{[n]}{k}} \overline{A_S}\right] > 0 \\ R(k,k) \ge n = \Omega(k2^{k/2}) \end{cases}$$

events:
$$A_1, A_2, ..., A_n$$

$$\begin{aligned} & \left[\exists x_1, \dots, x_n \in [0, 1) \\ \forall i, \Pr[A_i] \leq x_i \prod_{j \sim i} (1 - x_j) \end{aligned} \right] \overset{\text{order}}{\longrightarrow} \Pr\left[\bigwedge_{i=1}^n \overline{A_i} \right] \geq \prod_{i=1}^n (1 - x_i) \end{aligned}$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] = \prod_{i=1}^{n} \Pr\left[\frac{\overline{A_{i}}}{A_{i}} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right] = \prod_{i=1}^{n} \left(1 - \Pr\left[A_{i} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]\right)$$

Lemma For any
$$\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$$
,

$$\Pr\left[\bigwedge_{i=1}^n \mathcal{E}_i\right] = \prod_{k=1}^n \Pr\left[\mathcal{E}_k \mid \bigwedge_{i < k} \mathcal{E}_i\right].$$

$$\Pr\left[\mathcal{E}_n \mid \bigwedge_{i=1}^{n-1} \mathcal{E}_i\right] = \frac{\Pr\left[\bigwedge_{i=1}^n \mathcal{E}_i\right]}{\Pr\left[\bigwedge_{i=1}^{n-1} \mathcal{E}_i\right]}$$

$$\Pr\left[\bigwedge_{i=1}^{n-1} \mathcal{E}_i\right]$$

events:
$$A_1, A_2, ..., A_n$$

I.H.

$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \le x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$$

induction on *m*:

$$m = 1$$
, trivial

events:
$$A_1, A_2, ..., A_n$$

$$\exists x_1, \dots, x_n \in [0, 1)$$
$$\forall i, \Pr[A_i] \le x_i \prod_{j \sim i} (1 - x_j)$$

I.H. $\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \le x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$ suppose i_1 adjacent to i_2, \ldots, i_k $\Pr\left[A_{i_{1}} \mid \overline{A_{i_{2}}} \cdots \overline{A_{i_{m}}}\right] = \frac{\Pr\left[A_{i_{1}}\overline{A_{i_{2}}} \cdots \overline{A_{i_{k}}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_{m}}}\right]}{\Pr\left[\overline{A_{i_{2}}} \cdots \overline{A_{i_{k}}} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_{m}}}\right]}$ $\leq \Pr\left[A_{i_1} \mid \overline{A_{i_{k+1}}} \cdots \overline{A_{i_m}}\right] = \Pr\left[A_{i_1}\right] \leq x_{i_1} \prod_{i=1}^k (1 - x_{i_j})$ $=\prod_{i=2}^{k} \Pr\left[\overline{A_{i_j}} \mid \overline{A_{i_{j+1}}} \cdots \overline{A_{i_m}}\right] = \prod_{i=2}^{k} \left(1 - \Pr\left[A_{i_j} \mid \overline{A_{i_{j+1}}} \cdots \overline{A_{i_m}}\right]\right)$ $\square \square \ge \prod (1 - x_{i_i})$

events:
$$A_1, A_2, ..., A_n$$

$$\Pr\left[A_{i_1} \mid \overline{A_{i_2}} \cdots \overline{A_{i_m}}\right] \le x_{i_1} \text{ for any } \{i_1, \dots, i_m\}$$

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] = \prod_{i=1}^{n} \Pr\left[\overline{A_{i}} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right] = \prod_{i=1}^{n} \left(1 - \Pr\left[A_{i} \middle| \bigwedge_{j=1}^{i-1} \overline{A_{j}}\right]\right)$$
$$\geq \prod_{i=1}^{n} (1 - x_{i}) > \mathbf{0}$$

events:
$$A_1, A_2, ..., A_n$$

 $d: \max degree of dependency graph$

Constraint Satisfaction Problem (CSP)

- Variables: $x_1, \ldots, x_n \in [q]$
- (local) Constraints: C_1, \ldots, C_m
 - each C_i is defined on a subset $vbl(C_i)$ of variables

 $C_i: [q]^{\mathsf{vbl}(C_i)} \to \{\texttt{True}, \texttt{False}\}$

- Any $x \in [q]^n$ is a CSP solution if it satisfies all $C_1, ..., C_m$
- Examples:
 - *k*-CNF, (hyper)graph coloring, set cover, unique games...
 - vertex cover, independent set, matching, perfect matching, ...

Hypergraph Coloring

- *k*-uniform hypergraph H = (V, E):
 - *V* is vertex set, $E \subseteq \binom{V}{k}$ is set of hyperedges
- degree of vertex $v \in V$: # of hyperedges $e \ni v$
- proper q-coloring of H:

• $f: V \rightarrow [q]$ such that no hyperedge is *monochromatic* $\forall e \in E, |f(e)| > 1$

Theorem: For any *k*-uniform hypergraph *H* of max-degree Δ , $\Delta \leq \frac{q^{k-1}}{ek} \implies H \text{ is } q \text{-colorable}$

 $k \ge \log_q \Delta + \log_q \log_q \Delta + O(1)$

Hypergraph Coloring

Theorem: For any *k*-uniform hypergraph *H* of max-degree Δ , $\Delta \leq \frac{q^{k-1}}{e^k} \implies H \text{ is } q \text{-colorable}$

- Uniformly and independently color each $v \in V$ a random color $\in [q]$
- Bad event A_e for each hyperedge $e \in E \subseteq \binom{V}{k}$: *e* is monochromatic

•
$$\Pr[A_e] \le p = q^{1-k}$$

• Dependency degree for bad events $d \le k(\Delta - 1)$

•
$$\Delta \leq \frac{q^{k-1}}{ek} \implies ep(d+1) \leq 1$$
 Apply LLL