Probability Theory \＆ Mathematical Statistics

Moment and Deviation

尹一通 Nanjing University， 2023 Spring

Moments and Deviations

Markov’s Inequality

（马尔可夫不等式）
－Markov＇s inequality：Let X be a nonnegative－valued random variable．Then，

$$
\text { for any } a>0, \quad \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

－Proof（by indicator）：Let $I=I(X \geq a)$ ．Since $X \geq 0$ and $a>0$ ，we have

$$
I=I(X \geq a) \leq\left\lfloor\frac{X}{a}\right\rfloor \leq \frac{X}{a} .
$$

Therefore， $\operatorname{Pr}(X \geq a)=\mathbb{E}[I] \leq \mathbb{E}\left[\frac{X}{a}\right]=\frac{\mathbb{E}[X]}{a}$

Markov’s Inequality

（马尔可夫不等式）
－Markov＇s inequality：Let X be a nonnegative－valued random variable．Then，

$$
\text { for any } a>0, \quad \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

－Proof（by total expectation）：

$$
\begin{aligned}
& (X \geq a \text { is possible) } \quad \text { (is nonnegative) } \\
\mathbb{E}[X] & =\mathbb{E}[X \mid X \geq a] \cdot \operatorname{Pr}(X \geq a)+\mathbb{E}[X \mid X<a] \cdot \operatorname{Pr}(X<a) \\
& \geq a \cdot \operatorname{Pr}(X \geq a)+0 \cdot \operatorname{Pr}(X<a) \quad=a \cdot \operatorname{Pr}(X \geq a) \\
\Longrightarrow & \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
\end{aligned}
$$

Markov’s Inequality

（马尔可夫不等式）
－Markov＇s inequality：Let X be a nonnegative－valued random variable．Then，

$$
\text { for any } a>0, \quad \operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

－Corollary：for any $c>1, \quad \operatorname{Pr}(X \geq c \mathbb{E}[X]) \leq 1 / c$
－Tight in the worst case：$\forall c>1, \forall \mu \in \mathbb{R}, \exists$ nonnegative X with $\mathbb{E}[X]=\mu$ ， such that $\operatorname{Pr}(X \geq c \mu)=1 / c$
－Lower tail variant（sometimes called reverse Markov＇s inequality）：
$\operatorname{Pr}(X \leq a) \leq(u-\mathbb{E}[X]) /(u-a)$ requires X to have bounded range $X \leq u$

From Las Vegas to Monte Carlo

- Monte Carlo algorithm: randomized algorithms that are correct by chance
- LAS VEGAS

Las Vegas algorithm: randomized algorithms that always give correct result upon termination (but may run for a random period of time before termination)

- If there is a Las Vegas algorithm \mathscr{A} with expected running time at most $t(n)$ for any input of size $n \quad(\mathscr{A}$ has worst-case expected time complexity $t(n))$:

Algorithm \mathscr{B} :

simulate algorithm \mathscr{A} up to $\lceil t(n) / \epsilon\rceil$ steps; if algorithm \mathscr{A} terminates return the output of \mathscr{A};
else return an arbitrary answer;

- Algorithm \mathscr{B} is a Monte Carlo algorithm s.t.
- \mathscr{B} has worst-case running time $\leq\lceil t(n) / \epsilon\rceil$
- \mathscr{B} is correct with probability at least $1-\epsilon$ (by Markov inequality)

Cliques in Random Graph

- $G(n, p)$: between every pair u, v among n vertices, an edge is added i.i.d. with prob. p
- Fix a constant integer $k \geq 3$. Let X be the number of k-cliques $\left(K_{k}\right)$ in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in[n]$ of size $|S|=k$, let $I_{S}=I\left(K_{S} \subseteq G\right)$. Then:
- $\mathbb{E}\left[I_{S}\right]=\operatorname{Pr}\left(K_{S} \subseteq G\right)=p^{\binom{k}{2}}$

$$
X=\sum_{S \in\binom{[n]}{k}} I_{S}
$$

- Linearity of expectation: $\mathbb{E}[X]=\binom{n}{k} p^{\binom{k}{2}} \leq n^{k} p^{k(k-1) / 2}=o(1)$ for $p=o\left(n^{-2 /(k-1)}\right)$
- Markov's inequality: $\operatorname{Pr}(X \geq 1) \leq \mathbb{E}[X]=o(1) \Longrightarrow \operatorname{Pr}(X=0)=1-o(1)$
\Longrightarrow If $p=o\left(n^{-2 /(k-1)}\right)$, then $G(n, p)$ is K_{k}-free a.a.s. (asymptotically almost surely)

Generalized Markov's Inequality

- Let X be a random variable and $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ a nonnegative-valued function.

$$
\text { For any } a>0, \quad \operatorname{Pr}(f(X) \geq a) \leq \frac{\mathbb{E}[f(X)]}{a}
$$

- Proof: Apply the Markov's inequality to the random variable $Y=f(X)$.
- Applications: useful if $f(X)$ can "extract" useful information about X
- Chebyshev's inequality, k th moment method: $f(X)$ extracts the k th moment
- Chernoff-Hoeffding bounds, Bernstein inequalities: $f(X)$ extracts all moments

Deviation Inequality

- Let X be a random variable with mean $\mu=\mathbb{E}[X]$. For $a>0$

$$
\operatorname{Pr}(|X-\mu| \geq a) \leq ?
$$

- Applying Markov's inequality to $Y=|X-\mu|$ gives us

$$
\operatorname{Pr}(|X-\mu| \geq a) \leq \frac{\mathbb{E}[|X-\mu| D}{a} \text { difficult to calculate }
$$

- Alternatively, we may apply Markov's inequality to $Y=(X-\mu)^{2}$

$$
\operatorname{Pr}(|X-\mu| \geq a)=\operatorname{Pr}\left((X-\mu)^{2} \geq a^{2}\right) \leq \frac{\mathbb{E}\left[(X-\mu)^{2}\right]}{a^{2}} \quad \begin{gathered}
\text { Variance } \\
\begin{array}{c}
\text { (2nd central } \\
\text { moment }
\end{array}
\end{gathered}
$$

Variance（方差）and Moments（矩）

－For integer $k>0$ ，the k th moment（ k 阶矩）of a random variable X is $\mathbb{E}\left[X^{k}\right]$ ， and the k th central moment（ k 阶中心矩）of X is $\mathbb{E}\left[(X-\mathbb{E}[X])^{k}\right]$ ．
－Sometimes，a random variable X is called centralized（中心化的）if $\mathbb{E}[X]=0$ ． A random variable X can be centralized by $Y=X-\mathbb{E}[X]$ ．
－The variance（方差）of a random variable X is its 2 nd central moment：

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

and the standard deviation（标准差）of X is $\sigma=\sigma[X]=\sqrt{\operatorname{Var}[X]}$

Chebyshev＇s Inequality

（切比雪夫不等式）

－Chebyshev＇s inequality：Let X be a random variable．For any $a>0$ ，

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\text { Var }[X]}{a^{2}}
$$

－Proof：Apply Markov＇s inequality to $Y=(X-\mathbb{E}[X])^{2}$ ．
－Corollary：For standard deviation $\sigma=\sqrt{\operatorname{Var}[X]}$ ，for any $k \geq 1$ ，

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Median and Mean

－The median（中位数）of random variable X is defined to be any value m s．t．：

$$
\operatorname{Pr}(X \leq m) \geq 1 / 2 \text { and } \operatorname{Pr}(X \geq m) \geq 1 / 2
$$

－The expectation $\mu=\mathbb{E}[X]$ is the value that minimizes

$$
\mathbb{E}\left[(X-\mu)^{2}\right]
$$

－Proof：$f(x)=\mathbb{E}\left[(X-x)^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 x \mathbb{E}[X]+x^{2}$ is convex and has $f^{\prime}(\mu)=0$
－The median m is the value that minimizes

$$
\mathbb{E}[|X-m|]
$$

－Proof：By symmetry，suppose non－median $y>m$ so that $\operatorname{Pr}(X \geq y)<1 / 2$ ．

$$
\begin{gathered}
\mathbb{E}[|X-y|-|X-m|]=(m-y) \operatorname{Pr}(X \geq y)+\sum_{m<x<y}(m+y-2 x) \operatorname{Pr}(X=x)+(y-m) \operatorname{Pr}(X \leq m) \\
>(m-y) / 2+(y-m) / 2=0
\end{gathered}
$$

Median and Mean

- If X is a random variable with finite expectation μ, median m, and standard deviation σ, then

$$
|\mu-m| \leq \sigma
$$

- Proof: $|\mu-m|=|\mathbb{E}[X]-m|=|\mathbb{E}[X-m]|$
$\leq \mathbb{E}[|X-m|]$ (Jensen's inequality / triangle inequality)
$\leq \mathbb{E}[|X-\mu|]$ (the median m minimizes $\mathbb{E}[|X-m|]$)
$=\mathbb{E}\left[\sqrt{(X-\mu)^{2}}\right] \leq \sqrt{\mathbb{E}\left[(X-\mu)^{2}\right]}=\sigma$ (Jensen's inequality)

Variance

Calculation of Variance

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- Proof: $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$

$$
\begin{aligned}
& =\mathbb{E}\left[X^{2}-2 \mathbb{E}[X] X+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

- X is constant a.s. $(\operatorname{Pr}(X=\mathbb{E}[X])=1) \Longleftrightarrow \mathbb{E}\left[X^{2}\right]=\mathbb{E}[X]^{2} \Longleftrightarrow \operatorname{Var}[X]=0$

Variance of Linear Function

- For random variables X, Y and real number $a \in \mathbb{R}$:
- $\operatorname{Var}[a]=0$
- Var $[X+a]=\operatorname{Var}[X]$ (variance is a central moment)
- $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$ (variance is quadratic)
- Var $[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2(\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y])$
- Proof: All can be verified through $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.

Covariance（协方差）

－The covariance（协方差）of two random variables X and Y is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

－Properties： $\operatorname{Var}[X]=\operatorname{Cov}(X, X)$
－Symmetric： $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
－Distributive： $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$
$\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$
－If X and Y are independent then

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=0
$$

Covariance of Independent Variables

- If random variables X and Y are independent, then

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

- If random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent, then

$$
\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right]=\mathbb{E}\left[\prod_{i=1}^{n-1} X_{i}\right] \cdot \mathbb{E}\left[X_{n}\right]=\prod_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

Proof: By change of variable

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x, y} x y \operatorname{Pr}(X=x \cap Y=y)=\sum_{x, y} x y \operatorname{Pr}(X=x) \operatorname{Pr}(Y=y) \\
& =\left(\sum_{x} x \operatorname{Pr}(X=x)\right)\left(\sum_{y} y \operatorname{Pr}(Y=y)\right)=\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Expectation of Product

- For random variables X and Y :

$$
\text { if } X \text { and } Y \text { independent, then } \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

- (Cauchy-Schwarz)

$$
\mathbb{E}[X Y]^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]
$$

- (Hölder) for any $p, q>0$ satisfying $\frac{1}{p}+\frac{1}{q}=1$

$$
\mathbb{E}[X Y] \leq \mathbb{E}\left[|X|^{p}\right]^{1 / p} \mathbb{E}\left[|Y|^{q}\right]^{1 / q}
$$

Correlation（相关性）

－The covariance（协方差）of two random variables X and Y is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

－The correlation coefficient（相关性系数）of X and Y is

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \cdot \operatorname{Var}[Y]}}
$$

－Two random variables X and Y are called uncorrelated if $\operatorname{Cov}(X, Y)=0$
－X and Y are uncorrelated means：
－ $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
－ $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

Variance of Sum

- For random variables X, Y :

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
$$

- For random variables $X_{1}, X_{2}, \ldots, X_{n}$:

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- For pairwise independent $X_{1}, X_{2}, \ldots, X_{n}$:

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]
$$

Variance of Indicator

- For Bernoulli random variable $X \in\{0,1\}$ with parameter p

$$
\begin{gathered}
X^{2}=X \Longrightarrow \mathbb{E}\left[X^{2}\right]=\mathbb{E}[X]=p \\
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)
\end{gathered}
$$

- For the indicator random variable $X=I(A)$ of event A :

$$
\operatorname{Var}[X]=\operatorname{Pr}(A)(1-\operatorname{Pr}(A))=\operatorname{Pr}(A) \operatorname{Pr}\left(A^{c}\right)
$$

Variance of Discrete Uniform Distribution

- For integers $a \leq b$, let X be chosen from $[a, b]=\{a, a+1, \ldots, b\}$ u.a.r.
- $\mathbb{E}[X]=\sum_{k=a}^{b} \frac{k}{b-a+1}=\frac{a+b}{2}$
- $\mathbb{E}\left[X^{2}\right]=\sum_{k=a}^{b} \frac{k^{2}}{b-a+1}=\frac{2 b^{2}+2 a b+2 a^{2}+b-a}{6}$
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{(a-b)(a-b-2)}{12}$

Poisson Distribution

- For Poisson random variable $X \sim \operatorname{Pois}(\lambda)$, recall $\mathbb{E}[X]=\lambda$, and

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\sum_{k \geq 0} k^{2} \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!}=\sum_{k \geq 1} k \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{(k-1)!} \\
& =\sum_{k \geq 0}(k+1) \frac{\mathrm{e}^{-\lambda} \lambda^{k+1}}{k!}=\lambda \sum_{k \geq 0}(k+1) \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda \mathbb{E}[X+1]=\lambda(\mathbb{E}[X]+1)=\lambda(\lambda+1) \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\lambda(\lambda+1)-\lambda^{2}=\lambda
\end{aligned}
$$

Geometric Distribution（几何分布）

－For geometric random variable $X \sim \operatorname{Geo}(p)$ ，recall $\mathbb{E}[X]=1 / p$ ，and

$$
\begin{gathered}
\mathbb{E}\left[X^{2}\right]=\sum_{k \geq 1} k^{2}(1-p)^{k-1} p=(2-p) p^{-2} \\
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=(2-p) p^{-2}-p^{-2}=(1-p) / p^{2}
\end{gathered}
$$

－Total expectation： $\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[X^{2} \mid X>1\right] \cdot(1-p)+\mathbb{E}\left[X^{2} \mid X=1\right] \cdot p$

$$
\begin{aligned}
& =\mathbb{E}\left[((X-1)+1)^{2} \mid X>1\right] \cdot(1-p)+p \\
\text { (memoryless) } & =\mathbb{E}\left[(X+1)^{2}\right] \cdot(1-p)+p \\
& =(1-p) \mathbb{E}\left[X^{2}\right]+2(1-p) / p+1
\end{aligned}
$$

$$
\Longrightarrow \mathbb{E}\left[X^{2}\right]=(2-p) / p^{2} \Longrightarrow \operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=(1-p) / p^{2}
$$

Binomial Distribution（二项分布）

－For binomial random variable $X \sim \operatorname{Bin}(n, p)$ ，recall $\mathbb{E}[X]=n p$ ，and

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k}(1-p)^{n-k}-(n p)^{2}
$$

－Observation：$X \sim \operatorname{Bin}(n, p)$ can be expressed as $X=X_{1}+\cdots+X_{n}$ ， where X_{1}, \ldots, X_{n} are i．i．d．Bernoulli random variables with parameter p
－For mutually independent X_{1}, \ldots, X_{n} ：

$$
\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=n p(1-p)
$$

Negative Binomial Distribution（负二项分布）

－For negative binomial random variable X with parameters r, p

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\sum_{k \geq 1} k^{2}\binom{k+r-1}{k}(1-p)^{k} p^{r}-r^{2}(1-p)^{2} / p^{2}
$$

－Observation：X can be expressed as $X=\left(X_{1}-1\right)+\cdots+\left(X_{r}-1\right)$ ， where X_{1}, \ldots, X_{r} are i．i．d．geometric random variables with parameter p
－For mutually independent X_{1}, \ldots, X_{r} ：

$$
\operatorname{Var}[X]=\sum_{i=1}^{r} \operatorname{Var}\left[X_{i}-1\right]=\sum_{i=1}^{r} \operatorname{Var}\left[X_{i}\right]=\frac{r(1-p)}{p^{2}}
$$

Chebyshev (Чебышёв)'s Inequality

Chebyshev＇s Inequality

（切比雪夫不等式）

－Chebyshev＇s inequality：Let X be a random variable．For any $a>0$ ，

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\text { Var }[X]}{a^{2}}
$$

－Corollary：For standard deviation $\sigma=\sqrt{\operatorname{Var}[X]}$ ，for any $k \geq 1$ ，

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

－Tight in the worst case：$\forall k \geq 1, \forall \mu \in \mathbb{R}$ and $\forall \sigma>0, \exists X$ with $\mathbb{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$ such that $\operatorname{Pr}(|X-\mu| \geq k \sigma)=1 / k^{2}$

Unbiased Estimator

- Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$.
. Empirical mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$
\mathbb{E}[\bar{X}]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mu \text { and } \operatorname{Var}[\bar{X}]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{\sigma^{2}}{n}
$$

- Chebyshev's inequality:

$$
\operatorname{Pr}(|\bar{X}-\mu| \geq \epsilon \mu) \leq \frac{\operatorname{Var}[\bar{X}]}{\epsilon^{2} \mu^{2}}=\frac{\sigma^{2}}{\epsilon^{2} \mu^{2} n} \leq \delta \text { if } n \geq \frac{\sigma^{2}}{\epsilon^{2} \mu^{2} \delta}
$$

(one-sided) Error Reduction

- Decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}$.
- Monte Carlo randomized algorithm \mathscr{A} with one-sided error: for any input x and uniform random seed $r \in[p]$ for some prime number p
- $f(x)=1 \Longrightarrow \operatorname{Pr}(\mathscr{A}(x, r)=1) \geq \epsilon$
- $f(x)=0 \Longrightarrow \mathscr{A}(x, r)=0$ for all $r \in[p]$
- $\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=\mathrm{V}_{i=1}^{k} \mathscr{A}\left(x, r_{i}\right)$: for mutually independent $r_{1}, \ldots, r_{k} \in[p]$
- $f(x)=1 \Longrightarrow \operatorname{Pr}\left(\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=0\right) \leq(1-\epsilon)^{k}$

Two-Point Sampling (2-Universal Hashing)

- Let $p>1$ be a prime number and $[p]=\{0,1, \ldots, p-1\}=\mathbb{Z}_{p}$.
- Pick $\boldsymbol{a}, \boldsymbol{b} \in[p]$ u.a.r. and let $r_{i}=(\boldsymbol{a} \cdot i+\boldsymbol{b}) \bmod p$ for $i=1,2, \ldots, p$
- $r_{1}, \ldots, r_{p} \in[p]$ are pairwise independent
- each r_{i} is uniformly distributed over [p]
- Proof: For any $i \neq j, \forall c, d \in[p], \operatorname{Pr}\left(r_{i}=c \cap r_{j}=d\right)=1 / p^{2}$ because

$$
\left\{\begin{array}{l}
\boldsymbol{a} \cdot i+\boldsymbol{b} \equiv c \quad(\bmod p) \\
\boldsymbol{a} \cdot j+\boldsymbol{b} \equiv d \quad(\bmod p)
\end{array} \text { has a unique solution }(a, b) \in[p]^{2}\right.
$$

$$
\operatorname{Pr}\left(r_{i}=c\right)=\operatorname{Pr}(\boldsymbol{a} \cdot i+\boldsymbol{b} \equiv c \quad(\bmod p))=\frac{1}{p} \sum_{a \in[p]} \operatorname{Pr}(\boldsymbol{b} \equiv c-a i(\bmod p))=\frac{1}{p}
$$

Derandomization with Two-Point Sampling

- A: for any input x and uniform random seed $r \in[p]$ for prime number p
- $f(x)=1 \Longrightarrow \operatorname{Pr}(\mathscr{A}(x, r)=1) \geq \epsilon$
- $f(x)=0 \Longrightarrow \mathscr{A}(x, r)=0$ for all $r \in[p]$
- $\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=\vee_{i=1}^{k} \mathscr{A}\left(x, r_{i}\right): k \leq p$ for $r_{i}=(\boldsymbol{a} \cdot i+\boldsymbol{b}) \bmod p$ with uniform $\boldsymbol{a}, \boldsymbol{b} \in[p]$
- If $f(x)=0 \Longrightarrow \mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=\vee_{i=1}^{k} \mathscr{A}\left(x, r_{i}\right)=0$
- If $f(x)=1 \Longrightarrow \operatorname{Pr}\left(\mathscr{A}\left(x, r_{i}\right)=1\right) \geq \epsilon$ because each r_{i} is uniform over [p]
- Let $X_{i}=\mathscr{A}\left(x, r_{i}\right)$ and let $X=\sum_{i=1}^{k} X_{i}$.
- X_{1}, \ldots, X_{k} are pairwise independent Bernoulli random variables with $\operatorname{Pr}\left(X_{i}=1\right) \geq \epsilon$
- $\operatorname{Pr}\left(\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=0\right)=\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}$

Derandomization with Two-Point Sampling

- $\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=\vee_{i=1}^{k} \mathscr{A}\left(x, r_{i}\right): k \leq p$ and $r_{i}=(\boldsymbol{a} \cdot i+\boldsymbol{b}) \bmod p$ with uniform $\boldsymbol{a}, \boldsymbol{b} \in[p]$
- If $f(x)=1 \Longrightarrow \operatorname{Pr}\left(\mathscr{A}\left(x, r_{i}\right)=1\right) \geq \epsilon$ because each r_{i} is uniform over $[p]$
- Let $X_{i}=\mathscr{A}\left(x, r_{i}\right)$ and let $X=\sum_{i=1}^{k} X_{i}$.
- X_{1}, \ldots, X_{k} are pairwise independent Bernoulli random variables with $\operatorname{Pr}\left(X_{i}=1\right) \geq \epsilon$
- $\operatorname{Pr}\left(\mathscr{A}^{k}\left(x, r_{1}, \ldots, r_{k}\right)=0\right)=\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{1}{\epsilon k}$
- Linearity of expectation: $\mathbb{E}[X]=\sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right] \geq \epsilon k$
- Pairwise independence: $\operatorname{Var}[X]=\sum_{i=1}^{k} \operatorname{Var}\left[X_{i}\right] \leq \sum_{i=1}^{k} \mathbb{E}\left[X_{i}^{2}\right]=\sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right]=\mathbb{E}[X]$
- Reduce any 1 -sided error $1-\epsilon$ to $1 /(\epsilon k)$ with $k \leq p$ runs of the algorithm using only 2 random seeds in total.

Cliques in Random Graph (revisited)

- Fix a constant integer $k \geq 3$. Let X be the number of k-cliques $\left(K_{k}\right)$ in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in[n]$ of size $|S|=k$, let $I_{S}=I\left(K_{S} \subseteq G\right)$. Then:

$$
X=\sum_{S \in\binom{[n]}{k}} I_{S} \text { and } \mathbb{E}\left[I_{S}\right]=\operatorname{Pr}\left(K_{S} \subseteq G\right)=p^{\binom{k}{2}}
$$

- Linearity of expectation: $\mathbb{E}[X]=\binom{n}{k} p^{\binom{k}{2}}=\Theta\left(n^{k} p^{\binom{k}{2}}\right)$

$$
\mathbb{E}[X]=\Theta\left(n^{k} p\left(\begin{array}{l}
\binom{k}{2}
\end{array}\right)=\left\{\begin{array}{ll}
o(1) & \text { if } p=o\left(n^{-2 /(k-1)}\right) \\
\omega(1) & \text { if } p=\omega\left(n^{-2 /(k-1)}\right)
\end{array} \quad \stackrel{\text { (Markov) }}{\Longrightarrow} \operatorname{Pr}(X \geq 1)=o(1)\right.\right.
$$

Cliques in Random Graph (revisited)

- Fix a constant integer $k \geq 3$. Let X be the number of k-cliques $\left(K_{k}\right)$ in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in[n]$ of size $|S|=k$, let $I_{S}=I\left(K_{S} \subseteq G\right)$. Then:

$$
X=\sum_{S \in\binom{[n]}{k}} I_{S} \text { and } \mathbb{E}[X]=\Theta\left(n^{k} p^{\binom{k}{2}}\right)= \begin{cases}o(1) & \text { if } p=o\left(n^{-2 /(k-1)}\right) \\ \omega(1) & \text { if } p=\omega\left(n^{-2 /(k-1)}\right)\end{cases}
$$

- Chebyshev: $\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{1}{\mathbb{E}[X]}+\frac{\sum_{S \neq T} \mathbb{E}\left[I_{S} I_{T}\right]}{\mathbb{E}[X]^{2}}$

$$
\begin{aligned}
\operatorname{Var}[X] & =\sum_{S \in\binom{\left[w_{1}\right)}{k}} \operatorname{Var}\left[I_{S}\right]+\sum_{\substack{S \neq T \\
S, T \in\left(\begin{array}{c}
{[n] \\
k}
\end{array}\right)}} \operatorname{Cov}\left(I_{S}, I_{T}\right)=\sum_{S \in\binom{\left[m_{1}\right]}{k}}\left(\mathbb{E}\left[I_{S}^{2}\right]-\mathbb{E}\left[I_{S}\right]^{2}\right)+\sum_{\substack{S \neq T \\
S, T \in\left(\begin{array}{c}
{[n \mid \\
k}
\end{array}\right)}}\left(\mathbb{E}\left[I_{S} I_{T}\right]-\mathbb{E}\left[I_{S}\right] \mathbb{E}\left[I_{T}\right]\right) \\
& =\sum_{S}\left(\mathbb{E}\left[I_{S}\right]-\mathbb{E}\left[I_{S}\right]^{2}\right)+\sum_{S \neq T}\left(\mathbb{E}\left[I_{S} I_{T}\right]-\mathbb{E}\left[I_{S}\right] \mathbb{E}\left[I_{T}\right]\right) \\
& \leq \mathbb{E}[X]+\sum_{S \neq T} \mathbb{E}\left[I_{S} I_{T}\right]
\end{aligned}
$$

Cliques in Random Graph (revisited)

- Fix a constant integer $k \geq 3$. Let X be the number of k-cliques $\left(K_{k}\right)$ in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in[n]$ of size $|S|=k$, let $I_{S}=I\left(K_{S} \subseteq G\right)$. Then:

$$
X=\sum_{S \in\binom{[n]}{k}} I_{S} \text { and } \mathbb{E}[X]=\Theta\left(n^{k} p^{\binom{k}{2}}\right)= \begin{cases}o(1) & \text { if } p=o\left(n^{-2 /(k-1)}\right) \\ \omega(1) & \text { if } p=\omega\left(n^{-2 /(k-1)}\right)\end{cases}
$$

- Chebyshev: $\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{1}{\mathbb{E}[X]}+\frac{\sum_{S \neq T} \mathbb{E}\left[I_{S} I_{T}\right]}{\mathbb{E}[X]^{2}}$

$$
\mathbb{E}\left[I_{S} I_{T}\right]=\operatorname{Pr}\left(\left(K_{S} \cup K_{T}\right) \subseteq G\right)=p^{2\binom{k}{2}-\binom{|S \cap T|}{2}}
$$

$$
\begin{aligned}
& S, T \in\binom{[m}{k} \quad S, T \in\binom{[m]}{k}
\end{aligned}
$$

Cliques in Random Graph (revisited)

- Fix a constant integer $k \geq 3$. Let X be the number of k-cliques $\left(K_{k}\right)$ in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in[n]$ of size $|S|=k$, let $I_{S}=I\left(K_{S} \subseteq G\right)$. Then:

$$
X=\sum_{S \in\binom{[n]}{k}} I_{S} \text { and } \mathbb{E}[X]=\Theta\left(n^{k} p^{\binom{k}{2}}\right)= \begin{cases}o(1) & \text { if } p=o\left(n^{-2 /(k-1)}\right) \\ \omega(1) & \text { if } p=\omega\left(n^{-2 /(k-1)}\right)\end{cases}
$$

- Chebyshev: $\operatorname{Pr}(X=0) \leq \operatorname{Pr}(|X-\mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}} \leq \frac{1}{\mathbb{E}[X]}+\frac{\sum_{S \neq T} \mathbb{E}\left[I_{S} I_{T}\right]}{\mathbb{E}[X]^{2}}$

$$
\begin{aligned}
& =O\left(n^{-k} p^{-\binom{k}{2}}\right)+O\left(\sum_{\ell=2}^{k-1} n^{-\ell} p^{-\binom{\ell}{2}}\right)=O\left(\sum_{\ell=2}^{k} n^{-\ell} p^{-\binom{\ell}{2}}\right) \\
& =o(1) \text { if } p=\omega\left(n^{2 /(1-k)}\right)
\end{aligned}
$$

- $\Longrightarrow \operatorname{Pr}(X \geq 1) \geq 1-o(1)$

A "Threshold Behavior" in Random Graphs
 (Erdős-Rényi 1960)

- Fix a constant integer $k \geq 3$.
- Let $G \sim G(n, p)$, as $n \rightarrow \infty$:

$$
\operatorname{Pr}\left(G \text { contains a } K_{k}\right)= \begin{cases}o(1) & \text { if } p=o\left(n^{-2 /(k-1)}\right) \\ 1-o(1) & \text { if } p=\omega\left(n^{-2 /(k-1)}\right)\end{cases}
$$

- For $H(V, E)$ with $k=|V|, m=|E|$ s.t. every subgraph of H has density $\leq m / k$:

$$
\operatorname{Pr}(G \text { contains a subgraph } H)= \begin{cases}o(1) & \text { if } p=o\left(n^{-k / m}\right) \\ 1-o(1) & \text { if } p=\omega\left(n^{-k / m}\right)\end{cases}
$$

Weierstrass Approximation Theorem

（魏尔施特拉斯逼近定理）
－Weierstrass Approximation Theorem：Let $f:[0,1] \rightarrow[0,1]$ be a continuous function．For any $\epsilon>0$ ，there exists a polynomial p such that

$$
\sup _{x \in[0,1]}|p(x)-f(x)| \leq \epsilon
$$

－Proof：Let integer n be sufficiently large（to be fixed later）．
For $x \in[0,1]$ ，let $Y_{x} \sim \operatorname{Bin}(n, x)$ ．Define polynomial p on $x \in[0,1]$ to be：

$$
p(x)=\mathbb{E}\left[f\left(\frac{Y_{x}}{n}\right)\right]=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Let $f:[0,1] \rightarrow[0,1]$ be continuous. For $x \in[0,1]$, let $Y_{x} \sim \operatorname{Bin}(n, x)$, and:

$$
\begin{gathered}
p(x)=\mathbb{E}\left[f\left(\frac{Y_{x}}{n}\right)\right]=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} \\
|p(x)-f(x)|=\left|\mathbb{E}\left[f\left(Y_{x} / n\right)-f(x)\right]\right| \leq \mathbb{E}\left[\left|f\left(Y_{x} / n\right)-f(x)\right|\right] \\
(f \text { is continuous on }[0,1] \Longrightarrow \exists \delta>0 \text { s.t. }|f(x)-f(y)| \leq \epsilon / 2 \text { for all }|x-y| \leq \delta) \\
=\mathbb{E}\left[\left|f\left(Y_{x} / n\right)-f(x)\right|| | Y_{x} / n-x \mid \leq \delta\right] \cdot \operatorname{Pr}\left(\left|Y_{x} / n-x\right| \leq \delta\right) \\
+\mathbb{E}\left[\left|f\left(Y_{x} / n\right)-f(x)\right|| | Y_{x} / n-x \mid>\delta\right] \cdot \operatorname{Pr}\left(\left|Y_{x} / n-x\right|>\delta\right) \\
\leq \mathbb{E}[\epsilon / 2]+|1-0| \cdot \operatorname{Pr}\left(\left|Y_{x}-n x\right|>n \delta\right) \leq \frac{\epsilon}{2}+\frac{x(1-x)}{n \delta^{2}} \quad \text { (Chebyshev) } \\
\leq \frac{\epsilon}{2}+\frac{1}{4 n \delta^{2}} \leq \epsilon \quad \text { if we choose } n \geq \frac{1}{2 \epsilon \delta^{2}}
\end{gathered}
$$

Weierstrass Approximation Theorem

（魏尔施特拉斯逼近定理）
－Weierstrass Approximation Theorem：Let $f:[0,1] \rightarrow[0,1]$ be a continuous function．For any $\epsilon>0$ ，there exists a polynomial p such that

$$
\sup _{x \in[0,1]}|p(x)-f(x)| \leq \epsilon
$$

－Proof：By continuity，$\exists \delta>0$ s．t．$|f(x)-f(y)| \leq \epsilon / 2$ if $|x-y| \leq \delta$ ． Let $n \geq 1 /\left(2 \epsilon \delta^{2}\right)$ be any integer．For $x \in[0,1]$ ，let $Y_{x} \sim \operatorname{Bin}(n, x)$ ，and：

$$
p(x)=\mathbb{E}\left[f\left(\frac{Y_{x}}{n}\right)\right]=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

For any $x \in[0,1]$ ，it holds that $|p(x)-f(x)| \leq \epsilon$ ．

Higher Moments

Skewness（偏度）

－The skewness（偏度）of a random variable X with expectation $\mu=\mathbb{E}[X]$ and standard deviation $\sigma=\sqrt{\operatorname{Var}[X]}$ is defined by

$$
\operatorname{Skew}[X]=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right]=\frac{\mathbb{E}\left[(X-\mu)^{3}\right]}{\sigma^{3}} \quad \begin{gathered}
\text { standardized } \\
\text { moment } \\
\text { (of degree 3) }
\end{gathered}
$$

Negative Skew

Positive Skew

Kurtosis（峰度）

－The kurtosis（峰度）of a random variable X with expectation $\mu=\mathbb{E}[X]$ and standard deviation $\sigma=\sqrt{\operatorname{Var}[X]}$ is defined by

$$
\operatorname{Kurt}[X]=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]=\frac{\mathbb{E}\left[(X-\mu)^{4}\right]}{\sigma^{4}} \quad \begin{gathered}
\text { standardized } \\
\text { moment } \\
\text { (of degree 4) }
\end{gathered}
$$

The k th Moment Method

- Let X be a random variable with $\mathbb{E}[X]=\mu$. For any $C>1$ and integer $k \geq 1$

$$
\operatorname{Pr}\left(|X-\mu| \geq C \cdot \mathbb{E}\left[|X-\mu|^{k}\right]^{\frac{1}{k}}\right) \leq \frac{1}{C^{k}}
$$

- Proof: Apply Markov's inequality to $Z=|X-\mu|^{k}$.

The Moment Problem

- Do moments $m_{k}=\mathbb{E}\left[X^{k}\right], \forall k \geq 1$, uniquely identify the distribution of X ?
- If X takes values from a finite set $\left\{x_{1}, \ldots, x_{n}\right\}$, then solving the Vandermonde system:

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{n} & x_{2}^{n} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right]=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right]
$$

can recover the pmf $p_{i}=p_{X}\left(x_{i}\right)$

The Moment Problem

- Do moments $m_{k}=\mathbb{E}\left[X^{k}\right], \forall k \geq 1$, uniquely identify the distribution of X ?
- If $\mathbb{E}\left[X^{k}\right]=\mathbb{E}\left[Y^{k}\right]$ for all $k \geq 1$, are X and Y always identically distributed?
- If X and Y have the same moment generating function (MGF)

$$
M_{X}(t)=\mathbb{E}\left[\mathrm{e}^{t X}\right]=\sum_{k \geq 0} \frac{t^{k} \mathbb{E}\left[X^{k}\right]}{k!}
$$

then X and Y are identically distributed.

- The MGF $M_{X}(t)$ is convergent if the sequence $\mathbb{E}\left[X^{k}\right]$ does not grow too fast.

