Probability Theory & Mathematical Statistics Moment and Deviation

尹一通 Nanjing University, 2023 Spring

Moments and Deviations

Markov's Inequality (马尔可夫不等式)

- **Proof** (by indicator): Let $I = I(X \ge a)$. Since $X \ge 0$ and a > 0, we have
 - Therefore, $\Pr(X \ge a) = \mathbb{E}[I] \le \mathbb{E}\left|\frac{X}{-1}\right| = \frac{\mathbb{E}[X]}{-1}$

<u>Markov's inequality</u>: Let X be a nonnegative-valued random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\lfloor [X]]}{-}$

Markov's Inequality (马尔可夫不等式)

• **Proof** (by total expectation): $(X \ge a \text{ is possible})$ $\mathbb{E}[X] = \mathbb{E}[X \mid X \ge a] \cdot \Pr(X \ge a) + \mathbb{E}[X \mid X < a] \cdot \Pr(X < a)$ $\geq a \cdot \Pr(X \geq a) + 0 \cdot \Pr(X < a) = a \cdot \Pr(X \geq a)$ $\implies \Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

<u>Markov's inequality</u>: Let X be a nonnegative-valued random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\lfloor X \rfloor}{-}$

(X is nonnegative)

Markov's Inequality (马尔可夫不等式)

- <u>Markov's inequality</u>: Let *X* be a *nonnegative-valued* random variable. Then, for any a > 0, $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$
- **Corollary**: for any c > 1, $Pr(X \ge c\mathbb{E}[X]) \le 1/c$
- Tight in the worst case: $\forall c > 1, \forall \mu \in \mathbb{R}$, \exists nonnegative X with $\mathbb{E}[X] = \mu$, such that $\Pr(X \ge c\mu) = 1/c$
- Lower tail variant (sometimes called <u>reverse Markov's inequality</u>): $Pr(X \le a) \le (u - \mathbb{E}[X])/(u - a)$ requires X to have bounded range $X \le u$

Х

From Las Vegas to Monte Carlo

Monte Carlo algorithm: randomized algorithms that are correct by chance

upon termination (but may run for a random period of time before termination)

• If there is a Las Vegas algorithm \mathscr{A} with expected running time at most t(n)for any input of size n (A has worst-case expected time complexity t(n)):

Algorithm \mathscr{B} :

simulate algorithm \mathscr{A} up to $\lceil t(n)/\epsilon \rceil$ steps; if algorithm \mathscr{A} terminates return the output of \mathscr{A} ; else return an arbitrary answer;

Las Vegas algorithm: randomized algorithms that always give correct result

- Algorithm \mathscr{B} is a Monte Carlo algorithm s.t.
 - \mathscr{B} has worst-case running time $\leq [t(n)/\epsilon]$
 - \mathscr{B} is correct with probability at least 1ϵ (by Markov inequality)

Cliques in Random Graph

- G(n, p): between every pair u, v among n vertices, an edge is added i.i.d. with prob. p
- Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.
- For every distinct $S \subseteq \in [n]$ of size |S| = k, let $I_S = I(K_S \subseteq G)$. Then:
 - $\mathbb{E}[I_S] = \Pr(K_S \subseteq G) = p^{\binom{k}{2}}$ $X = \sum_{\substack{S \in \binom{[n]}{k}}} I_S$
- Markov's inequality: $Pr(X \ge 1) \le \mathbb{E}[X] = o(1) \Longrightarrow Pr(X = 0) = 1 o(1)$ \implies If $p = o(n^{-2/(k-1)})$, then G(n,p) is K_k -free a.a.s. (asymptotically almost surely)

Generalized Markov's Inequality

- Let X be a random variable and $f : \mathbb{R} \to \mathbb{R}_{>0}$ a nonnegative-valued function. For any a > 0, $\Pr(f(X) \ge a) \le \frac{\lfloor f(X) \rfloor}{-1}$
- **Proof**: Apply the Markov's inequality to the random variable Y = f(X).
- Applications: useful if f(X) can "extract" useful information about X
 - Chebyshev's inequality, kth moment method: f(X) extracts the kth moment
 - Chernoff-Hoeffding bounds, Bernstein inequalities: f(X) extracts all moments

Deviation Inequality

- Let X be a random variable with mean $\mu = \mathbb{E}[X]$. For a > 0
- Applying Markov's inequality to $Y = |X \mu|$ gives us

• Alternatively, we may apply Markov's inequality to $Y = (X - \mu)^2$ $\Pr(|X - \mu| \ge a) = \Pr((X - \mu)^2 \ge a^2) \le \frac{\mathbb{E}[(X - \mu)^2]}{2}$

 $\Pr(|X - \mu| \ge a) \le ?$

Variance

(2nd central moment)

Variance (方差) and Moments (矩)

- and the <u>kth central moment</u> (k阶中心矩) of X is $\mathbb{E}[(X \mathbb{E}[X])^k]$.
- A random variable X can be centralized by $Y = X \mathbb{E}[X]$.
- The <u>variance</u> (方差) of a random variable X is its 2nd central moment: Var[X] =

• For integer k > 0, the <u>kth moment</u> (k阶矩) of a random variable X is $\mathbb{E}[X^k]$,

• Sometimes, a random variable X is called centralized (中心化的) if $\mathbb{E}[X] = 0$.

$$\mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

and the standard deviation (标准差) of X is $\sigma = \sigma[X] = \sqrt{Var[X]}$

Chebyshev's Inequality (切比雪夫不等式)

- <u>Chebyshev's inequality</u>: Let X be a random variable. For any a > 0,
- **Proof:** Apply Markov's inequality to $Y = (X \mathbb{E}[X])^2$.
- Corollary: For standard deviation $\sigma = \sqrt{Var[X]}$, for any $k \ge 1$,
 - $\Pr(|X \mathbb{E}|)$

$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$

$$[X] | \ge k\sigma) \le \frac{1}{k^2}$$

Median and Mean

- The median (中位数) of random variable X is defined to be any value m s.t.: $Pr(X \le m) \ge 1/2$ and $Pr(X \ge m) \ge 1/2$
- The expectation $\mu = \mathbb{E}[X]$ is the value that minimizes **E**(
- **Proof**: $f(x) = \mathbb{E}[(X x)^2] = \mathbb{E}[X^2] 2x\mathbb{E}[X] + x^2$ is convex and has $f'(\mu) = 0$
- The median *m* is the value that minimizes
- **Proof**: By symmetry, suppose non-median y > m so that $Pr(X \ge y) < 1/2$. $\mathbb{E}[|X - y| - |X - m|] = (m - y)\Pr(X \ge y) + \sum (m + y - 2x)\Pr(X = x) + (y - m)\Pr(X \le m)$

$$(X-\mu)^2]$$

 $\mathbb{E}[|X-m|]$

> (m - y)/2 + (y - m)/2 = 0

Median and Mean

then

μ-

- **Proof**: $|\mu m| = |\mathbb{E}[X] m| = |\mathbb{E}[X m]|$

$$= \mathbb{E}\left[\sqrt{(X-\mu)^2}\right] \le \sqrt{(X-\mu)^2}$$

• If X is a random variable with finite expectation μ , median m, and standard deviation σ ,

$$-m \mid \leq \sigma$$

 $\leq \mathbb{E}[|X - m|]$ (Jensen's inequality / triangle inequality)

 $\leq \mathbb{E}[|X - \mu|]$ (the median *m* minimizes $\mathbb{E}[|X - m|]$)

 $\sqrt{\mathbb{E}\left[(X-\mu)^2\right]} = \sigma$ (Jensen's inequality)

Variance

Calculation of Variance $\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ • **Proof:** $\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$ $= \mathbb{E} \left[X^2 - 2\mathbb{E}[X]X + \mathbb{E}[X]^2 \right]$ $= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$ $= \mathbb{E}[X^2] - \mathbb{E}[X]^2$

• *X* is constant *a.s.* ($Pr(X = \mathbb{E}[X]) = 1$) $\iff \mathbb{E}[X^2] = \mathbb{E}[X]^2 \iff \mathbf{Var}[X] = 0$

Variance of Linear Function

- For random variables X, Y and real number $a \in \mathbb{R}$:
 - $\mathbf{Var}[a] = 0$
 - Var[X + a] = Var[X] (variance is a central moment)
 - $Var[aX] = a^2 Var[X]$ (variance is quadratic)
 - $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2(\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y])$
- **Proof**: All can be verified through $\mathbf{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$.

Covariance (协方差)

- The <u>covariance</u> (协方差) of two random variables X and Y is
- Properties: Var[X] = Cov(X, X)
 - Symmetric: Cov(X, Y) = Cov(Y, X)
 - Distributive: Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) $\mathbf{Cov}(aX, Y) = a\mathbf{Cov}(X, Y)$
- If X and Y are independent then

 $\mathbf{Cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = 0$

Covariance of Independent Variables

• If random variables X and Y are independent, then

- If random variables X_1, X_2, \ldots, X_n are mutually independent, then $\mathbb{E}\left|\prod_{i=1}^{n} X_{i}\right| = \mathbb{E}\left|\prod_{i=1}^{n-1} X_{i}\right|$
 - **Proof:** By change of variable $\mathbb{E}[XY] = \sum xy \Pr(X = x \cap Y = y)$ X, Y $= \left(\sum_{x} x \Pr(X = x)\right) \left(\sum_{y} y \Pr(Y = x)\right)$

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

$$\begin{bmatrix} -1 \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{bmatrix} \cdot \mathbb{E}[X_n] = \prod_{i=1}^n \mathbb{E}[X_i]$$

$$y) = \sum_{x,y} xy \Pr(X = x) \Pr(Y = y)$$

$$y) = \mathbb{E}[X]\mathbb{E}[Y]$$

Expectation of Product

- For random variables X and Y:
- (Cauchy-Schwarz)

- $\mathbb{E}[XY]^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2]$
- (Hölder) for any p, q > 0 satisfying $\frac{1}{p} + \frac{1}{q} = 1$
 - $\mathbb{E}[XY] \leq \mathbb{E}[|X|^p]^{1/p} \mathbb{E}[|Y|^q]^{1/q}$

if X and Y independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Correlation (相关性)

- The <u>covariance</u> (协方差) of two random variables X and Y is
 - $\mathbf{Cov}(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])(Y \mathbb{E}[Y])\right] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- The <u>correlation coefficient</u> (相关性系数) of X and Y is
- X and Y are uncorrelated means:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
 - Var[X + Y] = Var[X] + Var[Y]

 $\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \cdot \operatorname{Var}[Y]}}$

• Two random variables X and Y are called <u>uncorrelated</u> if Cov(X, Y) = 0

Variance of Sum

- For random variables X, Y:
- For random variables X_1, X_2, \ldots, X_n :
- For pairwise independent X_1, X_2, \ldots, X_n :

$\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}(X, Y)$

 $\operatorname{Var}\left|\sum_{i=1}^{n} X_{i}\right| = \sum_{i=1}^{n} \operatorname{Var}[X_{i}] + \sum_{i \neq i} \operatorname{Cov}(X_{i}, X_{j})$

 $\mathbf{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{Var}[X_{i}]$

Variance of Indicator

- For Bernoulli random variable $X \in \{0,1\}$ with parameter p $X^2 = X \implies \mathbb{E}[X^2] = \mathbb{E}[X] = p$ $Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p)$ • For the indicator random variable X = I(A) of event A: $Var[X] = Pr(A)(1 - Pr(A)) = Pr(A) Pr(A^{c})$

Variance of Discrete Uniform Distribution

• For integers $a \leq b$, let X be chosen from $[a, b] = \{a, a + 1, \dots, b\}$ u.a.r.

• $\mathbb{E}[X^2] = \sum_{k=a}^{b} \frac{k^2}{b-a+1} = \frac{2b^2 + 2ab + 2a^2 + b - a}{6}$ • $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{(a-b)(a-b-2)}{12}$ 12

Poisson Distribution

• For Poisson random variable $X \sim \text{Pois}(\lambda)$, recall $\mathbb{E}[X] = \lambda$, and

$$\mathbb{E}[X^2] = \sum_{k\geq 0} k^2 \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k\geq 0} k^2 \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k\geq 0} (k+1) \frac{e^{-\lambda}\lambda^k}{k!}$$
$$= \lambda \mathbb{E}[X+1] = \lambda(\mathbb{E})$$
$$\mathbf{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = k^2$$

Geometric Distribution (几何分布)

- For geometric random variable $X \sim \text{Geo}(p)$, recall $\mathbb{E}[X] = 1/p$, and
 - $\mathbb{E}[X^2] = \sum k^2 (1)$ <u>k≥1</u> $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 =$
- Total expectation: $\mathbb{E}[X^2] = \mathbb{E}[X^2 \mid X > 1] \cdot (1 p) + \mathbb{E}[X^2 \mid X = 1] \cdot p$ $= \mathbb{E}[((X-1)+1)^2 | X > 1] \cdot (1-p) + p$ (memoryless) = $\mathbb{E}[(X+1)^2] \cdot (1-p) + p$ $= (1 - p)\mathbb{E}[X^2] + 2(1 - p)/p + 1$
- - $\implies \mathbb{E}[X^2] = (2-p)/p^2 \implies \operatorname{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2 = (1-p)/p^2$

$$(-p)^{k-1}p = (2-p)p^{-2}$$

$$= (2 - p)p^{-2} - p^{-2} = (1 - p)/p^2$$

Binomial Distribution (二项分布)

• For binomial random variable $X \sim Bin(n, p)$, recall $\mathbb{E}[X] = np$, and

$$\mathbf{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k} - (np)^2$$

- Observation: $X \sim Bin(n, p)$ can be expressed as $X = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are i.i.d. Bernoulli random variables with parameter p
- For mutually independent X_1, \ldots, X_n

$$\operatorname{Var}\left[X\right] = \sum_{i=1}^{n} \sum_$$

$$X_n$$
:

$$\mathbf{Var}[X_i] = np(1-p)$$

Negative Binomial Distribution (负 二项分布)

• For negative binomial random variable X with parameters r, p

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{k \ge 1} k^2 \binom{k+r-1}{k} (1-p)^k p^r - r^2 (1-p)^2 / p^2$$

- Observation: X can be expressed as $X = (X_1 1) + \cdots + (X_r 1)$, where X_1, \ldots, X_r are i.i.d. geometric random variables with parameter p
- For mutually independent X_1, \ldots, X_n $\mathbf{Var}[X] = \sum_{i=1}^{r} \mathbf{Var}[X_i - \mathbf{Var}[X_i]]$ i=1

$$X_{r}:$$

$$-1] = \sum_{i=1}^{r} \operatorname{Var}[X_{i}] = \frac{r(1-p)}{p^{2}}$$

Chebyshev (Чебышёв)'s Inequality

Chebyshev's Inequality (切比雪夫不等式)

- <u>Chebyshev's inequality</u>: Let X be a random variable. For any a > 0,
- Corollary: For standard deviation $\sigma = \sqrt{Var[X]}$, for any $k \ge 1$,
- and $\operatorname{Var}[X] = \sigma^2$ such that $\Pr(|X \mu| \ge k\sigma) = 1/k^2$

 $\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$ $\Pr(|X - \mathbb{E}[X]| \ge k\sigma) \le \frac{1}{k^2}$ • Tight in the worst case: $\forall k \ge 1$, $\forall \mu \in \mathbb{R}$ and $\forall \sigma > 0$, $\exists X$ with $\mathbb{E}[X] = \mu$

Unbiased Estimator

- Empirical mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\mathbb{E}[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \mu \text{ and }$
- Chebyshev's inequality:

$$\Pr(|\overline{X} - \mu| \ge \epsilon \mu) \le \frac{\operatorname{Var}[\overline{X}]}{\epsilon^2 \mu^2} = \frac{\sigma^2}{\epsilon^2 \mu^2 n} \le \delta \quad \text{if } n \ge \frac{\sigma^2}{\epsilon^2 \mu^2 \delta}$$

• Let X_1, \ldots, X_n be *i.i.d.* random variables with $\mathbb{E}[X_i] = \mu$ and $\mathbf{Var}[X_i] = \sigma^2$.

$$\operatorname{Var}[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}[X_i] = \frac{\sigma^2}{n}$$

(one-sided) Error Reduction

- Decision problem $f: \{0,1\}^* \to \{0,1\}$.
- Monte Carlo randomized algorithm A with one-sided error:
 - for any input x and uniform random seed $r \in [p]$ for some prime number p • $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r) = 1) \ge \epsilon$
 - $f(x) = 0 \Longrightarrow \mathscr{A}(x, r) = 0$ for all $r \in [p]$
- $\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i)$: for mutually independent $r_1, \dots, r_k \in [p]$ • $f(x) = 1 \Longrightarrow \Pr\left(\mathscr{A}^k(x, r_1, \dots)\right)$

$$(r_k) = 0 \le (1 - \epsilon)^k$$

Two-Point Sampling (2-Universal Hashing)

- Let p > 1 be a prime number and $[p] = \{0, 1, ..., p 1\} = \mathbb{Z}_p$.
- Pick $a, b \in [p]$ *u.a.r.* and let $r_i = (a \cdot i + b) \mod p$ for i = 1, 2, ..., p
- $r_1, \ldots, r_p \in [p]$ are pairwise independent
 - each r_i is <u>uniformly distributed</u> over [p]
- **Proof**: For any $i \neq j$, $\forall c, d \in [p]$, $\Pr(r_i = c \cap r_j = d) = 1/p^2$ because $\begin{cases} \boldsymbol{a} \cdot \boldsymbol{i} + \boldsymbol{b} \equiv c \pmod{p} \\ \boldsymbol{a} \cdot \boldsymbol{j} + \boldsymbol{b} \equiv d \pmod{p} \end{cases} \text{ has a unique solution } (a, b) \in [p]^2$
 - $\Pr(r_i = c) = \Pr(a \cdot i + b \equiv c \pmod{p})$

$$)) = \frac{1}{p} \sum_{a \in [p]} \Pr(b \equiv c - ai \pmod{p}) = \frac{1}{p}$$

Derandomization with Two-Point Sampling

- \mathscr{A} : for any input x and uniform *random seed* $r \in [p]$ for prime number p
 - $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r) = 1) \ge \epsilon$
 - $f(x) = 0 \Longrightarrow \mathscr{A}(x, r) = 0$ for all $r \in [p]$
- $\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i): k \le p \text{ for } r_i = (\mathbf{a} \cdot i + \mathbf{b}) \mod p \text{ with uniform } \mathbf{a}, \mathbf{b} \in [p]$ • If $f(x) = 0 \Longrightarrow \mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i) = 0$

 - If $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r_i) = 1) \ge \epsilon$ because each r_i is uniform over [p]
 - Let $X_i = \mathscr{A}(x, r_i)$ and let $X = \sum_{i=1}^k X_i$.
 - X_1, \ldots, X_k are pairwise independent Bernoulli random variables with $Pr(X_i = 1) \ge \epsilon$ • $\Pr\left(\mathscr{A}^k(x, r_1, \dots, r_k) = 0\right) = \Pr(X = 0) \le \Pr\left(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]\right) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2}$ (Chebyshev's inequality)

Derandomization with Two-Point Sampling

- - If $f(x) = 1 \Longrightarrow \Pr(\mathscr{A}(x, r_i) = 1) \ge \epsilon$ because each r_i is uniform over [p]
 - Let $X_i = \mathscr{A}(x, r_i)$ and let $X = \sum_{i=1}^k X_i$.

•
$$\Pr\left(\mathscr{A}^{k}(x, r_{1}, ..., r_{k}) = 0\right) = \Pr(X =$$

• Linearity of expectation: $\mathbb{E}[X] = \sum_{i=1}^{k} \mathbb{E}[X_i] \ge \epsilon k$

using only **2 random seeds** in total.

• $\mathscr{A}^k(x, r_1, \dots, r_k) = \bigvee_{i=1}^k \mathscr{A}(x, r_i)$: $k \le p$ and $r_i = (\mathbf{a} \cdot i + \mathbf{b}) \mod p$ with uniform $\mathbf{a}, \mathbf{b} \in [p]$

• X_1, \ldots, X_k are pairwise independent Bernoulli random variables with $Pr(X_i = 1) \ge \epsilon$ $= 0) \le \Pr\left(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]\right) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \le \frac{1}{c^k}$ • Pairwise independence: $\operatorname{Var}[X] = \sum_{i=1}^{k} \operatorname{Var}[X_i] \le \sum_{i=1}^{k} \mathbb{E}[X_i^2] = \sum_{i=1}^{k} \mathbb{E}[X_i] = \mathbb{E}[X_i]$

Reduce any 1-sided error $1 - \epsilon$ to $1/(\epsilon k)$ with $k \le p$ runs of the algorithm

- For every distinct $S \subseteq \in [n]$ of size |S|

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[I_S] = \Pr(K_S \in \binom{[n]}{k})$$

Linearity of expectation: $\mathbb{E}[X] = \binom{n}{k}$

$$\mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) & \stackrel{\text{(Markov)}}{\Longrightarrow} \Pr(X \ge 1) = o(1) \\ \omega(1) & \text{if } p = \omega\left(n^{-2/(k-1)}\right) & \stackrel{\text{(Markov)}}{\Longrightarrow} \Pr(X \ge 1) = 1 - o(1) \end{cases}$$

• Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.

= k, let
$$I_S = I(K_S \subseteq G)$$
. Then:
⊆ G) = $p^{\binom{k}{2}}$

$$p^{\binom{k}{2}} = \Theta\left(n^k p^{\binom{k}{2}}\right)$$

very distinct
$$S \subseteq \in [n]$$
 of size $|S| = k$, let $I_S = I(K_S \subseteq G)$. Then:

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ o(1) & \text{if } p = \omega\left(n^{-2/(k-1)}\right) \end{cases}$$
by shev: $\Pr(X = 0) \leq \Pr(|X - \mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \leq \frac{1}{\mathbb{E}[X]} + \frac{\sum_{S \neq T} \mathbb{E}[I_S I_T]}{\mathbb{E}[X]^2}$

$$= \sum_{S \in \binom{[n]}{k}} \operatorname{Var}[I_S] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} \operatorname{Cov}(I_S, I_T) = \sum_{S \in \binom{[n]}{k}} (\mathbb{E}[I_S]^2) + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} (\mathbb{E}[I_S] \mathbb{E}[I_T] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} \operatorname{Cov}(I_S, I_T) = \sum_{S \in \binom{[n]}{k}} (\mathbb{E}[I_S]^2) + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} (\mathbb{E}[I_S] \mathbb{E}[I_T] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} \mathbb{E}[I_S] \mathbb{E}[I_T] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} \mathbb{E}[I_S] \mathbb{E}[I_T] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} \mathbb{E}[I_S] \mathbb{E}[$$

• For every distinct
$$S \subseteq \in [n]$$
 of size $|S| = k$, let $I_S = I(K_S \subseteq G)$. Then:

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ w(1) & \text{if } p = w\left(n^{-2/(k-1)}\right) \end{cases}$$
• Chebyshev: $\Pr(X = 0) \leq \Pr(|X - \mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \leq \frac{1}{\mathbb{E}[X]} + \frac{\sum_{S \neq T} \mathbb{E}[I_S I_T]}{\mathbb{E}[X]^2}$
 $\operatorname{Var}[X] = \sum_{S \in \binom{[n]}{k}} \operatorname{Var}[I_S] + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}} \operatorname{Cov}(I_S, I_T) = \sum_{S \in \binom{[n]}{k}} (\mathbb{E}[I_S]^2) - \mathbb{E}[I_S]^2) + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} (\mathbb{E}[I_S] - \mathbb{E}[I_S]^2) + \sum_{\substack{S \neq T \\ S, T \in \binom{[n]}{k}}} (\mathbb{E}[I_S] - \mathbb{E}[I_S]^2) + \sum_{\substack{S \neq T \\ S \neq T}} (\mathbb{E}[I_S I_T] - \mathbb{E}[I_S] \mathbb{E}[I_T])$
 $\leq \mathbb{E}[X] + \sum_{S \neq T} \mathbb{E}[I_S I_T]$

• Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.

- F

very distinct
$$S \subseteq \in [n]$$
 of size $|S| = k$, let $I_S = I(K_S \subseteq G)$. Then:

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ w(1) & \text{if } p = w\left(n^{-2/(k-1)}\right) \end{cases}$$
by shev: $\Pr(X = 0) \leq \Pr(|X - \mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \leq \frac{1}{\mathbb{E}[X]} + \frac{\sum_{S \neq T} \mathbb{E}[I_S I_T]}{\mathbb{E}[X]^2}$

$$d_T] = \Pr((K_S \cup K_T) \subseteq G) = p^{2\binom{k}{2} - \binom{1S \cap T}{2}}$$

$$\sum_{T \in T_{M}} \mathbb{E}[X] = O(1) = \frac{k-1}{2} \left(-\frac{n}{2}\right) = O(1) = \frac{2\binom{k}{2} - \binom{2}{2}}{2} = O(1) = O(1) = \frac{2\binom{k}{2} - \binom{2}{2}}{2}$$

. C

or every distinct
$$S \subseteq \in [n]$$
 of size $|S| = k$, let $I_S = I(K_S \subseteq G)$. Then:

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ w(1) & \text{if } p = w\left(n^{-2/(k-1)}\right) \end{cases}$$
Chebyshev: $\Pr(X = 0) \leq \Pr(|X - \mathbb{E}[X]| \geq \mathbb{E}[X]) \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2} \leq \frac{1}{\mathbb{E}[X]} + \frac{\sum_{S \neq T} \mathbb{E}[I_S I_T]}{\mathbb{E}[X]^2}$

$$\mathbb{E}[I_S I_T] = \Pr((K_S \cup K_T) \subseteq G) = p^{2\binom{k}{2} - \binom{\lfloor S \cap T \rfloor}{2}}$$

$$\sum_{r \in VI \setminus I} \sum_{k=1}^{k-1} \sum_{r \in VI \setminus I} \sum_{k=1}^{k-1} \binom{n}{2} = O(1) = O(1) = 2\binom{k}{2} - \binom{k}{2} = O(1)$$

$$\sum_{\substack{S \neq T \\ S,T \in \binom{[n]}{k}}} \mathbb{E}[I_S I_T] = \sum_{\ell=2}^{k-1} \sum_{\substack{|S \cap T| = \ell \\ S,T \in \binom{[n]}{k}}} \mathbb{E}[I_S I_T] = \sum_{\ell=2}^{k-1} \binom{n}{2k-\ell} \cdot O(1) \cdot p^{2\binom{k}{2} - \binom{\ell}{2}} = O\left(n^{2k} p^{2\binom{k}{2}} \sum_{\ell=2}^{k-1} n^{-\ell} p^{-\binom{\ell}{2}}\right)$$

• Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.

- For e

every distinct
$$S \subseteq \in [n]$$
 of size $|S| = k$, let $I_S = I(K_S \subseteq G)$. Then:

$$X = \sum_{S \in \binom{[n]}{k}} I_S \text{ and } \mathbb{E}[X] = \Theta\left(n^k p^{\binom{k}{2}}\right) = \begin{cases} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \end{cases}$$

$$= O\left(n^{-k}p^{-\binom{k}{2}}\right) + O\left(\sum_{\ell=0}^{k-1}\right)$$
$$= o(1) \text{ if } p = \omega\left(n^{2/(1-k)}\right)$$
$$\Longrightarrow \Pr(X \ge 1) \ge 1 - o(1)$$

Fix a constant integer $k \ge 3$. Let X be the number of k-cliques (K_k) in $G \sim G(n, p)$.

A "Threshold Behavior" in Random Graphs (Erdős–Rényi 1960)

- Fix a constant integer $k \ge 3$.
- Let $G \sim G(n, p)$, as $n \to \infty$:

• For H(V, E) with k = |V|, m = |E| s.t. every subgraph of H has density $\leq m/k$:

Pr(G contains a subgraph H)

$$\begin{bmatrix} o(1) & \text{if } p = o\left(n^{-2/(k-1)}\right) \\ 1 - o(1) & \text{if } p = \omega\left(n^{-2/(k-1)}\right) \end{bmatrix}$$

$$) = \begin{cases} o(1) & \text{if } p = o\left(n^{-k/m}\right) \\ 1 - o(1) & \text{if } p = \omega\left(n^{-k/m}\right) \end{cases}$$

Weierstrass Approximation Theorem (魏尔施特拉斯逼近定理)

- <u>Weierstrass Approximation Theorem</u>: Let $f: [0,1] \rightarrow [0,1]$ be a continuous function. For any $\epsilon > 0$, there exists a polynomial p such that
 - $\sup p($ *x*∈[0,1]
- **Proof**: Let integer *n* be sufficiently large (to be fixed later). For $x \in [0,1]$, let $Y_x \sim Bin(n,x)$. Define polynomial p on $x \in [0,1]$ to be: $p(x) = \mathbb{E}\left[f\left(\frac{Y_x}{n}\right)\right] =$

$$f(x) - f(x) \le \epsilon$$

$$\sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}$$

Let
$$f: [0,1] \rightarrow [0,1]$$
 be continuous. For $x \in [0,1]$, let $Y_x \sim \operatorname{Bin}(n,x)$, and:

$$p(x) = \mathbb{E}\left[f\left(\frac{Y_x}{n}\right)\right] = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

$$|p(x) - f(x)| = \left|\mathbb{E}\left[f(Y_x/n) - f(x)\right]\right| \le \mathbb{E}\left[\left|f(Y_x/n) - f(x)\right|\right]$$
(*f* is continuous on $[0,1] \Longrightarrow \exists \delta > 0$ s.t. $|f(x) - f(y)| \le c/2$ for all $|x - y| \le \delta$)

$$= \mathbb{E}\left[\left|f\left(\frac{Y_x}{n}\right) - f(x)\right| + \left|\frac{Y_x}{n-x}\right| \le \delta\right] \cdot \Pr\left(\left|\frac{Y_x}{n-x}\right| \le \delta\right)$$

$$+ \mathbb{E}\left[\left|f\left(\frac{Y_x}{n}\right) - f(x)\right| + \left|\frac{Y_x}{n-x}\right| > \delta\right] \cdot \Pr\left(\left|\frac{Y_x}{n-x}\right| > \delta\right)$$

$$\le \mathbb{E}\left[\frac{c}{2} + \left|1 - 0\right| \cdot \Pr\left(\left|\frac{Y_x}{n-x}\right| > n\delta\right) \le \frac{c}{2} + \frac{x(1-x)}{n\delta^2}$$
 (Chebyshev)

$$\le \frac{c}{2} + \frac{1}{4n\delta^2} \le c$$
 if we choose $n \ge \frac{1}{2c\delta^2}$

Weierstrass Approximation Theorem (魏尔施特拉斯逼近定理)

- function. For any $\epsilon > 0$, there exists a polynomial p such that
 - $\sup p($ $x \in [0,1]$
- **Proof**: By continuity, $\exists \delta > 0$ s.t. $|f(x) f(y)| \le \epsilon/2$ if $|x y| \le \delta$.
 - For any $x \in [0,1]$, it holds that $|p(x) f(x)| \le \epsilon$.

• <u>Weierstrass Approximation Theorem</u>: Let $f: [0,1] \rightarrow [0,1]$ be a continuous

$$f(x) - f(x) \le \epsilon$$

Let $n \ge 1/(2\epsilon\delta^2)$ be any integer. For $x \in [0,1]$, let $Y_x \sim Bin(n,x)$, and: $p(x) = \mathbb{E}\left[f\left(\frac{Y_x}{n}\right)\right] = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$

Higher Moments

Skewness (偏度)

standard deviation $\sigma = \sqrt{Var[X]}$ is defined by

Negative Skew

• The <u>skewness</u> (偏度) of a random variable X with expectation $\mu = \mathbb{E}[X]$ and

Positive Skew

Kurtosis (峰度)

• The <u>kurtosis</u> (峰度) of a random variable X with expectation $\mu = \mathbb{E}[X]$ and standard deviation $\sigma = \sqrt{Var[X]}$ is defined by

standardized moment (of degree 4)

The kth Moment Method

- **Proof**: Apply Markov's inequality to $Z = |X \mu|^k$.

• Let X be a random variable with $\mathbb{E}[X] = \mu$. For any C > 1 and integer $k \ge 1$ $\Pr\left(|X-\mu| \ge C \cdot \mathbb{E}\left[|X-\mu|^k\right]^{\frac{1}{k}}\right) \le \frac{1}{C^k}$

The Moment Problem

- Do moments $m_k = \mathbb{E}[X^k]$, $\forall k \ge 1$, uniquely identify the distribution of X?
- If X takes values from a finite set {x
 then solving the Vandermonde system

$$\begin{bmatrix} x_1 & x_2 & \cdots \\ x_1^2 & x_2^2 & \cdots \\ \vdots & \vdots & \ddots \\ x_1^n & x_2^n & \cdots \end{bmatrix}$$

can recover the pmf $p_i = p_X(x_i)$

$$x_1, ..., x_n$$
,
em:

The Moment Problem

- Do moments $m_k = \mathbb{E}[X^k], \forall k \ge 1$, uniquely identify the distribution of X?
 - If $\mathbb{E}[X^k] = \mathbb{E}[Y^k]$ for all $k \ge 1$, are X and Y always identically distributed?
- If X and Y have the same moment generating function (MGF)
 - $M_X(t) = \mathbb{E}[e^{t}]$

then X and Y are identically distributed.

• The MGF $M_X(t)$ is convergent if the sequence $\mathbb{E}[X^k]$ does not grow too fast.

$$t^{X}] = \sum_{\substack{k \ge 0}} \frac{t^{k} \mathbb{E}[X^{k}]}{k!}$$