Probability Theory & Mathematical Statistics Random Processes

尹一通 Nanjing University, 2023 Spring

Random Processes (Stochastic processes)

- A <u>random process</u> is a family $\{X_t : t \in \mathcal{T}\}$ of random variables
- \mathcal{T} is a set of indices, where each $t \in \mathcal{T}$ is usually interpreted as <u>time</u>

 - <u>continuous-time</u>: uncountable \mathcal{T} , usually $\mathcal{T} = [0,\infty)$
- X_t takes values in a state space \mathcal{S}
 - discrete-space: countable \mathcal{S} , e.
 - <u>continuous-space</u>: uncountable

• <u>discrete-time</u>: countable \mathcal{T} , usually $\mathcal{T} = \{0, 1, 2, ...\}$ or $\mathcal{T} = \{1, 2, ...\}$

g.
$$\mathcal{S} = \mathbb{Z}$$

 \mathcal{S} , e.g. $\mathcal{S} = \mathbb{R}$

Random Processes (Stochastic processes)

• Bernoulli process: i.i.d. Bernoulli trials $X_0, X_1, X_2, \ldots \in \{0, 1\}$

• Branching (Galton-Watson) process: $X_0 = 1$ and $X_{n+1} = \sum_{i=1}^{N} \xi_i^{(n)}$ i=1where $\{\xi_i^{(n)}: n, j \ge 0\}$ are i.i.d. non-negative integer-valued random variables

Poisson process: continuous-time counting process $\{N(t) \mid t \ge 0\}$ such that

 $N(t) = \max\{n \mid X_1 + \dots + X_n \le t\}$ for any $t \ge 0$

where $\{X_i\}$ are i.i.d. exponential random variables with parameter $\lambda > 0$

Martingales

Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E} ||Y_n|| < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- By definition: Y_n is a function of X_0 ,
- Current capital Y_n in a fair gambling game with outcomes X_0, X_1, \ldots, X_n • <u>Super-martingale</u> (上鞅): $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, ..., X_n\right] \leq Y_n$ • <u>Sub-martingale</u> (下鞅): $\mathbb{E} | Y_{n+1} | X_0, X_1, \dots, X_n | \ge Y_n$

$$X_1, \ldots, X_n$$

Martingale (鞅)

- A sequence $\{Y_n : n \ge 0\}$ of random variables is a martingale with respect to another sequence $\{X_n : n \ge 0\}$ if, for all $n \ge 0$,
 - $\mathbb{E} ||Y_n|| < \infty$
 - $\mathbb{E}\left[Y_{n+1} \mid X_0, X_1, \dots, X_n\right] = Y_n$ (martingale property)
- $\{X_n : n \ge 0\}$ are defined on the probability space (Ω, Σ, Pr)
 - (X_0, X_1, \dots, X_n) defines a sub- σ -field $\Sigma_n \subseteq \Sigma$ (the smallest σ -field s.t. (X_0, \dots, X_n) is Σ_n -measurable) • $\{\Sigma_n : n \ge 0\}$ is a <u>filtration</u> of Σ , i.e. $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots \subseteq \Sigma$ • The martingale property is expressed as $\mathbb{E} |Y_{n+1} | \Sigma_n| = Y_n$

Examples of Martingale

- Doob martingale: $Y_i = \mathbb{E} \left[f(X_1, \ldots X_i) \right]$
 - vertex/edge exposure martingale for random graph
- Capital in a fair gambling game (arbitrary betting strategy)
- Unbiased 1D random walk: $Y_n =$
- de Moivre's martingale: $Y_n = (p/($ $X_i \in \{-1,1\}$ are independent with

$$(X_n) | X_1, \dots, X_i]$$

$$\sum_{i=1}^{n} X_i \text{ with } i.i.d. \text{ uniform } X_i \in \{-1,1\}$$

$$(1-p)^{X_n} \text{, where } X_n = \sum_{i=1}^{n} X_i \text{ and}$$

$$\Pr(X_i = 1) = p$$

 Polya's urn: The urn contains marbles with different colors. At each turn, a marble is selected *u.a.r.*, and replaced with k marbles of that same color.

Studies of Martingale

- For martingale $\{Y_n : n \ge 0\}$ with respect to $\{X_n : n \ge 0\}$: $\mathbb{E}\left[Y_{n+1} \mid X_0, \right]$
- Concentration of measure (tail inequality): under what condition
 - $\Pr\left(\mid Y_n \right)$

$$,X_1,\ldots,X_n$$
] = Y_n

$$-Y_0| \ge t \Big) \le ?$$

Optional stopping theorem (OST): under what condition for a stopping time τ

 $\mathbb{E}[Y_{\tau}] = \mathbb{E}[Y_0]$

Fair Gambling Game

Proof: By total expectation $\mathbb{E}[Y_n] = \mathbb{E}\left[\mathbb{E}[Y_n \mid X_0, X_1, \dots, X_{n-1}]\right]$ As a martingale, $\mathbb{E} \left[Y_n \mid X_0, X_1, ..., X_{n-1} \right] = Y_{n-1}$ $\implies \mathbb{E}\left[Y_n\right] = \mathbb{E}\left[\mathbb{E}\left[Y_n \mid X_0, X_1, \dots, X_{n-1}\right]\right] = \mathbb{E}\left[Y_{n-1}\right]$

• If $\{Y_n : n \ge 0\}$ is a martingale with respect to $\{X_n : n \ge 0\}$, then $\forall n \ge 0$, $\mathbb{E}\left[Y_n\right] = \mathbb{E}\left[Y_0\right]$

Stopping Time

- A nonnegative integer-valued random variable T is a stopping time with of the event T = n is determined by the evaluation of X_0, X_1, \dots, X_n
 - Then T is a stopping time if $\{T = n\} \in \Sigma_n$ for any $n \ge 0$.
 - by the outcomes of X_0, X_1, \ldots, X_n

respect to the sequence $\{X_t : t = 0, 1, 2, ...\}$ if for any $n \ge 0$ the occurrence

• Formally, $\{X_t : t = 0, 1, 2, ...\}$ defines a filtration of σ -fields $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots$ such that (X_0, X_1, \ldots, X_n) is Σ_n -measurable (and Σ_n is the smallest such σ -field).

Intuitively, T is a stopping time, if whether stopping at time n is determined

Optional Stopping Theorem (OST) (Martingale Stopping Theorem)

- Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E}\left[Y_{\mathcal{T}}\right] = \mathbb{E}\left[Y_{0}\right]$
 - if any one of the following conditions holds:
 - (bounded time) there is a finite n such that T < n a.s.
 - (bounded range) $T < \infty$ a.s. and there is a finite c s.t. $|Y_t| < c$ for all $t \leq T$
 - (bounded differences) $\mathbb{E}[T] < \infty$ and there is a finite c such that

 $\mathbb{E}[|Y_{t+1} - Y_t| | X_0, X_1, \dots, X_t] < c \text{ for all } t \ge 0$

Optional Stopping Theorem (OST) (Martingale Stopping Theorem)

• Optional Stopping Theorem (OST): Let $\{Y_t : t \ge 0\}$ be a martingale and T be a stopping time, both with respect to $\{X_t : t \ge 0\}$. Then $\mathbb{E}\left[Y_{T}\right] = \mathbb{E}\left[Y_{0}\right]$

(general condition) if all the following conditions hold:

- $\Pr(T < \infty) = 1$
- $\mathbb{E}[|Y_T|] < \infty$
- $\lim \mathbb{E}\left[Y_n \cdot I[T > n]\right] = 0$ $n \rightarrow \infty$

The proof of this general OST utilizes Doob's optional sampling argument

Gambler's Ruin (Symmetric Random Walk in One-Dimension)

Let
$$Y_t = \sum_{i=1}^t X_i$$
 where $X_i \in \{-1, -1\}$

• Let T be the first time t that $Y_t = -$

- $\{Y_t : t \ge 0\}$ is a martingale and T is a stopping time (both w.r.t. $\{X_i : i \ge 1\}$) satisfying that $|Y_t| \le \max\{a, b\}$ for all $0 \le t \le T$ and $T < \infty$ a.s. $(OST) \Longrightarrow \mathbb{E}$
 - $\mathbb{E}[Y_T] = b \cdot \Pr(Y_T = b) a \cdot \Pr(Y_T \neq b) \implies \Pr(Y_T = b) = \frac{a}{a + b}$

+ 1 } are i.i.d. uniform (Rademacher) RVs

$$a \text{ or } Y_t = b$$

$$[Y_T] = \mathbb{E}[Y_0] = 0$$

Wald's Equation (Linearity of expectation with randomly many random variables)

Let T if a stopping time with respect to X_1, X_2, \dots If $\mathbb{E}[T] < \infty$, then

• <u>Wald's equation</u>: Let X_1, X_2, \ldots be i.i.d. non-negative with $\mu = \mathbb{E}[X_i] < \infty$.

$$X_i = \mathbb{E}[T] \cdot \mu$$

• **Proof**: For $t \ge 1$, let $Y_t = \sum_{i=1}^t (X_i - \mu)$, which is a martingale. Observe that: $\mathbb{E}[T] < \infty$ and $\mathbb{E}[|Y_{t+1} - Y_t| | X_1, \dots, X_t] = \mathbb{E}[|X_{t+1} - \mu|] \le 2\mu$ By OST: $\mathbb{E}[Y_T] = \mathbb{E}[Y_1] = 0$. Note that $\mathbb{E}[Y_T] = \mathbb{E}\left[\sum_{i=1}^T X_i\right] - \mathbb{E}[T] \cdot \mu$

Markov Chain

Markov Chain (马尔可夫链)

• A discrete-time random process X_0, X_1, X_2, \dots is a <u>Markov chain</u> if

$$\Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, \dots, X_{t+1})$$

- The Markov property (memoryless property):
 - the history $X_0, X_1, \ldots, X_{t-1}$ of how the process arrived at state X_t
 - X_{t+1} is conditionally independent

$$X_0 \to X_1 \to \cdots$$

$X_0 = x_0$ = Pr($X_{t+1} = x_{t+1} | X_t = x_t$)

• The next state X_{t+1} depends on the current state X_t but is independent of

it of
$$X_0, X_1, ..., X_{t-1}$$
 given X_t

 $\rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1}$

Transition Matrix (转移矩阵)

• A discrete-time random process X_0, X_1, X_2, \dots is a Markov chain if $X_0 = x_0 = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t)$

$$\Pr(X_{t+1} = x_{t+1} \mid X_t = x_t, \dots, X_{t+1})$$

• P is called the transition matrix: (assuming discrete-space) $P(x, y) = \Pr(X_{t+1} = y \mid X_t = x)$ for any $x, y \in S$

• *P* is a (row-)stochastic matrix: $P \ge 0$ and P1 = 1

(time-homogeneous) = $P(x_t, x_{t+1}) = P^{(t)}(x_t, x_{t+1})$

where S is the discrete state space on which X_0, X_1, X_2, \ldots take values

Transition Matrix (转移矩阵)

- For a Markov chain X_0, X_1, X_2, \ldots with discrete state space \mathcal{S} $\Pr(X_{t+1} = y \mid$
 - where $P \in \mathbb{R}_{>0}^{S \times S}$ is the transition matrix, which is a (row-)stochastic matrix
- Let $\pi^{(t)}(x) = \Pr(X_t = x)$ be the mass function (*pmf*) of X_t . By total probability:

$$\pi^{(t+1)}(y) = \Pr(X_{t+1} = y) = \sum_{x \in S} \Pr(X_{t+1} = y \mid X_t = x) \Pr(X_t = x) = \pi^{(t)}P$$
$$\pi^{(0)} \xrightarrow{P} \pi^{(1)} \xrightarrow{P} \cdots \xrightarrow{P} \pi^{(t)} \xrightarrow{P} \pi^{(t+1)} \xrightarrow{P} \cdots$$

$$X_t = x) = P(x, y)$$

Random Walk (随机游走)

- WLOG: a Markov chain is a random walk on state space \mathcal{S}
- Each state $x \in \mathcal{S}$ corresponds to a vertex
- - $P(x, y) = \Pr(x)$
- Initially, $\pi^{(0)}(x) = \Pr(X_0 = x)$, for *t*

• Given the current state $x \in \mathcal{S}$, the probability of next state being $y \in \mathcal{S}$ is:

$$X_{t+1} = y \mid X_t = x$$

$$\geq 0$$
:

 $\pi^{(t+1)} = \pi^{(t)}P$

Stationary Distribution (稳态分布)

the Markov chain P if

• π is a fixpoint (equilibrium) of the linear dynamic system

• A distribution (*pmf*) π on state space δ is called a <u>stationary distribution</u> of

 $\pi P = \pi$

```
(\frac{1}{4}, \frac{3}{8}, \frac{3}{8})
 ).375
).3750
).3750
```


Convergence Theorem

Markov chain convergence theorem:

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Irreducibility: the chain is irreducible if P is an irreducible matrix (不可约矩阵)

Ergodicity: the chain is <u>ergodic</u> if all states are *aperiodic* (无周期) and positive recurrent (正常返)

If a Markov chain X_0, X_1, X_2 ... on state space \mathcal{S} is *irreducible* and *ergodic*,

 \iff the state space \mathcal{S} is strongly connected under P

Ergodicity

- Let X_0, X_1, X_2, \ldots be a Markov chain on state space S with transition matrix P.
- The <u>period</u> d(x) of a state $x \in \mathcal{S}$ is $d(x) = \text{gdc}\{t \ge 1 \mid P^t(x, x) > 0\}$ • A state $x \in \mathcal{S}$ is called <u>aperiodic</u> if d(x) = 1

 - $P(x, x) > 0 \Longrightarrow x$ is aperiodic
- A state $x \in \mathcal{S}$ is called <u>recurrent</u> if $\Pr(\exists t \ge 1, X_t = x \mid X_0 = x) = 1$ and further called positive recurrent if $\mathbb{E}\left[\min\{t \ge 1 : X_t = x\} \mid X_0 = x\right] < \infty$
- Shizuo Kakutani (角谷静夫): random walk is recurrent on \mathbb{Z}^2 but non-recurrent on \mathbb{Z}^3 "A drunk man will find his way home, but a drunk bird may get lost forever."
- On finite state space \mathcal{S} : irreducible \implies all states are positive recurrent

Convergence Theorem

• Markov chain convergence theorem:

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• Finite Markov chain (with finite state space δ): lazy (i.e. P(x, x) > 0) and strongly connected P

If a Markov chain X_0, X_1, X_2 ... on state space \mathcal{S} is *irreducible* and *ergodic*,

always converge to the unique stationary distribution $\pi = \pi P$

Convergence Theorem

Markov chain convergence theorem:

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

• **Proof**: (By coupling)

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*,

PageRank

- Each webpage $x \in \mathcal{S}$ is assigned a rank r(x):
 - A page has high rank if pointed by many high-rank pages.
 - High-rank pages have greater influence.
 - Pages pointing to few others have greater influence.

Linear system: $r(x) = \sum_{y \to x} \frac{r(y)}{d^+(y)}$ where $d^+(y)$ is the **out-degree** of page y

 $P(x, y) = \mathbf{1}$

Stationary distribution rP = r for the random walk (tireless internet surfer)

$$\begin{cases} \frac{1}{d^+(x)} & \text{if } x \to y \\ 0 & \text{o.w.} \end{cases}$$

Mixing of Markov Chain

• Markov chain convergence theorem:

then there is a unique stationary distribution π on \mathcal{S} such that

$$\pi(x) = \lim_{t \to \infty} \Pr(X_t = x \mid X_0 = x_0) \text{ for any } x_0 \in \mathcal{S}$$

How fast is the convergence rate?

()Mixing time:

let
$$\pi_x^{(t)}(y) = (\mathbf{1}_x P^t)_y = \Pr(X_t = y \mid X_0 = x)$$

 $\tau(\epsilon) = \max_{x \in S} \min\left\{ t \ge 1 \mid \| \pi_x^{(t)} - \pi \|_1 \le 2\epsilon \right\}$

If a Markov chain $X_0, X_1, X_2...$ on state space \mathcal{S} is *irreducible* and *ergodic*,

Random Processes

Random Processes

- Stationary processes: $(X_{t_1}, X_{t_2}, \ldots)$
- Renewal (or counting) processes: $N(t) = \max\{n \mid X_1 + \dots + X_n \le t\}$ where $\{X_i : i \ge 1\}$ are i.i.d. nonnegative-valued random variables
 - Poisson processes (the only renewal processes that are Markov chains)
- Wiener process (Brownian motion): continuous-time continuous-space $\{W(t) \in \mathbb{R} : t \ge 0\}$ with time-homogeneity and independent increments $W(s_i) - W(t_i)$ are independent whenever the intervals $(s_i, t_i]$ are disjoint

$$(X_{t_n}) \sim (X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h})$$

• i.i.d. variables, stationary Markov chains, stationary Gaussian process, ...

Diffusion Processes (Stochastic processes with continuous sample paths)

an $A \in \Sigma$ with Pr(A) = 1 such that for all $\omega \in A$,

$$X(\omega)$$

is a continuous function (between topological spaces).

- The Wiener processes are one-dimensional diffusions.
- Itô (伊藤) calculus may apply!

• Let (Ω, Σ, \Pr) be a probability space. A random process $X : \mathcal{T} \times \Omega \to \mathcal{S}$ with time range \mathcal{T} and state space \mathcal{S} is called a <u>diffusion process</u> if there is

$$: \mathcal{T} \to \mathcal{S}$$

