Probability Theory \＆ Mathematical Statistics

Random Processes

尹一通 Nanjing University， 2023 Spring

Random Processes

(Stochastic processes)

- A random process is a family $\left\{X_{t}: t \in \mathscr{T}\right\}$ of random variables
- \mathscr{T} is a set of indices, where each $t \in \mathscr{T}$ is usually interpreted as time
- discrete-time: countable \mathscr{T}, usually $\mathscr{T}=\{0,1,2, \ldots\}$ or $\mathscr{T}=\{1,2, \ldots\}$
- continuous-time: uncountable \mathscr{T}, usually $\mathscr{T}=[0, \infty)$
- X_{t} takes values in a state space \mathcal{S}
- discrete-space: countable \mathcal{S}, e.g. $\mathcal{S}=\mathbb{Z}$
- continuous-space: uncountable \mathcal{S}, e.g. $\mathcal{S}=\mathbb{R}$

Random Processes

(Stochastic processes)

- Bernoulli process: i.i.d. Bernoulli trials $X_{0}, X_{1}, X_{2}, \ldots \in\{0,1\}$
- Branching (Galton-Watson) process: $X_{0}=1$ and $X_{n+1}=\sum_{j=1}^{X_{n}} \xi_{j}^{(n)}$
where $\left\{\xi_{j}^{(n)}: n, j \geq 0\right\}$ are i.i.d. non-negative integer-valued random variables
- Poisson process: continuous-time counting process $\{N(t) \mid t \geq 0\}$ such that

$$
N(t)=\max \left\{n \mid X_{1}+\cdots+X_{n} \leq t\right\} \text { for any } t \geq 0
$$

where $\left\{X_{i}\right\}$ are i.i.d. exponential random variables with parameter $\lambda>0$

Martingales

Martingale（靾）

－A sequence $\left\{Y_{n}: n \geq 0\right\}$ of random variables is a martingale with respect to another sequence $\left\{X_{n}: n \geq 0\right\}$ if，for all $n \geq 0$ ，
－ $\mathbb{E}\left[\left|Y_{n}\right|\right]<\infty$
－ $\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right]=Y_{n} \quad$（martingale property）
－By definition：Y_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$
－Current capital Y_{n} in a fair gambling game with outcomes $X_{0}, X_{1}, \ldots, X_{n}$

- Super－martingale（上鞅）： $\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right] \leq Y_{n}$
- Sub－martingale（下靾）： $\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right] \geq Y_{n}$

Martingale (靾)

- A sequence $\left\{Y_{n}: n \geq 0\right\}$ of random variables is a martingale with respect to another sequence $\left\{X_{n}: n \geq 0\right\}$ if, for all $n \geq 0$,
- $\mathbb{E}\left[\left|Y_{n}\right|\right]<\infty$
- $\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right]=Y_{n} \quad$ (martingale property)
- $\left\{X_{n}: n \geq 0\right\}$ are defined on the probability space $(\Omega, \Sigma, \operatorname{Pr})$
- $\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ defines a sub- σ-field $\Sigma_{n} \subseteq \Sigma$ (the smallest σ-field s.t. (X_{0}, \ldots, X_{n}) is Σ_{n}-measurable)
- $\left\{\Sigma_{n}: n \geq 0\right\}$ is a filtration of Σ, i.e. $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \cdots \subseteq \Sigma$
- The martingale property is expressed as $\mathbb{E}\left[Y_{n+1} \mid \Sigma_{n}\right]=Y_{n}$

Examples of Martingale

- Doob martingale: $Y_{i}=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]$
- vertex/edge exposure martingale for random graph
- Capital in a fair gambling game (arbitrary betting strategy)
. Unbiased 1D random walk: $Y_{n}=\sum_{i=1}^{n} X_{i}$ with i.i.d. uniform $X_{i} \in\{-1,1\}$
- de Moivre's martingale: $Y_{n}=(p /(1-p))^{X_{n}}$, where $X_{n}=\sum_{i=1}^{n} X_{i}$ and
$X_{i} \in\{-1,1\}$ are independent with $\operatorname{Pr}\left(X_{i}=1\right)=p$
- Polya's urn: The urn contains marbles with different colors. At each turn, a marble is selected u.a.r., and replaced with k marbles of that same color.

Studies of Martingale

- For martingale $\left\{Y_{n}: n \geq 0\right\}$ with respect to $\left\{X_{n}: n \geq 0\right\}$:

$$
\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right]=Y_{n}
$$

- Concentration of measure (tail inequality): under what condition

$$
\operatorname{Pr}\left(\left|Y_{n}-Y_{0}\right| \geq t\right) \leq ?
$$

- Optional stopping theorem (OST): under what condition for a stopping time τ

$$
\mathbb{E}\left[Y_{\tau}\right]=\mathbb{E}\left[Y_{0}\right]
$$

Fair Gambling Game

- If $\left\{Y_{n}: n \geq 0\right\}$ is a martingale with respect to $\left\{X_{n}: n \geq 0\right\}$, then $\forall n \geq 0$,

$$
\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right]
$$

Proof: By total expectation $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{n} \mid X_{0}, X_{1}, \ldots, X_{n-1}\right]\right]$
As a martingale, $\mathbb{E}\left[Y_{n} \mid X_{0}, X_{1}, \ldots, X_{n-1}\right]=Y_{n-1}$

$$
\Longrightarrow \mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{n} \mid X_{0}, X_{1}, \ldots, X_{n-1}\right]\right]=\mathbb{E}\left[Y_{n-1}\right]
$$

Stopping Time

- A nonnegative integer-valued random variable T is a stopping time with respect to the sequence $\left\{X_{t}: t=0,1,2, \ldots\right\}$ if for any $n \geq 0$ the occurrence of the event $T=n$ is determined by the evaluation of $X_{0}, X_{1}, \ldots, X_{n}$
- Formally, $\left\{X_{t}: t=0,1,2, \ldots\right\}$ defines a filtration of σ-fields $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \cdots$ such that ($X_{0}, X_{1}, \ldots, X_{n}$) is Σ_{n}-measurable (and Σ_{n} is the smallest such σ-field). Then T is a stopping time if $\{T=n\} \in \Sigma_{n}$ for any $n \geq 0$.
- Intuitively, T is a stopping time, if whether stopping at time n is determined by the outcomes of $X_{0}, X_{1}, \ldots, X_{n}$

Optional Stopping Theorem (OST)
 (Martingale Stopping Theorem)

- Optional Stopping Theorem (OST): Let $\left\{Y_{t}: t \geq 0\right\}$ be a martingale and T be a stopping time, both with respect to $\left\{X_{t}: t \geq 0\right\}$. Then

$$
\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]
$$

if any one of the following conditions holds:

- (bounded time) there is a finite n such that $T<n$ a.s.
- (bounded range) $T<\infty$ a.s. and there is a finite c s.t. $\left|Y_{t}\right|<c$ for all $t \leq T$
- (bounded differences) $\mathbb{E}[T]<\infty$ and there is a finite c such that

$$
\mathbb{E}\left[\left|Y_{t+1}-Y_{t}\right| \mid X_{0}, X_{1}, \ldots, X_{t}\right]<c \text { for all } t \geq 0
$$

Optional Stopping Theorem (OST)
 (Martingale Stopping Theorem)

- Optional Stopping Theorem (OST): Let $\left\{Y_{t}: t \geq 0\right\}$ be a martingale and T be a stopping time, both with respect to $\left\{X_{t}: t \geq 0\right\}$. Then

$$
\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]
$$

(general condition) if all the following conditions hold:

- $\operatorname{Pr}(T<\infty)=1$
- $\mathbb{E}\left[\left|Y_{T}\right|\right]<\infty$
- $\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{n} \cdot I[T>n]\right]=0$
- The proof of this general OST utilizes Doob's optional sampling argument

Gambler's Ruin
 (Symmetric Random Walk in One-Dimension)

. Let $Y_{t}=\sum_{i=1}^{t} X_{i}$ where $X_{i} \in\{-1,+1\}$ are i.i.d. uniform (Rademacher) RVs

- Let T be the first time t that $Y_{t}=-a$ or $Y_{t}=b$
- $\left\{Y_{t}: t \geq 0\right\}$ is a martingale and T is a stopping time (both w.r.t. $\left\{X_{i}: i \geq 1\right\}$) satisfying that $\left|Y_{t}\right| \leq \max \{a, b\}$ for all $0 \leq t \leq T$ and $T<\infty$ a.s.

$$
(\mathrm{OST}) \Longrightarrow \mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]=0
$$

$$
\mathbb{E}\left[Y_{T}\right]=b \cdot \operatorname{Pr}\left(Y_{T}=b\right)-a \cdot \operatorname{Pr}\left(Y_{T} \neq b\right) \quad \Longrightarrow \quad \operatorname{Pr}\left(Y_{T}=b\right)=\frac{a}{a+b}
$$

Wald's Equation

(Linearity of expectation with randomly many random variables)

- Wald's equation: Let X_{1}, X_{2}, \ldots be i.i.d. non-negative with $\mu=\mathbb{E}\left[X_{i}\right]<\infty$. Let T if a stopping time with respect to X_{1}, X_{2}, \ldots. If $\mathbb{E}[T]<\infty$, then

$$
\mathbb{E}\left[\sum_{i=1}^{T} X_{i}\right]=\mathbb{E}[T] \cdot \mu
$$

- Proof: For $t \geq 1$, let $Y_{t}=\Sigma_{i=1}^{t}\left(X_{i}-\mu\right)$, which is a martingale. Observe that:

$$
\mathbb{E}[T]<\infty \text { and } \mathbb{E}\left[\left|Y_{t+1}-Y_{t}\right| \mid X_{1}, \ldots, X_{t}\right]=\mathbb{E}\left[\left|X_{t+1}-\mu\right|\right] \leq 2 \mu
$$

By OST: $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{1}\right]=0$. Note that $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[\Sigma_{i=1}^{T} X_{i}\right]-\mathbb{E}[T] \cdot \mu$

Markov Chain

Markov Chain（马尔可夫链）

－A discrete－time random process $X_{0}, X_{1}, X_{2}, \ldots$ is a Markov chain if

$$
\operatorname{Pr}\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right)=\operatorname{Pr}\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)
$$

－The Markov property（memoryless property）：
－The next state X_{t+1} depends on the current state X_{t} but is independent of the history $X_{0}, X_{1}, \ldots, X_{t-1}$ of how the process arrived at state X_{t}
－X_{t+1} is conditionally independent of $X_{0}, X_{1}, \ldots, X_{t-1}$ given X_{t}

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{t-1} \rightarrow X_{t} \rightarrow X_{t+1}
$$

Transition Matrix（转移矩阵）

－A discrete－time random process $X_{0}, X_{1}, X_{2}, \ldots$ is a Markov chain if

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right) & =\operatorname{Pr}\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right) \\
\text { (time-homogeneous) } & =P\left(x_{t}, x_{t+1}\right)=P^{(t)}\left(x_{t}, x_{t+1}\right)
\end{aligned}
$$

－P is called the transition matrix：（assuming discrete－space）

$$
P(x, y)=\operatorname{Pr}\left(X_{t+1}=y \mid X_{t}=x\right) \text { for any } x, y \in \mathcal{S}
$$

where \mathcal{S} is the discrete state space on which $X_{0}, X_{1}, X_{2}, \ldots$ take values
－P is a（row－）stochastic matrix：$P \geq 0$ and $P \mathbf{1}=\mathbf{1}$

Transition Matrix（转移矩阵）

－For a Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ with discrete state space \mathcal{S}

$$
\operatorname{Pr}\left(X_{t+1}=y \mid X_{t}=x\right)=P(x, y)
$$

where $P \in \mathbb{R}_{\geq 0}^{\mathcal{S} \times \mathcal{S}}$ is the transition matrix，which is a（row－）stochastic matrix
－Let $\pi^{(t)}(x)=\operatorname{Pr}\left(X_{t}=x\right)$ be the mass function（omf）of X_{t} ．By total probability：

$$
\begin{gathered}
\pi^{(t+1)}(y)=\operatorname{Pr}\left(X_{t+1}=y\right)=\sum_{x \in S} \operatorname{Pr}\left(X_{t+1}=y \mid X_{t}=x\right) \operatorname{Pr}\left(X_{t}=x\right)=\pi^{(t)} P \\
\pi^{(0)} \xrightarrow{P} \pi^{(1)} \xrightarrow{P} \cdots \xrightarrow{P} \pi^{(t)} \xrightarrow{P} \pi^{(t+1)} \xrightarrow{P} \cdots
\end{gathered}
$$

Random Walk（随机游走）

－WLOG：a Markov chain is a random walk on state space \mathcal{S}
－Each state $x \in \mathcal{S}$ corresponds to a vertex

－Given the current state $x \in \mathcal{S}$ ，the probability of next state being $y \in \mathcal{S}$ is：

$$
P(x, y)=\operatorname{Pr}\left(X_{t+1}=y \mid X_{t}=x\right)
$$

－Initially，$\pi^{(0)}(x)=\operatorname{Pr}\left(X_{0}=x\right)$ ，for $t \geq 0$ ：

$$
\pi^{(t+1)}=\pi^{(t)} P
$$

Stationary Distribution（稳态分布）

－A distribution（pmf）π on state space \mathcal{S} is called a stationary distribution of the Markov chain P if

$$
\pi P=\pi
$$

－π is a fixpoint（equilibrium）of the linear dynamic system

$$
\begin{gathered}
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 3 & 0 & 2 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \pi=\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right) \\
P^{20} \approx\left[\begin{array}{lll}
0.2500 & 0.3750 & 0.3750 \\
0.2500 & 0.3750 & 0.3750 \\
0.2500 & 0.3750 & 0.3750
\end{array}\right]
\end{gathered}
$$

Convergence Theorem

－Markov chain convergence theorem：
If a Markov chain $X_{0}, X_{1}, X_{2} \ldots$ on state space \mathcal{S} is irreducible and ergodic， then there is a unique stationary distribution π on \mathcal{S} such that

$$
\pi(x)=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=x \mid X_{0}=x_{0}\right) \text { for any } x_{0} \in \mathcal{S}
$$

－Irreducibility：the chain is irreducible if P is an irreducible matrix（不可约矩阵） \Longleftrightarrow the state space \mathcal{S} is strongly connected under P
－Ergodicity：the chain is ergodic if all states are aperiodic（无周期） and positive recurrent（正常返）

Ergodicity

－Let $X_{0}, X_{1}, X_{2} \ldots$ be a Markov chain on state space \mathcal{S} with transition matrix P ．
－The period $d(x)$ of a state $x \in \mathcal{S}$ is $d(x)=\operatorname{gdc}\left\{t \geq 1 \mid P^{t}(x, x)>0\right\}$
－A state $x \in \mathcal{S}$ is called aperiodic if $d(x)=1$
－$P(x, x)>0 \Longrightarrow x$ is aperiodic
－A state $x \in \mathcal{S}$ is called recurrent if $\operatorname{Pr}\left(\exists t \geq 1, X_{t}=x \mid X_{0}=x\right)=1$ and further called positive recurrent if $\mathbb{E}\left[\min \left\{t \geq 1: X_{t}=x\right\} \mid X_{0}=x\right]<\infty$
－Shizuo Kakutani（角谷静夫）：random walk is recurrent on \mathbb{Z}^{2} but non－recurrent on \mathbb{Z}^{3} ＂A drunk man will find his way home，but a drunk bird may get lost forever．＂
－On finite state space $\mathcal{\delta}$ ：irreducible \Longrightarrow all states are positive recurrent

Convergence Theorem

- Markov chain convergence theorem:

If a Markov chain $X_{0}, X_{1}, X_{2} \ldots$ on state space \mathcal{S} is irreducible and ergodic, then there is a unique stationary distribution π on \mathcal{S} such that

$$
\pi(x)=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=x \mid X_{0}=x_{0}\right) \text { for any } x_{0} \in \mathcal{S}
$$

- Finite Markov chain (with finite state space \mathcal{S}):
lazy (i.e. $P(x, x)>0$) and strongly connected P
\Longrightarrow always converge to the unique stationary distribution $\pi=\pi P$

Convergence Theorem

- Markov chain convergence theorem:

If a Markov chain $X_{0}, X_{1}, X_{2} \ldots$ on state space \mathcal{S} is irreducible and ergodic, then there is a unique stationary distribution π on \mathcal{S} such that

$$
\pi(x)=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=x \mid X_{0}=x_{0}\right) \text { for any } x_{0} \in \mathcal{S}
$$

- Proof: (By coupling)

PageRank

- Each webpage $x \in \mathcal{S}$ is assigned a rank $r(x)$:
- A page has high rank if pointed by many high-rank pages.
- High-rank pages have greater influence.
- Pages pointing to few others have greater influence.
- Linear system: $r(x)=\sum_{y \rightarrow x} \frac{r(y)}{d^{+}(y)}$ where $d^{+}(y)$ is the out-degree of page y
- Stationary distribution $r P=r$ for the random walk (tireless internet surfer)

$$
P(x, y)= \begin{cases}\frac{1}{d^{+}(x)} & \text { if } x \rightarrow y \\ 0 & \text { o.w. }\end{cases}
$$

Mixing of Markov Chain

- Markov chain convergence theorem:

If a Markov chain $X_{0}, X_{1}, X_{2} \ldots$ on state space \mathcal{S} is irreducible and ergodic, then there is a unique stationary distribution π on \mathcal{S} such that

$$
\pi(x)=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=x \mid X_{0}=x_{0}\right) \text { for any } x_{0} \in \mathcal{S}
$$

- How fast is the convergence rate?
- Mixing time: let $\pi_{x}^{(t)}(y)=\left(\mathbf{1}_{x} P^{t}\right)_{y}=\operatorname{Pr}\left(X_{t}=y \mid X_{0}=x\right)$

$$
\tau(\epsilon)=\max _{x \in S} \min \left\{t \geq 1 \mid\left\|\pi_{x}^{(t)}-\pi\right\|_{1} \leq 2 \epsilon\right\}
$$

Random Processes

Random Processes

- Stationary processes: $\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right) \sim\left(X_{t_{1}+h}, X_{t_{2}+h}, \ldots, X_{t_{n}+h}\right)$
- i.i.d. variables, stationary Markov chains, stationary Gaussian process, ...
- Renewal (or counting) processes: $N(t)=\max \left\{n \mid X_{1}+\cdots+X_{n} \leq t\right\}$ where $\left\{X_{i}: i \geq 1\right\}$ are i.i.d. nonnegative-valued random variables
- Poisson processes (the only renewal processes that are Markov chains)
- Wiener process (Brownian motion): continuous-time continuous-space $\{W(t) \in \mathbb{R}: t \geq 0\}$ with time-homogeneity and independent increments
$W\left(s_{i}\right)-W\left(t_{i}\right)$ are independent whenever the intervals $\left(s_{i}, t_{i}\right]$ are disjoint

Diffusion Processes

（Stochastic processes with continuous sample paths）

－Let $(\Omega, \Sigma, \operatorname{Pr})$ be a probability space．A random process $X: \mathscr{T} \times \Omega \rightarrow \mathcal{S}$ with time range \mathscr{T} and state space \mathcal{S} is called a diffusion process if there is an $A \in \Sigma$ with $\operatorname{Pr}(A)=1$ such that for all $\omega \in A$ ，

$$
X(\omega): \mathscr{T} \rightarrow \mathcal{\delta}
$$

is a continuous function（between topological spaces）．
－The Wiener processes are one－dimensional diffusions．
－Itô（伊藤）calculus may apply！

