Probability Theory \＆ Mathematical Statistics

Limit Theorems

尹一通 Nanjing University， 2024 Spring

Limit Theorems

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mu=\mathbb{E}\left[X_{1}\right]$ and $\operatorname{Var}\left[X_{1}\right]=\sigma^{2}$.

$$
\text { And let } \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { be the sample mean. }
$$

- Law of large numbers (LLN): sample mean \rightarrow expectation

$$
\bar{X}_{n} \longrightarrow \mu \quad \text { as } n \rightarrow \infty
$$

- Central limit theorem (CLT): standardized sample mean \rightarrow standard normal

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \longrightarrow N(0,1) \quad \text { as } n \rightarrow \infty
$$

Convergence

- A real sequence $\left\{a_{n}\right\}$ converges to $a \in \mathbb{R}$, denoted $\lim a_{n}=a$ or $a_{n} \rightarrow a$, if for all $\epsilon>0$, there is N such that $\left|a_{n}-a\right|<\epsilon$ for all $n>N$
- A sequence $f_{1}, f_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ is said to converge pointwise to $f: \Omega \rightarrow \mathbb{R}$, if and only if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in \Omega$
- For random variables X_{1}, X_{2}, \ldots and X on probability space $(\Omega, \Sigma, \operatorname{Pr})$:
- random variables $X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ and $X: \Omega \rightarrow \mathbb{R}$ are functions
- CDFs $F_{X_{1}}, F_{X_{2}}, \ldots: \mathbb{R} \rightarrow[0,1]$ and $F_{X}: \mathbb{R} \rightarrow[0,1]$ are functions
- Should $X_{n} \rightarrow X$ be: $X_{n} \rightarrow X$ pointwise or $F_{X_{n}} \rightarrow F_{X}$ pointwise?

Convergence of Random Variables

$$
0 . \quad \cdots \rightarrow U_{[0,1]}
$$

Modes of Convergence

－Let $X, X_{1}, X_{2}, \ldots: \Omega \rightarrow \mathbb{R}$ be random variables on prob．space（ $\Omega, \Sigma, \operatorname{Pr}$ ）．
－$\left\{X_{n}\right\}$ converges in distribution（依分布收敛）to X ，denoted $X_{n} \xrightarrow{D} X$ ，if

$$
F_{X_{n}}(x)=\operatorname{Pr}\left(X_{n} \leq x\right) \rightarrow F_{X}(x)=\operatorname{Pr}(X \leq x) \quad \text { as } \quad n \rightarrow \infty
$$

for all $x \in \mathbb{R}$ at which $F_{X}(x)$ is continuous
－$\left\{X_{n}\right\}$ converges in probability（依概率收敛）to X ，denoted $X_{n} \xrightarrow{P} X$ ，if

$$
\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)=0 \quad \text { as } \quad n \rightarrow \infty \quad \text { for all } \epsilon>0
$$

－$\left\{X_{n}\right\}$ converges almost surely to X ，denoted $X_{n} \xrightarrow{\text { a．s．}} X$ ，if $\exists A \in \Sigma$ such that

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega) \quad \text { for all } \omega \in A, \quad \text { and } \quad \operatorname{Pr}(A)=1
$$

Modes of Convergence

- Let X_{1}, X_{2}, \ldots and X be random variables on probability space $(\Omega, \Sigma, \operatorname{Pr})$.
- $X_{n} \xrightarrow{D} X$ (convergence in distribution / in law / weak convergence of measure) if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x) \quad \begin{gathered}
F_{X_{n}} \rightarrow F_{X} \text { pointwise } \\
\text { on continuous set }
\end{gathered}
$$

for all $x \in \mathbb{R}$ at which $F_{X}(x)$ is continuous

- $X_{n} \xrightarrow{P} X$ (convergence in probability / in measure) if

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)=0 \quad \text { for all } \epsilon>0 \quad \begin{array}{r}
X_{n} \rightarrow X \\
\text { in measure }
\end{array}
$$

- $X_{n} \xrightarrow{\text { a.s. }} X$ (convergence almost surely / almost everywhere / w.p. 1) if

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1 \quad \begin{gathered}
X_{n} \rightarrow X \text { pointwise } \\
\text { on a set of measure 1 }
\end{gathered}
$$

Convergence in Distribution

- Let X_{1}, X_{2}, \ldots and X be random variables on probability space $(\Omega, \Sigma, \operatorname{Pr})$.
- $X_{n} \xrightarrow{D} X$ (convergence in distribution / in law / weak convergence of measure) if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x) \quad \begin{gathered}
F_{X_{n}} \rightarrow F_{X} \text { pointwise } \\
\text { on continuous set }
\end{gathered}
$$

for all $x \in \mathbb{R}$ at which $F_{X}(x)$ is continuous

- The restriction on continuity set is necessary, consider:
uniform X_{n} on $(0,1 / n)$, which satisfies $X_{n} \xrightarrow{D} X$, where $\operatorname{Pr}(X=0)=1$
- $X_{n} \xrightarrow{D} X$ and $F_{X}=F_{Y} \Longrightarrow X_{n} \xrightarrow{D} Y \quad \begin{aligned} & \text { (convergence in distribution } \\ & \text { depends only on distribution) }\end{aligned}$
- $X_{n} \xrightarrow{D} X$ is a weak convergence of measures

Convergence in Probability

- Let X_{1}, X_{2}, \ldots and X be random variables on probability space $(\Omega, \Sigma, \operatorname{Pr})$.
- $X_{n} \xrightarrow{P} X$ (convergence in probability) if

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)=0 \quad \text { for all } \epsilon>0 \quad \begin{gathered}
X_{n} \rightarrow X \\
\text { in measure }
\end{gathered}
$$

- Functions $X_{n}: \Omega \rightarrow \mathbb{R}$ converges to $X: \Omega \rightarrow \mathbb{R}$ in measure Pr
- $X_{n} \xrightarrow{P} X \Longrightarrow X_{n} \xrightarrow{D} X$
- Counterexample for converse: X is uniform on [0,1] and $X_{n}=1-X$
- If $X_{n} \xrightarrow{D} c$, where $c \in \mathbb{R}$ is a constant, then $X_{n} \xrightarrow{P} c$
- Proof: $\operatorname{Pr}\left(\left|X_{n}-c\right|>\epsilon\right)=\operatorname{Pr}\left(X_{n}<c-\epsilon\right)+\operatorname{Pr}\left(X_{n}>\epsilon+c\right) \rightarrow 0$ if $X_{n} \xrightarrow{D} c$

Almost Sure Convergence

- Let X_{1}, X_{2}, \ldots and X be random variables on probability space $(\Omega, \Sigma, \operatorname{Pr})$.
- $X_{n} \xrightarrow{\text { a.s. }} X$ (convergence almost surely / almost everywhere / w.p. 1) if

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1 \quad \begin{gathered}
X_{n} \rightarrow X \text { pointwise } \\
\text { on a set of measure } 1
\end{gathered}
$$

- $X_{n}: \Omega \rightarrow \mathbb{R}$ converges to $X: \Omega \rightarrow \mathbb{R}$ almost everywhere except a null set
- The event $\lim _{n \rightarrow \infty} X_{n}=X$ is: $\bigcap_{m=1}^{\infty} \bigcup_{n_{0}=1}^{\infty} \bigcap_{n=n_{0}}^{\infty}\left\{\omega \in \Omega| | X_{n}(\omega)-X(\omega) \mid \leq 1 / m\right\}$
- $X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow X_{n} \xrightarrow{P} X$
- Counterexample for converse: $\left\{X_{n}\right\}$ are independent $\operatorname{Bernoulli}(1 / n)$. We have $X_{n} \xrightarrow{P} 0$, but we do not have $X_{n}=0$ almost everywhere as $n \rightarrow \infty$.

Borel－Cantelli Lemmas＊

（博雷尔－坎特利引理／波莱尔－坎泰利引理／zero－one law）
－Let A_{1}, A_{2}, \ldots be a sequence of events from a probability space $(\Omega, \Sigma, \operatorname{Pr})$ ． Let A be the event that infinitely many of the A_{n} occurs：

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

denoted A_{n} infinitely often，or A_{n} i．o．
．（1st lemma）$\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)<\infty \Longrightarrow \operatorname{Pr}(A)=0$
．（2nd lemma）$\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are independent $\Longrightarrow \operatorname{Pr}(A)=1$

Continuity of Probability Measures*

- Let $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ be an increasing sequence of events, and write A for their limit

$$
A=\bigcup_{i=1}^{\infty} A_{i}=\lim _{i \rightarrow \infty} A_{i}
$$

Then $\operatorname{Pr}(A)=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(A_{i}\right)$.

- Proof: Express A as a disjoint union $A=A_{1} \uplus\left(A_{2} \backslash A_{1}\right) \uplus\left(A_{3} \backslash A_{2}\right) \uplus \cdots$. Then

$$
\begin{aligned}
\operatorname{Pr}(A) & =\operatorname{Pr}\left(A_{1}\right)+\sum_{i=1}^{\infty} \operatorname{Pr}\left(A_{i+1} \backslash A_{i}\right) \\
& =\operatorname{Pr}\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n-1}\left[\operatorname{Pr}\left(A_{i+1}\right)-\operatorname{Pr}\left(A_{i}\right)\right] \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)
\end{aligned}
$$

Continuity of Probability Measures*

- Let $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ be an increasing sequence of events, and write A for their limit

$$
A=\bigcup_{i=1}^{\infty} A_{i}=\lim _{i \rightarrow \infty} A_{i}
$$

Then $\operatorname{Pr}(A)=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(A_{i}\right)$.

- Let $B_{1} \supseteq B_{2} \supseteq B_{3} \supseteq \ldots$ be an decreasing sequence of events, and write B for their limit

$$
B=\bigcap_{i=1}^{\infty} B_{i}=\lim _{i \rightarrow \infty} B_{i}
$$

Then $\operatorname{Pr}(B)=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(B_{i}\right)$.

- Proof: Consider the complements $B_{1}^{c} \subseteq B_{2}^{c} \subseteq B_{3}^{c} \subseteq \ldots$ which is an increasing sequence.

Borel-Cantelli Lemmas*

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

(1st lemma) $\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)<\infty \Longrightarrow \operatorname{Pr}(A)=0$
Proof: By union bound, $\operatorname{Pr}\left(\bigcup_{m=n}^{\infty} A_{m}\right) \leq \sum_{m=n}^{\infty} \operatorname{Pr}\left(A_{m}\right)$, which $\rightarrow 0$ as $n \rightarrow \infty$, assuming that $\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)<\infty$ converges.
And by continuity of Pr, we have $\operatorname{Pr}(A)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\bigcup_{m=n}^{\infty} A_{m}\right)=0$

Borel-Cantelli Lemmas*

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

(2nd lemma) $\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)=\infty$ and A_{1}, A_{2}, \ldots are independent $\Longrightarrow \operatorname{Pr}(A)=1$
Proof: By independence, $\operatorname{Pr}\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right)=\prod_{m=n}^{\infty}\left(1-\operatorname{Pr}\left(A_{m}\right)\right) \leq \exp \left(-\sum_{m=n}^{\infty} \operatorname{Pr}\left(A_{m}\right)\right)=0$, assuming the divergence of $\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{n}\right)=\infty$.
By continuity of $\operatorname{Pr}, \operatorname{Pr}\left(A^{c}\right)=\operatorname{Pr}\left(\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}^{c}\right)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right)=0 \Longrightarrow \operatorname{Pr}(A)=1$

Strength of Convergence

- $\left(X_{n} \stackrel{\text { ass }}{\xrightarrow{s}} X\right) \Longrightarrow\left(X_{n} \xrightarrow{P} X\right) \Longrightarrow\left(X_{n} \xrightarrow{D} X\right)$

Proof $^{\star}\left(X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow X_{n} \xrightarrow{P} X\right)$: Let $A_{n}(\epsilon)=\left\{\left|X_{n}-X\right|>\epsilon\right\}$. Then for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} X_{n}=X \Longrightarrow \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}^{c}(\epsilon)
$$

Assume $X_{n} \xrightarrow{\text { a.s. }} X$. Then $1=\operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=\operatorname{Pr}\left(\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}^{c}(\epsilon)\right)$
$\Longrightarrow 0=\operatorname{Pr}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)$ (by continuity of probability measure)
$\Longrightarrow \operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)=\operatorname{Pr}\left(A_{n}(\epsilon)\right) \leq \operatorname{Pr}\left(\bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right) \rightarrow 0$ as $n \rightarrow \infty$
$\Longrightarrow X_{n} \xrightarrow{P} X$

Strength of Convergence

- $\left(X_{n} \stackrel{\text { ass }}{\xrightarrow{s}} X\right) \Longrightarrow\left(X_{n} \xrightarrow{P} X\right) \Longrightarrow\left(X_{n} \xrightarrow{D} X\right)$

Proof $^{\star}\left(X_{n} \xrightarrow{P} X \Longrightarrow X_{n} \xrightarrow{D} X\right)$: Fix any $\epsilon>0$. It holds that

$$
\begin{aligned}
& \left\{X_{n} \leq x\right\} \subseteq\{X \leq x+\epsilon\} \cup\left\{\left|X_{n}-X\right|>\epsilon\right\} \Longrightarrow F_{X_{n}}(x) \leq F_{X}(x+\epsilon)+\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right) \\
& \{X \leq x-\epsilon\} \subseteq\left\{X_{n} \leq x\right\} \cup\left\{\left|X_{n}-X\right|>\epsilon\right\} \Longrightarrow F_{X}(x-\epsilon) \leq F_{X_{n}}(x)+\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right) \\
\Longrightarrow & F_{X}(x-\epsilon)-\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right) \leq F_{X_{n}}(x) \leq F_{X}(x+\epsilon)+\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)
\end{aligned}
$$

Assume $X_{n} \xrightarrow{P} X$. Then $\operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\epsilon>0$. Therefore,

$$
F_{X}(x-\epsilon) \leq \liminf _{n \rightarrow \infty} F_{X_{n}}(x) \leq \limsup _{n \rightarrow \infty} F_{X_{n}}(x) \leq F_{X}(x+\epsilon) \text { for all } \epsilon>0
$$

Furthermore, if F_{X} is continuous at x, then

$$
F_{X}(x-\epsilon) \uparrow F_{X}(x) \text { and } F_{X}(x+\epsilon) \downarrow F_{X}(x) \text { as } \epsilon \downarrow 0 .
$$

Condition for Almost Sure Convergence*

- If $\sum_{n=1}^{\infty} \operatorname{Pr}\left(\left|X_{n}-X\right|>\epsilon\right)<\infty$ for all $\epsilon>0$, then $X_{n} \xrightarrow{\text { as. }} X$

Proof: For any $\epsilon>0$, let $A_{n}(\epsilon)=\left\{\left|X_{n}-X\right|>\epsilon\right\}$. Then due to Borel-Cantelli: $\forall \epsilon>0$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} A_{n}(\epsilon)<\infty \Longrightarrow \operatorname{Pr}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right)=\operatorname{Pr}\left(A_{n}(\epsilon) \text { infinitely often }\right)=0 \\
\Longrightarrow & \operatorname{Pr}\left(\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}(1 / k)\right)=0 \text { by countable additivity } \\
\Longrightarrow & \operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=\operatorname{Pr}\left(\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}^{c}(1 / k)\right)=1
\end{aligned}
$$

$$
\Longrightarrow X_{n} \xrightarrow{\text { a.s. }} X
$$

Almost Sure vs. In Probability Convergence*

- Let $\left\{X_{n}\right\}$ be independent Bernoulli trials with parameter $1 / n$. Then

$$
X_{n} \xrightarrow{P} 0 \text {, but it does not hold } X_{n} \xrightarrow{\text { a.s. }} 0
$$

Proof: For any $\epsilon>0, \operatorname{Pr}\left(\left|X_{n}\right|>\epsilon\right) \leq \operatorname{Pr}\left(X_{n}=1\right)=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty \Longrightarrow X_{n} \xrightarrow{P} 0$ $\left\{X_{n}\right\}$ are independent and $\sum_{n=1}^{\infty} \operatorname{Pr}\left(X_{n}=1\right)=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$, then by Borel-Cantelli:
$\operatorname{Pr}\left(X_{n}=1\right.$ infinitely often $)=1 \Longrightarrow \operatorname{Pr}\left(\lim _{n \rightarrow \infty} X_{n}=0\right)=0 \Longrightarrow X_{n} \xrightarrow{\text { a.s. }} 0$ does not hold

Coupling*

- Skorokhod's representation theorem:

If $X_{n} \xrightarrow{D} X$, then there exist random variables Y_{1}, Y_{2}, \ldots and Y on some $\left(\Omega^{\prime}, \mathscr{F}, \mathbb{P}\right)$, satisfying $F_{X_{n}}=F_{Y_{n}}$ for all $n \geq 1$ and $F_{X}=F_{Y}$, such that $Y_{n} \xrightarrow{\text { a.s. }} Y$

Proof: Apply inverse transform sampling. Let $\Omega^{\prime}=[0,1], \mathscr{F}$ the Borel σ-field on $[0,1]$, and \mathbb{P} the uniform law. For $u \in \Omega^{\prime}=[0,1]$, let

$$
Y_{n}(u)=\inf \left\{x \mid u \leq F_{X_{n}}(x)\right\} \text { and } Y(u)=\inf \left\{x \mid u \leq F_{X}(x)\right\}
$$

Due to inverse transform sampling, $F_{X_{n}}=F_{Y_{n}}$ for all $n \geq 1$ and $F_{X}=F_{Y}$. It can also be verified that $Y_{n}(u) \rightarrow Y(u)$ for all points u of continuity of Y, meanwhile the set $D \subseteq[0,1]$ of discontinuities of Y is countable , thus $\mathbb{P}(D)=0$, which implies

$$
Y_{n} \xrightarrow{\text { a.s. }} Y
$$

Continuous Mapping Theorem*

- Continuous mapping theorem: If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then

$$
\begin{aligned}
& X_{n} \xrightarrow{D} X \Longrightarrow g\left(X_{n}\right) \xrightarrow{D} g(X) \\
& X_{n} \xrightarrow{P} X \Longrightarrow g\left(X_{n}\right) \xrightarrow{P} g(X) \\
& X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)
\end{aligned}
$$

Proof (for convergence in distribution):
Construct $\left\{Y_{n}\right\}$ and Y as in Skorokhod's representation theorem. By continuity of g,

$$
Y_{n}(u) \rightarrow Y(u) \Longrightarrow g\left(Y_{n}(u)\right) \rightarrow g(Y(u)) \Longrightarrow g\left(Y_{n}\right) \xrightarrow{\text { a.s. }} g(Y) \Longrightarrow g\left(X_{n}\right) \xrightarrow{D} g(X)
$$

Other Convergence Modes*

- $X_{n} \xrightarrow{1} X$ (convergence in mean) if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|\right]=0
$$

- $X_{n} \xrightarrow{r} X$ (convergence in r th mean / in the L^{r}-norm) if

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|^{r}\right]=0 \\
\left(X_{n} \xrightarrow{\text { a.s. }} X\right) \Longrightarrow\left(X_{n} \xrightarrow{\uparrow} X\right) \Longrightarrow\left(X_{n} \xrightarrow{D} X\right) \\
\left(X_{n} \xrightarrow[\rightarrow]{s} X\right) \Longrightarrow\left(X_{n} \xrightarrow{r} X\right) \Longrightarrow\left(X_{n} \xrightarrow{1} X\right)
\end{gathered}
$$

LLN and CLT

Bernoulli's Law of Large Number In Ars Conjectandi (1713)

- Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli trials with $\mathbb{E}\left[X_{1}\right]=p \in[0,1]$. Then

$$
\operatorname{Pr}\left(\left|\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}-p\right|>\epsilon\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \quad \text { for all } \epsilon>0
$$

i.e. $\bar{X}_{n} \xrightarrow{P} p$, where \bar{X}_{n} is the sample mean $\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$

Proof: By Chebyshev's inequality, $\operatorname{Pr}\left(\left|\bar{X}_{n}-p\right|>\epsilon\right) \leq \frac{p(1-p)}{n \epsilon^{2}} \rightarrow 0$ as $n \rightarrow \infty$
(This is of course not the original proof of Bernoulli.)

Law of Large Numbers (LLN)

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with finite mean $\mathbb{E}\left[X_{1}\right]=\mu$.

$$
\text { And let } \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { be the sample mean. }
$$

- Weak law (Khinchin's law) of large number:

$$
\bar{X}_{n} \xrightarrow{P} \mu \text { as } n \rightarrow \infty
$$

- Strong law (Kolmogorov's law) of large number:

$$
\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu \text { as } n \rightarrow \infty
$$

(The deviation $\left|\bar{X}_{n}-\mu\right|$ is always small for all sufficiently large n)

Weak LLN Assuming Bounded Variance

- Let X_{1}, X_{2}, \ldots be independent random variables with finite mean $\mathbb{E}\left[X_{i}\right]=\mu$ and finitely bounded variance $\operatorname{Var}\left[X_{i}\right] \leq \sigma^{2}$.
Then the sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ has

$$
\bar{X}_{n} \xrightarrow{P} \mu \text { as } n \rightarrow \infty
$$

Proof: By Chebysev's inequality, $\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \rightarrow 0$ as $n \rightarrow \infty$

De Moivre－Laplace Theorem

（棣莫弗－拉普拉斯定理）
－Let $p \in(0,1)$ and $X_{n} \sim B(n, p)$ ．Then its standardization

$$
\frac{X_{n}-n p}{\sqrt{n p(1-p)}} \stackrel{D}{\rightarrow} N(0,1) \text { as } n \rightarrow \infty
$$

－For any $p \in(0,1)$ ，any radius $r>0$ ，and any $\epsilon>0$ ，there is an n_{0} such that for all $n>n_{0}$ and all k such that $|(k-n p) / \sqrt{n p(1-p)}|<r$ ，

$$
\binom{n}{k} p^{k}(1-p)^{n-k} \in(1 \pm \epsilon) \frac{1}{\sqrt{2 \pi n p(1-p)}} \mathrm{e}^{-\frac{(k-n p)^{2}}{2 n p(1-p)}}
$$

Central Limit Theorem (CLT)

- Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{Var}\left[X_{1}\right]=\sigma^{2}$.

$$
\text { And let } \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { be the sample mean. }
$$

- Classical (Lindeberg-Lévy) central limit theorem:

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{D} N(0,1) \quad \text { as } n \rightarrow \infty
$$

Convergence Rate of CLT

(Berry-Esseen theorem)

- Berry-Esseen theorem: Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=\mu, \operatorname{Var}\left[X_{1}\right]=\sigma^{2}$, and $\rho=\mathbb{E}\left[\left|X_{1}-\mu\right|^{3}\right]$. And let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. There is an absolute constant C, such that for any z

$$
\left|\operatorname{Pr}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq z\right)-\Phi(z)\right| \leq \frac{C \rho}{\sigma^{3} \sqrt{n}}
$$

where Φ stands for the CDF for standard normal distribution $N(0,1)$

Characteristic Function

Characteristic Functions

－The moment generating function（MGF）of X is the function $M_{X}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$

$$
M_{X}(t)=\mathbb{E}\left[\mathrm{e}^{t X}\right]
$$

－The characteristic function（特征函数）of X is the function $\varphi_{X}: \mathbb{R} \rightarrow \mathbb{C}$

$$
\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right], \text { where } i=\sqrt{-1}
$$

．Fourier transform：$\varphi_{X}(t)=\int \mathrm{e}^{i t x} \mathrm{~d} F_{X}(x)=\mathbb{E}[\cos t X]+i \mathbb{E}[\sin t X]$
－Unlike MGF，φ_{X} always exists and is finite，because $\left|\mathrm{e}^{i t x}\right|=1$

Boundedness of Characteristic Function

$$
\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]
$$

- $\left|\varphi_{X}(t)\right| \leq 1$ for all $t \in \mathbb{R}$
- If $\mathbb{E}\left[\left|X^{k}\right|\right]<\infty$, then

$$
\varphi_{X}(t)=\sum_{j=0}^{k} \frac{\mathbb{E}\left[X^{j}\right]}{j!}(i t)^{j}+o\left(t^{k}\right) \quad \begin{aligned}
& \left(\varphi_{X}(t)=1+i \mu t+o(t)\right) \\
& \left(\varphi_{X}(t)=1+i \mu t-\frac{\sigma^{2} t^{2}}{2}+o\left(t^{2}\right)\right)
\end{aligned}
$$

Proof: $\left|\varphi_{X}(t)\right| \leq \int\left|\mathrm{e}^{\mathrm{itx}}\right| \mathrm{d} F_{X}(x)=\int \mathrm{d} F_{X}(x)=1$ (for Lebesgue-Stieltjes integral)
Taylor's expansion: $\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]=\mathbb{E}\left[\sum_{j=0}^{k} \frac{X^{j}}{j!}(i t)^{j}+o\left(t^{k}\right)\right]=\sum_{j=0}^{k} \frac{\mathbb{E}\left[X^{j}\right]}{j!}(i t)^{j}+o\left(t^{k}\right)$

Normal Characteristic Function

- If $X \sim N(0,1)$, then

$$
\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]=\mathrm{e}^{-t^{2} / 2}
$$

Proof (using complex integration):

$$
\begin{aligned}
\varphi_{X}(t)= & \mathbb{E}\left[\mathrm{e}^{i t X}\right]=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{i t x-x^{2} / 2} \mathrm{~d} x=\mathrm{e}^{-t^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}(x-i t)^{2}} \mathrm{~d} x=\mathrm{e}^{-t^{2} / 2} \\
& \text { because } \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}(x-i t)^{2}} \mathrm{~d} x=1 \text { via contour integration }
\end{aligned}
$$

Normal Characteristic Function

- If $X \sim N(0,1)$, then

$$
\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]=\mathrm{e}^{-t^{2} / 2}
$$

Proof (without using complex integration): $\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]=\mathbb{E}[\cos t X]+i \mathbb{E}[\sin t X]$
$=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \cos (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x+\frac{i}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sin (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x=\frac{1}{\sqrt{2 \pi} \text { function }} \int_{-\infty}^{\infty} \cos (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x$
$\frac{\mathrm{d} \varphi_{X}(t)}{\mathrm{d} t}=\mathbb{E}\left[\frac{\mathrm{de}}{\mathrm{dit}}\right]=\mathbb{E}\left[i X \mathrm{e}^{i t X}\right]=\underset{\text { odd function }}{i \mathbb{E}[X \cos t X]-\mathbb{E}[X \sin t X]=\frac{-1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x \sin (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x}$
$=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sin (t x) \operatorname{de} e^{-x^{2} / 2}=\left.\frac{1}{\sqrt{2 \pi}} \sin (t x) \mathrm{e}^{-x^{2} / 2}\right|_{-\infty} ^{\infty}-\frac{t}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \cos (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x=-\frac{t}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \cos (t x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x$
$\Longrightarrow \frac{\mathrm{d} \varphi_{X}(t)}{\mathrm{d} t}=-t \varphi_{X}(t) \Longrightarrow \varphi_{X}(t)=\mathrm{e}^{-t^{2} / 2} \quad$ (solving the ODE subject to $\varphi_{X}(0)=\mathbb{E}\left[\mathrm{e}^{i \cdot 0 \cdot X}\right]=1$)

Linear Transformation

- If X and Y are independent, then $\varphi_{X+Y}(t)=\varphi_{X}(t) \varphi_{Y}(t)$
- If $Y=a X+b$ for $a, b \in \mathbb{R}$, then $\varphi_{Y}(t)=\mathrm{e}^{i t b} \varphi_{X}(a t)$

Proof: For independent X and Y,

$$
\varphi_{X+Y}(t)=\mathbb{E}\left[\mathrm{e}^{i t(X+Y)}\right]=\mathbb{E}\left[\mathrm{e}^{i t X}\right] \mathbb{E}\left[\mathrm{e}^{i t Y}\right]=\varphi_{X}(t) \varphi_{Y}(t)
$$

For $Y=a X+b$,

$$
\varphi_{Y}(t)=\mathbb{E}\left[\mathrm{e}^{i t(a X+b)}\right]=\mathrm{e}^{i t b} \mathbb{E}\left[\mathrm{e}^{\mathrm{i} t a X}\right]=\mathrm{e}^{\mathrm{i} t b} \varphi_{X}(a t)
$$

Continuity Theorem

- If X is continuous with density function f_{X} and characteristic function φ_{X}, then (by Fourier inversion theorem)

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} \mathrm{e}^{i t x} f_{X}(x) \mathrm{d} x \quad \text { and } \quad f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{-i t x} \varphi_{X}(t) \mathrm{d} t
$$

Hence, the distribution of continuous X is uniquely identified by φ_{X}.

- For general random variables: (it's more complicated, but similarly)

$$
F_{X}=F_{Y} \text { iff } \varphi_{X}=\varphi_{Y}
$$

- Lévy's continuity theorem: Let $\left\{X_{n}\right\}$ and X be random variables.

$$
X_{n} \xrightarrow{D} X \quad \text { iff } \quad \varphi_{X_{n}} \rightarrow \varphi_{X} \text { pointwise on } \mathbb{R} \text { as } n \rightarrow \infty
$$

Convolution of Normal Distribution

- If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y \sim N\left(\nu, \tau^{2}\right)$ are independent, then
- $X+Y \sim N\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$

Proof (by characteristic function): Let $Z \sim N(0,1)$.

$$
X \sim N\left(\mu, \sigma^{2}\right) \Longrightarrow X=\sigma Z+\mu \Longrightarrow \varphi_{X}(t)=\mathrm{e}^{i t \mu} \varphi_{Z}(\sigma t)=\mathrm{e}^{i t \mu-\sigma^{2} t^{2} / 2}
$$

By the same calculation: $Y \sim N\left(\nu, \tau^{2}\right) \Longrightarrow \varphi_{Y}(t)=\mathrm{e}^{i t \nu-\tau^{2} t^{2} / 2}$

$$
\varphi_{X+Y}(t)=\varphi_{X}(t) \varphi_{Y}(t)=\mathrm{e}^{i t \mu-\sigma^{2} t^{2} / 2} \cdot \mathrm{e}^{i t \nu-\tau^{2} t^{2} / 2}=\mathrm{e}^{i t(\mu+\nu)-\left(\sigma^{2}+\tau^{2}\right) t^{2} / 2}
$$

which is the characteristic function of normal distribution $N\left(\mu+\nu, \sigma^{2}+\tau^{2}\right)$.

Law of Large Numbers (LLN)

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with finite mean $\mathbb{E}\left[X_{1}\right]=\mu$.

$$
\text { And let } \bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { be the sample mean. }
$$

- Weak law (Khinchin's law) of large number:

$$
\bar{X}_{n} \xrightarrow{P} \mu \text { as } n \rightarrow \infty
$$

- Strong law (Kolmogorov's law) of large number:

$$
\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu \text { as } n \rightarrow \infty
$$

Proof of the Weak Law of Large Numbers

. Let X_{1}, X_{2}, \ldots be i.i.d. with finite mean $\mathbb{E}\left[X_{1}\right]=\mu$. Let $\bar{X}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$

- The characteristic function $\varphi_{X_{j}}(t)=\mathbb{E}\left[\mathrm{e}^{i t X_{j}}\right]=1+i \mu t+o(t)$

$$
\Longrightarrow \varphi_{\bar{X}_{n}}(t)=\varphi_{X_{1}+\cdots+X_{n}}(t / n)=\prod_{j=1}^{n} \varphi_{X_{j}}(t / n)=\left(1+\frac{i \mu t}{n}+o\left(\frac{t}{n}\right)\right)^{n}
$$

$$
\rightarrow \mathrm{e}^{i t \mu} \text { for all } t \in \mathbb{R} \text { as } n \rightarrow \infty
$$

- Meanwhile, $\varphi_{X}(t)=\mathbb{E}\left[\mathrm{e}^{i t X}\right]=\mathrm{e}^{i t \mu}$ for constant $X=\mu$
- $\Longrightarrow \bar{X}_{n} \xrightarrow{D} \mu$ by Lévy's continuity theorem $\Longrightarrow \bar{X}_{n} \xrightarrow{P} \mu$ for constant μ

Central Limit Theorem (CLT)

- Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{Var}\left[X_{1}\right]=\sigma^{2}$.

Let $Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$ be the standardized sample mean, where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

- Classical (Lindeberg-Lévy) central limit theorem:

$$
Z_{n} \xrightarrow{D} N(0,1) \text { as } n \rightarrow \infty
$$

Proof of the Central Limit Theorem

. Let X_{1}, X_{2}, \ldots be i.i.d. with finite $\mathbb{E}\left[X_{1}\right]=\mu$ and $\operatorname{Var}\left[X_{1}\right]=\sigma^{2}$. Let $\bar{X}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$

- For standardized $Y_{j}=\left(X_{j}-\mu\right) / \sigma \Longrightarrow \varphi_{Y_{j}}(t)=\mathbb{E}\left[\mathrm{e}^{i t Y_{j}}\right]=1-\frac{t^{2}}{2}+o\left(t^{2}\right)$
. The standardized sample mean: $Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}=\frac{Y_{1}+\cdots+Y_{n}}{\sqrt{n}}$

$$
\begin{aligned}
\Longrightarrow \varphi_{Z_{n}}(t) & =\varphi_{Y_{1}+\cdots+Y_{n}}(t / \sqrt{n})=\prod_{j=1}^{n} \varphi_{Y_{j}}(t / \sqrt{n})=\left(1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right)^{n} \\
& \left.\rightarrow \mathrm{e}^{-t^{2} / 2} \text { for all } t \in \mathbb{R} \text { as } n \rightarrow \infty \quad \text { (characteristic function of } N(0,1)\right)
\end{aligned}
$$

- $\Longrightarrow \bar{Z}_{n} \xrightarrow{D} Z \sim N(0,1)$ by Lévy's continuity theorem

