# Probability Theory \＆ Mathematical Statistics 

Random Variable

尹一通 Nanjing University， 2024 Spring

## Random Variable



## ＂Variables＂that are Random

- 令 $X$ 和 $Y$ 分别为两次掊的结果：
- 考虑 $X^{2}$ 和 $X Y$ ——它们是相同的随机量吗？
- $2 X$ 和 $X+Y$ 呢？或者任意凸组合 $\lambda X+(1-\lambda) Y$ 之间呢？
- 设正面朝上概率为 $p$ ：令 $X$ 表示连续扡直至正面朝上为止的抛次数；令 $Y$ 表示连抛 $n$ 次，其中正面朝上的次数；
- 令 $X$ 表示从一个装有 $M$ 个 $N-M$ 个的中（有／无放回地）取出 $n$ 个球中的个数；
- $n$ 个顶点，任意两点间独立以概率 $p$ 连一条边，产生随机图 $G$ ，令 $X=\chi(G)$ 为最小染色数；
- 令 $X$ 为 $[0,1]$ 中均匀分布的随机实数；令 $Y$ 为 $[0, \infty)$ 上满足 $\operatorname{Pr}(Y \geq y)=\mathrm{e}^{-y}$ 的随机实数。


## Random Variable

- Roll a let $X$ be the outcome of the roll, let $Y \in\{0,1\}$ indicate its oddness.

| samples in $\Omega$ | values of $X$ | values of $Y$ |
| :---: | :---: | :---: |
| $\square$ | 1 | 1 |
| $\square$ | 2 | 0 |
| $\bigcirc$ | 3 | 1 |
| : | 4 | 0 |
| :0 | 5 | 1 |
| 圆 | 6 | 0 |

## Random Variable

－Let $X$ be the sum of two independent rolls．

| － | 2 | － | 3 | － | 4 | Q | 5 | Q | 6 | 回回 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| － | 3 | ®® | 4 | ．$\square^{\circ}$ | 5 | ． | 6 | ․․․ | 7 | 回回 | 8 |
| $\stackrel{\square}{\square}$ | 4 | ®® | 5 | $\odot$ | 6 | ค回 | 7 | ค圆 | 8 | ค回 | 9 |
| 回 | 5 | 回回 | 6 | 圆 | 7 | 圆： | 8 | 回圆 | 9 | 圆圆 | 10 |
| 回口 | 6 | 回 $\square^{\circ}$ | 7 | 圆 | 8 | 圆圆 | 9 | 圆圆 | 10 | 圆圆 | 11 |
| 圆 | 7 | 围 | 8 | 园回 | 9 | 圆： | 10 | 圆圆 | 11 | 圂國 | 12 |

## Random Variable（随机变量）

－Given $(\Omega, \Sigma, \operatorname{Pr})$ ，a random variable is a function $X: \Omega \rightarrow \mathbb{R}$
－satisfying that $\forall x \in \mathbb{R},\{\omega \in \Omega \mid X(\omega) \leq x\} \in \Sigma$（i．e．$X$ is $\underline{\Sigma}$－measurable）
－$X \leq x$（where $x \in \mathbb{R}$ ）denotes the event $\{\omega \in \Omega \mid X(\omega) \leq x\}$
－$X>x$（where $x \in \mathbb{R}$ ）denotes the event $\{\omega \in \Omega \mid X(\omega)>x\}$
－$X \in S$（where $S \subseteq \mathbb{R}$ is countable $\cap, \cup$ of intervals $(y, x]$ ）denotes the event $\{\omega \in \Omega \mid X(\omega) \in S\}$
－For discrete random variable $X: \Omega \rightarrow \mathbb{Z}$ ，this includes all subsets $S \subseteq \mathbb{Z}$

$$
\operatorname{Pr}(X \in S)
$$

## Distribution of Random Variable

- Let $X$ be the sum of two independent rolls.



## Distribution（分布）

－The cumulative distribution function（CDF）（累积分布函数）or just distribution function（分布函数）of a random variable $X$ is the $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by

$$
F_{X}(x)=\operatorname{Pr}(X \leq x)
$$

－All probabilities regarding $X$ can be deduced from $F_{X}$ ．（Prob．space is no longer needed．）
－Two random variables $X$ and $Y$ are identically distributed if $F_{X}=F_{Y}$
－Monotone：$\forall x, y \in \mathbb{R}$ ，if $x \leq y$ then $F_{X}(x) \leq F_{X}(y)$
－Bounded： $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$

$$
x \rightarrow-\infty \quad x \rightarrow \infty
$$

## Discrete Random Variable

－A random variable $X: \Omega \rightarrow \mathbb{R}$ is called discrete if $X(\Omega)$ is countable．
－For a discrete random variable $X$ ，its probability mass function（omf） （概率质量函数）$p_{X}: \mathbb{R} \rightarrow[0,1]$ is given by

$$
p_{X}(x)=\operatorname{Pr}(X=x)
$$

－The CDF $F_{X}$ satisfies

$$
F_{X}(y)=\sum_{x \leq y} p_{X}(x)
$$



## Continuous Random Variable

－A random variable $X: \Omega \rightarrow \mathbb{R}$ is called continuous，if its CDF can be expressed as

$$
F_{X}(y)=\operatorname{Pr}(X \leq y)=\int_{-\infty}^{y} f_{X}(x) \mathrm{d} x
$$

for some integrable probability density function（pdf）（概率密度函数）$f_{X}$ ．
－Never mind what type of integral for now．（It＇s Lebesgue integral by the way．）
－There are random variables that are neither discrete nor continuous．

## Independence

- Two discrete random variables $X$ and $Y$ are independent if $X=x$ and $Y=y$ are independent events for all $x$ and $y$.
- Discrete random variables $X_{1}, \ldots, X_{n}$ are (mutually) independent if $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ are mutually independent events for all $x_{1}, \ldots, x_{n}$

$$
p_{\left(X_{1}, \ldots, X_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}=x_{1} \cap \cdots \cap X_{n}=x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right)
$$

- The pairwise (and $k$-wise) independence are defined in the same way.
- Example: The construction of $2^{n}-1$ pairwise independent random bits out of $n$ mutually independent random bits by XOR.
- For general random variables, the events $X_{i}=x_{i}$ are replaced by $X_{i} \leq x_{i}$.


## Random Vector（随机向量）

－Given $(\Omega, \Sigma, \operatorname{Pr})$ ，a random vector is an $X=\left(X_{1}, \ldots, X_{n}\right)$ where each $X_{i}$ is a random variable defined on the probability space（ $\Omega, \Sigma, \operatorname{Pr}$ ）．
－The joint CDF（联合累积分布函数）$F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$ is given by

$$
F_{X}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1} \cap \cdots \cap X_{n} \leq x_{n}\right)
$$

－For discrete random vector，the joint mass function（联合质量函数）is given by

$$
p_{X}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}=x_{1} \cap \cdots \cap X_{n}=x_{n}\right)
$$

－The marginal distribution of $X_{i}$ in $\left(X_{1}, \ldots, X_{n}\right)$ is given by

$$
p_{X_{i}}\left(x_{i}\right)=\sum_{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} p_{\left(X_{1}, \ldots, X_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)
$$

| $\boldsymbol{Y}$ | $\boldsymbol{X}$ | $x_{1}$ | $x_{2}$ | $x_{\mathbf{3}}$ | $x_{\mathbf{4}}$ | $p_{Y}(\boldsymbol{y}) \downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{1}$ | $\frac{4}{32}$ | $\frac{2}{32}$ | $\frac{1}{32}$ | $\frac{1}{32}$ | $\frac{8}{32}$ |  |
| $y_{2}$ | $\frac{3}{32}$ | $\frac{6}{32}$ | $\frac{3}{32}$ | $\frac{3}{32}$ | $\frac{15}{32}$ |  |
| $y_{3}$ | $\frac{9}{32}$ | 0 | 0 | 0 | $\frac{9}{32}$ |  |
| $\boldsymbol{p}_{X}(x) \rightarrow$ | $\frac{16}{32}$ | $\frac{8}{32}$ | $\frac{4}{32}$ | $\frac{4}{32}$ | $\frac{32}{32}$ |  |

## Discrete Random Variable



## Probability Mass Function（概率质量函数）

－Consider integer－valued discrete random variable $X: \Omega \rightarrow \mathbb{Z}$
－Its probability mass function（omf）$p_{X}: \mathbb{Z} \rightarrow[0,1]$ is given by

$$
p_{X}(k)=\operatorname{Pr}(X=k)
$$

－As histogram：$p_{X}$ gives the＂histogram＂of the probability distribution
－As vector：$p_{X}$ can be seen as a vector $p_{X} \in[0,1]^{R}$ such that $\left\|p_{X}(x)\right\|_{1}=1$ ， where $R=X(\Omega)$ is the range of values of $X$
－Its function $Y=f(X)$ is also a discrete random variable，where $p_{Y}(y)=\sum_{x: f(x)=y} p_{X}(x)$

## Discrete Random Variables

－Basic discrete probability distributions：
－discrete uniform distribution（古典概型）
－Bernoulli trial（coin flip）
－binomial distribution（\＃of successes in $n$ trials）
－geometric distribution（\＃of trials to get a success）
－negative binomial distribution
－hypergeometric distribution
－Poisson distribution（idealized binomial distribution）
－．．．．．．
－Probability distributions of discrete objects：
－multinomial distribution（balls into bins）
－Erdős－Rényi model（random graph）
－Galton－Watson process（random tree）

## Bernoulli Trial（伯努利试验） （A coin flip）

－A Bernoulli trial is an experiment with two possible outcomes．
－A Bernoulli random variable $X$ takes values in $\{0,1\}$ ，its $p m f$ is

$$
p_{X}(k)=\operatorname{Pr}(X=k)= \begin{cases}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{cases}
$$

where $p \in[0,1]$ is a parameter．
－Indicator：For event $A$ ，the indicator $X$ of $A$ is a random variable defined by

$$
X=I(A)=\left\{\begin{array}{ll}
1 & \text { if } A \text { occurs } \\
0 & \text { otherwise }
\end{array}, \quad \text { a Bernoulli R.V. with parameter } \operatorname{Pr}(A)\right.
$$

## Binomial Distribution（二项分布） （Number of HEADs in $n$ coin flips）


－$X$ ：number of successes in $n$ i．i．d．（independent and identically distributed） Bernoulli trials with parameter $p$
－A binomial random variable $X$ takes values in $\{0,1, \ldots, n\}$ ，and

$$
p_{X}(k)=\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

－We say that $X$ follows the binomial distribution with parameters $n$ and $p$

$$
\text { denoted } X \sim \operatorname{Bin}(n, p) \text { or } \mathrm{B}(n, p)
$$

## Geometric Distribution（几何分布） （Number of coin flips to get a HEADs）

－X：number of i．i．d．Bernoulli trials needed to get one success
－A geometric random variable $X$ takes values in $\{1,2, \ldots\}$ ，and

$$
p_{X}(k)=\operatorname{Pr}(X=k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

－We say that $X$ follows the geometric distribution with parameter $p \in[0,1]$

$$
\text { denoted } X \sim \operatorname{Geo}(p) \text { or Geometric }(p)
$$

## Geometric Distribution（几何分布） （Number of coin flips to get a HEADs）

－Geometric random variable $X \sim \operatorname{Geo}(p)$ is memoryless：for $k \geq 1, n \geq 0$

$$
\operatorname{Pr}(X=k+n \mid X>n)=\operatorname{Pr}(X=k)
$$

$$
\text { Proof: } \begin{aligned}
\operatorname{Pr}(X=k+n \mid X>n) & =\frac{\operatorname{Pr}(X=k+n)}{\operatorname{Pr}(X>n)}=\frac{(1-p)^{n+k-1} p}{\sum_{k=n}^{\infty}(1-p)^{k} p} \\
& =\frac{(1-p)^{k-1} p}{\sum_{k=0}^{\infty}(1-p)^{k} p}=(1-p)^{k-1} p
\end{aligned}
$$

－Geometric distribution is the only discrete memoryless distribution （with the range of values $\{1,2, \ldots\}$ ）．

## Two Ways of Constructing Random Variables

- As a function of random variables $Y=f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- Binomial $Y$ : function $f$ is sum, and $\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d. Bernoulli trials
- independent $Y_{1} \sim \operatorname{Bin}\left(n_{1}, p\right), Y_{2} \sim \operatorname{Bin}\left(n_{2}, p\right) \Longrightarrow Y_{1}+Y_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$
- As a stopping time $T$ of a sequence $X_{1}, X_{2}, \ldots, X_{T}$
- A random variable $T$ is a stopping time with respect to $X_{1}, X_{2}, \ldots$ if for all $t \geq 1$ the occurrence of $T=t$ is determined by the values of $X_{1}, X_{2}, \ldots, X_{t}$
- Geometric $T$ : time for the first success in i.i.d. Bernoulli trials $X_{1}, X_{2}, \ldots$


## Sum of Independent Random Variables

- If discrete random variables $X$ and $Y$ are independent, then:

$$
\begin{aligned}
& \qquad p_{X+Y}(z)=\operatorname{Pr}(X+Y=z)=\sum_{x} \operatorname{Pr}(X=x \cap Y=z-x) \quad \begin{array}{l}
\text { (total } \\
\text { probability) }
\end{array} \\
& \text { (independence) }=\sum_{x} p_{X}(x) p_{Y}(z-x)=\sum_{y} p_{X}(z-y) p_{Y}(y)
\end{aligned}
$$

- This defines a convolution (卷积) between mass functions:

$$
p_{X+Y}=p_{X} * p_{Y}
$$

## Sum of Independent Random Variables

- If discrete random variables $X$ and $Y$ are independent, then:

$$
p_{X+Y}(z)=\sum_{x} p_{X}(x) p_{Y}(z-x)=\sum_{y} p_{X}(z-y) p_{Y}(y)
$$

- For i.i.d. Bernoulli random variables $X_{1}, \ldots, X_{n} \in\{0,1\}$ :

$$
\begin{aligned}
& p_{X_{1}+\cdots+X_{n}}(k)=p \cdot p_{X_{1}+\cdots+X_{n-1}}(k-1)+(1-p) \cdot p_{X_{1}+\cdots+X_{n-1}}(k) \\
= & \binom{n-1}{k-1} p^{k}(1-p)^{n-k}+\binom{n-1}{k} p^{k}(1-p)^{n-k}=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

## Negative Binomial Distribution（负二项分布） <br> （＂multiple successes＂generalization of geometric distribution）

－$X$ ：number of failures in a sequence of i．i．d．Bernoulli trials before $r$ successes
－A negative binomial random variable $X$ takes values in $\{0,1,2, \ldots\}$ ，and

$$
\begin{gathered}
p_{X}(k)=\operatorname{Pr}(X=k)=\binom{k+r-1}{k}(1-p)^{k} p^{r}=(-1)^{k}\binom{-r}{k}(1-p)^{k} p^{r} \\
\text { for } k=0,1,2, \ldots
\end{gathered}
$$

－We say that $X$ follows the negative binomial distribution with parameters $r, p$
－$X=\left(X_{1}-1\right)+\left(X_{2}-1\right)+\cdots+\left(X_{r}-1\right)$ for i．i．d．$X_{i} \sim \operatorname{Geo}(p)$

## Hypergeometric Distribution（超几何分布） （＂without replacement＂variant of binomial distribution）

－$X$ ：number of successes in $n$ draws，without replacement（无放回），from a finite population of $N$ objects，including exactly $M$ ones，drawings of whom are counted as successes


## Hypergeometric Distribution（超几何分布） （＂without replacement＂variant of binomial distribution）

－$X$ ：number of successes in $n$ draws，without replacement（无放回），from a finite population of $N$ objects，including exactly $M$ ones，drawings of whom are counted as successes
－A hypergeometric random variable $X$ takes values in $\{0,1, \ldots, n\}$ ，and

$$
p_{X}(k)=\operatorname{Pr}(X=k)=\binom{M}{k}\binom{N-M}{n-k} /\binom{N}{n}, \quad k=0,1, \ldots, n
$$

－We say that $X$ follows the hypergeometric distribution with parameters $N, M, n$ ， where $N \geq 0,0 \leq M \leq N$ ，and $0 \leq n \leq N$ are integers．

## Multinomial Distribution（多项式分布） <br> （＂multi－dimensional＂generalization of binomial distribution）

－Trials with multiple outcomes：There are $n$ i．i．d．trials，each having $m$ possible outcomes， where the probability of the $i$ th outcome is $p_{i}$ ．Let $X_{i}$ be the \＃of $i$ th outcomes．
－Balls－into－bins model：Throw $n$ balls into $m$ bins．Each ball is thrown independently such that the $i$ th bin receives the ball with probability $p_{i}$ ．Let $X_{i}$ be the \＃of balls in the $i$ th bin．


## Multinomial Distribution（多项式分布） <br> （＂multi－dimensional＂generalization of binomial distribution）

－Suppose that $n$ balls are thrown into $m$ bins，where each ball is thrown independently such that the $i$ th bin receives the ball with probability $p_{i}$ ，where $p_{1}+\cdots+p_{m}=1$ is given．
－$\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ ：the $i$ th bin receives exactly $X_{i}$ balls
－$\left(X_{1}, \ldots, X_{m}\right)$ takes values $\left(k_{1}, \ldots, k_{m}\right) \in\{0,1, \ldots, n\}^{m}$ that $k_{1}+\cdots+k_{m}=n$ ，and

$$
p_{\left(X_{1}, \ldots, X_{m}\right)}\left(k_{1}, \ldots, k_{m}\right)=\operatorname{Pr}\left(\bigcap_{i=1}^{m}\left(X_{i}=k_{i}\right)\right)=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!} p_{1}^{k_{1}} p_{2}^{k_{2} \cdots p_{m}^{k_{m}}}
$$

－We say that $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ follows the multinomial distribution with parameters $m, n$ ， and $p=\left(p_{1}, \ldots, p_{m}\right) \in[0,1]^{m}$ such that $p_{1}+\cdots+p_{m}=1$ ．
－$X_{i} \sim \operatorname{Bin}\left(n, p_{i}\right)$ for each individual $1 \leq i \leq m$ ．（The marginal distribution of $X_{i}$ is $\operatorname{Bin}\left(n, p_{i}\right)$ ）

## Binomial Distribution（二项分布） （Number of HEADs in $n$ coin flips）


－$X$ ：number of successes in $n$ i．i．d．Bernoulli trials with parameter $p$
－A binomial random variable $X$ takes values in $\{0,1, \ldots, n\}$ ，and

$$
p_{X}(k)=\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{k}, \quad k=0,1, \ldots, n
$$

－Typical in real life：large unknown population size $n \rightarrow \infty$ with known $n p=\lambda$

$$
p_{\operatorname{Bin}(n, \lambda / n)}(k)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}=\frac{n}{n} \frac{n-1}{n} \ldots \frac{n-k+1}{n} \cdot \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \approx \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda}
$$

A＂universal＂distribution for all sufficiently large $n$ ，knowing the mean $\lambda=n p$ ？

## Poisson Distribution（泊松分布） （Idealized binomial distribution when $n \rightarrow \infty$ ）

－A Poisson random variable $X$ takes values in $\{0,1,2, \ldots\}$ ，and

$$
p_{X}(k)=\operatorname{Pr}(X=k)=\mathrm{e}^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

－It is a well－defined probability distribution over $\{0,1,2, \ldots\}: \sum_{k=0}^{\infty} \mathrm{e}^{-\lambda} \frac{\lambda^{k}}{k!}=1$
－We say that $X$ follows the Poisson distribution with parameter $\lambda>0$

$$
\text { denoted } X \sim \operatorname{Pois}(\lambda)
$$

## Sum of Poisson Variables

- Independent $X \sim \operatorname{Bin}\left(n_{1}, p\right), Y \sim \operatorname{Bin}\left(n_{2}, p\right) \Longrightarrow X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$
- By the heuristics $\operatorname{Bin}(n, p) \approx \operatorname{Pois}(n p)$, it seems that the following should hold:
- independent $X \sim \operatorname{Pois}\left(\lambda_{1}\right), Y \sim \operatorname{Pois}\left(\lambda_{2}\right) \Longrightarrow X+Y \sim \operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)$
- Proof: $p_{X+Y}(k)=\operatorname{Pr}(X+Y=k)=\sum_{i=0}^{k} \operatorname{Pr}(X=i \cap Y=k-i)=\sum_{i=0}^{k} p_{X}(i) p_{Y}(k-i)$

$$
=\sum_{i=0}^{k} \frac{\mathrm{e}^{-\lambda_{1}} \lambda_{1}^{i}}{i!} \frac{\mathrm{e}^{-\lambda_{2}} \lambda_{2}^{k-i}}{(k-i)!}=\frac{\mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right)}}{k!} \sum_{i=0}^{k}\binom{k}{i} \lambda_{1}^{i} \lambda_{2}^{k-i}=\frac{\mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{k}}{k!}
$$

## Poisson Approximation

- $\left(X_{1}, \ldots, X_{m}\right)$ follows the multinomial distribution with parameters $m, n, p_{1}+\cdots+p_{m}=1$
- $n$ balls are thrown into $m$ bins independently according to the distribution $\left(p_{1}, \ldots, p_{m}\right)$
- after all $n$ balls are thrown, the $i$ th bin receives $X_{i}$ balls
- $\left(Y_{1}, \ldots, Y_{m}\right)$ : each $Y_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$ independently, where $\lambda_{i}=n p_{i}$

Proposition: $\left(X_{1}, \ldots, X_{m}\right)$ is identically distributed as $\left(Y_{1}, \ldots, Y_{m}\right)$ given that $\sum_{i=1}^{m} Y_{i}=n$
Proof: Observe that $Y_{1}+\cdots+Y_{m} \sim \operatorname{Pois}(n)$. For any $k_{1}, \ldots, k_{m} \geq 0$ that $k_{1}+\cdots+k_{m}=n$ :

$$
\begin{gathered}
\operatorname{Pr}\left[\left(Y_{1}, \ldots, Y_{m}\right)=\left(k_{1}, \ldots, k_{m}\right) \mid Y_{1}+\cdots+Y_{m}=n\right]=\left(\prod_{i=1}^{m} \frac{\mathrm{e}^{-n p_{i}\left(n p_{i}\right)^{k_{i}}}}{k_{i}!}\right) /\left(\frac{\mathrm{e}^{-n} n^{n}}{n!}\right) \\
=\frac{n!}{k_{1}!\cdots k_{m}!} p_{1}^{k_{1} \cdots p_{m}^{k_{m}}=\operatorname{Pr}\left[\left(X_{1}, \ldots, X_{m}\right)=\left(k_{1}, \ldots, k_{m}\right)\right]}
\end{gathered}
$$

## Balls into Bins <br> (Random mapping)

- Throw $n$ balls into $m$ bins uniformly at random (u.a.r.).
- Uniform random $f:[n] \rightarrow[m]$.
- The numbers of balls received in each bins $\left(X_{1}, \ldots, X_{m}\right)$ follow the multinomial distribution with parameters $m, n$ and $(1 / m, \ldots, 1 / m)$.
- Birthday problem: the property of being injective (1-1)
- Coupon collector problem: the property of being surjective (onto)
- Occupancy (load balancing) problem: the maximum load $\max _{i} X_{i}$


## Random Graph

## (Erdős-Rényi random graph model)



- $G \sim G(n, p)$ : There are $n$ vertices. For each pair $u, v$ of vertices, an i.i.d. Bernoulli trial with parameter $p$ is conducted, and an edge $\{u, v\}$ is added if the trial succeeds.
- $G(n, 1 / 2)$ gives the uniformly distributed random graph on $n$ vertices.
- The number of edges in $G \sim G(n, p)$ follows the binomial distribution $\operatorname{Bin}\left(\binom{n}{2}, p\right)$. (Therefore, $G(n, p)$ is sometimes also called the binomial random graph)
- Random variables defined by $G \sim G(n, p)$ : chromatic number $\chi(G)$, independence number $\alpha(G)$, clique number $\omega(G)$, diameter diam $(G)$, connectivity, max-degree $\Delta(G)$, number of triangles, number of hamiltonian cycles, ...


## Random Tree

## (Galton-Watson branching process)



- A sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ recursively defined by

$$
X_{0}=1 \text { and } X_{n+1}=\sum_{j=1}^{X_{n}} \xi_{j}^{(n)}
$$

where $\left\{\xi_{j}^{(n)} \mid n, j \geq 0\right\}$ are i.i.d. non-negative integer-valued random variables (e.g. Poisson random variables)

- Random family tree: the $j$ th family member in the $n$th generation has $\xi_{j}^{(n)}$ offsprings
- $X_{n}$ : number of family members in the $n$th generation


## Expectation



## Expectation（数学期望）

－The expectation（or mean）of a discrete random variable $X$ is defined to be

$$
\mathbb{E}[X]=\sum_{x} x p_{X}(x)
$$

where $p_{X}$ denotes the pmf of $X$ and the sum is taken over all $x$ that $p_{X}(x)>0$
－ $\mathbb{E}[X]$ may be $\infty$（we assume absolute convergence for $\mathbb{E}[X]<\infty$ ）
－Example I：$p_{X}\left(2^{k}\right)=2^{-k}$ for $k=1,2, \ldots$（the St．Petersburg paradox）
－Example II：$X \in \mathbb{Z} \backslash\{0\}$ and $p_{X}(k)=\frac{1}{a k^{2}}$ where $a=\sum_{k \neq 0} k^{-2}=\frac{\pi^{2}}{3}$

## Perspectives of Expectation

- Computation of expectation:
- straightforward computation (by definition)
- linearity of expectation (by linearity)
- law of total expectation (by case)
- Upper/lower bounds of expectation:
- Jensen's inequality (by convexity)
- monotonicity (by coupling)
- Implications of expectation:
- averaging principle (the probabilistic method)
- tail inequalities (the moment method)


## Expectation of Indicator

- For Bernoulli random variable $X \in\{0,1\}$ with parameter $p$

$$
\mathbb{E}[X]=0 \cdot(1-p)+1 \cdot p=p
$$

- For the indicator random variable $X=I(A)$ of event $A$, where $X=1$ if $A$ occurs and $X=0$ if otherwise (i.e. $\forall \omega \in \Omega, X(\omega)=1$ if $\omega \in A$ and $X(\omega)=0$ if $\omega \notin A$ )

$$
\mathbb{E}[X]=0 \cdot \operatorname{Pr}\left(A^{c}\right)+1 \cdot \operatorname{Pr}(A)=\operatorname{Pr}(A)
$$

## Poisson Distribution（泊松分布）

－Expectation of Poisson random variable $X \sim \operatorname{Pois}(\lambda)$

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k \geq 0} k \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!} \\
& =\sum_{k \geq 1} \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{(k-1)!} \\
& =\sum_{k \geq 0} \frac{\mathrm{e}^{-\lambda} \lambda^{k+1}}{k!}=\lambda \sum_{k \geq 0} \frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda
\end{aligned}
$$

## Change of Variables

## (Law Of The Unconscious Statistician, LOTUS)

- For $f: \mathbb{R} \rightarrow \mathbb{R}$, for discrete $X$ and $X=\left(X_{1}, \ldots, X_{n}\right)$ :
- $\mathbb{E}[f(X)]=\sum_{x} f(x) p_{X}(x)$
- $\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{\left(x_{1}, \ldots, x_{n}\right)} f\left(x_{1}, \ldots, x_{n}\right) p_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)$

Proof: Let $Y=f\left(X_{1}, \ldots, X_{n}\right)$. Then

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]= & \sum_{y} y \operatorname{Pr}(Y=y)=\sum_{y} y \sum_{\left(x_{1}, \ldots, x_{n}\right) \in f^{-1}(y)} \operatorname{Pr}\left(\left(X_{1}, \ldots, X_{1}\right)=\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\sum_{\left(x_{1}, \ldots, x_{n}\right)} f\left(x_{1}, \ldots, x_{n}\right) \operatorname{Pr}\left(\left(X_{1}, \ldots, X_{1}\right)=\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\sum_{\left(x_{1}, \ldots, x_{n}\right)} f\left(x_{1}, \ldots, x_{n}\right) p_{X}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

## Linearity of Expectation

- For $a, b \in \mathbb{R}$ and random variables $X$ and $Y$ :
- $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

Proof: $\mathbb{E}[a X+b]=\sum_{x}(a x+b) p_{X}(x)=a \sum_{x} x p_{X}(x)+b \sum_{x} p_{X}(x)=a \mathbb{E}[X]+b$

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{x, y}(x+y) \operatorname{Pr}((X, Y)=(x, y)) \\
& =\sum_{x}^{x} x \sum_{y} \operatorname{Pr}((X, Y)=(x, y))+\sum_{y} y \sum_{x} \operatorname{Pr}((X, Y)=(x, y)) \\
& =\sum_{x} x \operatorname{Pr}(X=x)+\sum_{y} y \operatorname{Pr}(Y=y)=\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

## Linearity of Expectation

- For $a, b \in \mathbb{R}$ and random variables $X$ and $Y$ :
- $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- For linear (affine) function $f$ on random variables $X_{1}, \ldots, X_{n}$

$$
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]=f\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{n}\right]\right)
$$

- It holds for arbitrarily dependent $X_{1}, \ldots, X_{n}$


## Binomial Distribution（二项分布）


－For binomial random variable $X \sim \operatorname{Bin}(n, p)$

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

－Observation：$X \sim \operatorname{Bin}(n, p)$ can be expressed as $X=X_{1}+\cdots+X_{n}$ ， where $X_{1}, \ldots, X_{n}$ are i．i．d．Bernoulli random variables with parameter $p$
－Linearity of expectation：

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n p
$$

## Geometric Distribution（几何分布）

$$
I_{k}: 1 \begin{array}{llllll} 
& 1 & 1 & 1 & 0
\end{array}
$$

－For geometric random variable $X \sim \operatorname{Geo}(p)$

$$
\mathbb{E}[X]=\sum_{k \geq 1} k(1-p)^{k-1} p
$$

－Observation：$X \sim \operatorname{Geo}(p)$ can be calculated by $X=\sum_{k \geq 1} I_{k}$ ， where $I_{k} \in\{0,1\}$ indicates whether all of the first $(k-1)$ trials fail
－Linearity of expectation：

$$
\mathbb{E}[X]=\sum_{k \geq 1} \mathbb{E}\left[I_{k}\right]=\sum_{k \geq 1}(1-p)^{k-1}=\frac{1}{p}
$$

## Negative Binomial Distribution（负二项分布）

－For negative binomial random variable $X$ with parameters $r, p$

$$
\mathbb{E}[X]=\sum_{k \geq 1} k\binom{k+r-1}{k}(1-p)^{k} p^{r}
$$

－Observation：$X$ can be expressed as $X=\left(X_{1}-1\right)+\cdots+\left(X_{r}-1\right)$ ， where $X_{1}, \ldots, X_{r}$ are i．i．d．geometric random variables with parameter $p$
－Linearity of expectation：

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{r}\right]-r=r(1-p) / p
$$

## Hypergeometric Distribution（超几何分布）

－For hypergeometric random variable $X$ with parameters $N, M, n$

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k\binom{M}{k}\binom{N-M}{n-k} /\binom{N}{n}
$$

－Observation：each red ball（success）is drawn with probability $\binom{N-1}{n-1} /\binom{N}{n}=\frac{n}{N}$ ． Then $X=X_{1}+\cdots+X_{M}$ ，where $X_{i} \in\{0,1\}$ indicates whether the $i$ th red ball is drawn．
－Linearity of expectation：

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{M}\right]=\frac{n M}{N}
$$

Draw $n$ balls withoul replacement
$\frac{M \text { red balls }}{N \text { balls }}$


## Pattern Matching

## 暞amlet

- $s=\left(s_{1}, \ldots, s_{n}\right) \in Q^{n}$ : uniform random string of $n$ letters from alphabet $Q$ with $|Q|=q$
- For pattern $\pi \in Q^{k}$, let $X$ be the number of appearances of $\pi$ in $s$ as substring
- Let $I_{i} \in\{0,1\}$ indicate that $\pi=\left(s_{i}, s_{i+1}, \ldots, s_{i+k-1}\right)$. Then $X=\sum_{i=1}^{n-k+1} I_{i}$
- Linearity of expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{n-k+1} \mathbb{E}\left[I_{i}\right]=(n-k+1) q^{-k}
$$

- Expected time (position) for the first appearance? It may depend on the pattern $\pi$.


## Coupon Collector

- Each cookie box comes with a uniform random coupon.
- Number of cookie boxes opened to collect all $n$ types of coupons
- Balls-into-bins model: throw balls one-by-one u.a.r. to occupy all $n$ bins
- $X$ : total number of balls thrown to make all $n$ bins nonempty
- $X_{i}$ : number of balls thrown while there are exactly $(i-1)$ nonempty bins
- $X_{i}$ is geometric with parameter $p_{i}=1-\frac{i-1}{n}$ and $X=\sum_{i=1}^{n} X_{i}$
- Linearity of expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{n}{n-i+1}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n) \approx n \ln n \quad \underbrace{(\text { Harmonic number) }}_{i-1}
$$

## Double Counting

- For nonnegative random variable $X$ that takes values in $\{0,1,2, \ldots\}$

$$
\mathbb{E}[X]=\sum_{k=0}^{\infty} \operatorname{Pr}[X>k]
$$

- Proof I (Double Counting):

$$
\mathbb{E}[X]=\sum_{x \geq 0} x \operatorname{Pr}[X=x]=\sum_{x \geq 0} \sum_{k=0}^{x-1} \operatorname{Pr}[X=x]=\sum_{k \geq 0} \sum_{x>k} \operatorname{Pr}[X=x]=\sum_{k \geq 0} \operatorname{Pr}[X>k]
$$

- Proof II (Linearity of Expectation): Let $I_{k} \in\{0,1\}$ indicate whether $X>k$.

Then $X=\sum_{k \geq 0} I_{k}$. By linearity, $\mathbb{E}[X]=\sum_{k \geq 0} \mathbb{E}\left[I_{k}\right]=\sum_{k \geq 0} \operatorname{Pr}[X>k]$

## Principle of Inclusion-Exclusion

- Let $I(A) \in\{0,1\}$ be the indicator random variable of event $A$. It's easy to verify:

$$
\star I\left(A^{c}\right)=1-I(A)
$$

$$
\because I(A \cap B)=I(A) \cdot I(B)
$$

- For events $A_{1}, A_{2}, \ldots, A_{n}$ :

$$
\begin{aligned}
& I\left(\bigcup_{i=1}^{n} A_{i}\right) \stackrel{(\star)}{=} 1-I\left(\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}\right) \stackrel{\substack{\text { (De Mergans } \\
=\text { (añ }}}{=}-I\left(\bigcap_{i=1}^{n} A_{i}^{c}\right) \stackrel{(*)}{=} 1-\prod_{i=1}^{n} I\left(A_{i}^{c}\right)^{(\star)}=1-\prod_{i=1}^{n}\left(1-I\left(A_{i}\right)\right) \\
& \begin{array}{c}
\text { (binomial } \\
\text { theorem) }
\end{array}=1-\sum_{S \subseteq\{1, \ldots, n\}}(-1)^{|S|} \prod_{i \in S} I\left(A_{i}\right) \stackrel{(\cdot) \cdot}{=} \sum_{\varnothing \neq S \subseteq\{1, \ldots, n\}}(-1)^{|S|-1} I\left(\bigcap_{i \in S} A_{i}\right)
\end{aligned}
$$

## Principle of Inclusion-Exclusion

- Let $I(A) \in\{0,1\}$ be the indicator random variable of event $A$.
- For events $A_{1}, A_{2}, \ldots, A_{n}$ :

$$
I\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\varnothing \neq S \subseteq\{1, \ldots, n\}}(-1)^{|S|-1} I\left(\bigcap_{i \in S} A_{i}\right)
$$

- By linearity of expectation:

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\varnothing \neq S \subseteq\{1, \ldots, n\}}(-1)^{|S|-1} \operatorname{Pr}\left(\bigcap_{i \in S} A_{i}\right)
$$

## Boole-Bonferroni Inequality

- For events $A_{1}, A_{2}, \ldots, A_{n}$ :

$$
I\left(\bigcup_{i=1}^{n} A_{i}\right)=1-\prod_{i=1}^{n}\left(1-I\left(A_{i}\right)\right)=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \in\binom{\{1, \ldots, n\}}{k}} I\left(\bigcap_{i \in S} A_{i}\right)
$$

 and $X_{k}$ as a binomial coefficient is unimodal in $k$
. For unimodal sequence $X_{k}: \sum_{k \leq 2 t}(-1)^{k-1} X_{k} \leq \sum_{k=1}^{n}(-1)^{k-1} X_{k} \leq \sum_{k \leq 2 t+1}(-1)^{k-1} X_{k}$

- Take expectation. By linearity of expectation $\Longrightarrow$ Bonferroni inequality


## Limitation of Linearity

- Infinite sum: $X_{1}, X_{2}, \ldots$
$\mathbb{E}\left[\sum_{i=1}^{\infty} X_{i}\right]=\sum_{i=1}^{\infty} \mathbb{E}\left[X_{i}\right]$ if the absolute convergence $\sum_{i=1}^{\infty} \mathbb{E}\left[\left|X_{i}\right|\right]<\infty$ holds
This is possible: $\mathbb{E}\left[\sum_{i=1}^{\infty} X_{i}\right]<\infty$ and $\sum_{i=1}^{\infty} \mathbb{E}\left[X_{i}\right]<\infty$ but $\mathbb{E}\left[\sum_{i=1}^{\infty} X_{i}\right] \neq \sum_{i=1}^{\infty} \mathbb{E}\left[X_{i}\right]$
Counterexample: the martingale betting strategy in a fair gambling game
- A random number of random variables: $X_{1}, X_{2}, \ldots, X_{N}$ for random $N$

$$
\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right]=\mathbb{E}[N] \mathbb{E}\left[X_{1}\right] ?
$$

## Conditional Expectation（条件期望）

－The conditional expectation of a discrete random variable $X$ given that event $A$ occurs，is defined by

$$
\mathbb{E}[X \mid A]=\sum_{x} x \operatorname{Pr}(X=x \mid A)
$$

where the sum is taken over all $x$ that $\operatorname{Pr}(X=x \mid A)>0$
－To be well－defined，assume：
－ $\operatorname{Pr}(A)>0$
－the sum $\sum_{x} x \operatorname{Pr}(X=x \mid A)$ converges absolutely

## Conditional Distribution（条件分布）

－The probability mass function $p_{X \mid A}: \mathbb{Z} \rightarrow[0,1]$ of a discrete random variable $X$ given that event $A$ occurs，is given by

$$
p_{X \mid A}(x)=\operatorname{Pr}(X=x \mid A)
$$

－$(X \mid A)$ can now be seen as a well－defined discrete random variable，whose distribution is described by the $p m f p_{X \mid A}$
－ $\mathbb{E}[X \mid A]=\sum_{x} x \operatorname{Pr}(X=x \mid A)$ is just the expectation of $(X \mid A)$
－ $\mathbb{E}[X \mid A]$ satisfies the properties of expectation，e．g．linearity of expectation

## Law of Total Expectation

- Let $X$ be a discrete random variable with finite $\mathbb{E}[X]$. Let events $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of $\Omega$ such that $\operatorname{Pr}\left(B_{i}\right)>0$ for all $i$.

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X \mid B_{i}\right] \operatorname{Pr}\left(B_{i}\right)
$$

- The law of total probability is now a special case with $X=I(A)$

$$
\text { Proof: } \begin{aligned}
\mathbb{E}[X] & =\sum_{x} x \operatorname{Pr}(X=x)=\sum_{x} x \sum_{i=1}^{n} \operatorname{Pr}\left(X=x \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) \quad \text { (law of total prob.) } \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right) \sum_{x} x \operatorname{Pr}\left(X=x \mid B_{i}\right)=\sum_{i=1}^{n} \mathbb{E}\left[X \mid B_{i}\right] \operatorname{Pr}\left(B_{i}\right)
\end{aligned}
$$

## Analysis of QuickSort

- A comparison-based sorting algorithm
- worst-case complexity: $O\left(n^{2}\right)$


## QSort( $A$ ): an array $A$ of $n$ distinct entries

 If $n>1$ then do:choose a pivot $x=A[1]$;
partition $A$ into $L$ with all entries $<x$, and $R$ with all entries $>x$;
QSort( $L$ ) and QSort $(R)$;

- average-case complexity: ? $t(n)=O(n \ln n)$ verified by induction
- Let $t(n)=\mathbb{E}\left[X_{n}\right]$, where $X_{n}$ is the number of comparisons used in QSort $(A)$ on a uniform random permutation $A$ of $n$ distinct numbers.
- Law of total expectation: Let $B_{i}$ be the event that $A[1]$ is the $i$ th smallest in $A$.

$$
\begin{gathered}
t(n)=\mathbb{E}\left[X_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{n} \mid B_{i}\right] \operatorname{Pr}\left(B_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[n-1+X_{i-1}+X_{n-i}\right]=n-1+\frac{2}{n} \sum_{i=0}^{n-1} t(i) \\
t(0)=t(1)=0
\end{gathered}
$$

## Analysis of QuickSort

- Uniform random input:
- $A$ is a uniform random permutation of $a_{1}<\cdots<a_{n}$

QSort(A): an array $A$ of $n$ distinct entries If $n>1$ then do:
choose a pivot $x=A[1]$;
partition $A$ into $L$ with all entries $<x$, and $R$ with all entries $>x$;
QSort $(L)$ and QSort $(R)$;

- Let $X_{i j} \in\{0,1\}$ indicate whether $\underline{a}_{i}$ and $a_{j}$ are compared within QSort $(A)$.
- Observation I: each pair of $a_{i}, a_{j}$ are compared at most once.
$\Longrightarrow$ total number of comparisons is $X=\sum_{i<j} X_{i j}$
- Observation II: if $a_{i}, a_{j}$ are still in the same array, then so are all $a_{k}$ for $i<k<j$.
$a_{i}, a_{j}$ are compared iff one of them is chosen as pivot when they are in the same array.

$$
\Longrightarrow \mathbb{E}\left[X_{i j}\right]=\operatorname{Pr}\left(a_{i}, a_{j} \text { are compared }\right)=\operatorname{Pr}\left(\left\{a_{i}, a_{j}\right\} \mid\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}\right)=\frac{2}{j-i+1}
$$

- Linearity of expectation:

$$
\mathbb{E}[X]=\sum_{i<j} \mathbb{E}\left[X_{i j}\right]=\sum_{i<j} \frac{2}{j-i+1}=\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}=2 n H(n)=2 n \ln n+O(n)
$$

## Conditional Expectation（条件期望）

－For random variables $X, Y$ ，the conditional expectation：

| $\boldsymbol{Y}$ | $\boldsymbol{X}$ | $x_{1}$ | $x_{2}$ | $x_{\mathbf{3}}$ | $x_{\mathbf{4}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{p}_{\boldsymbol{Y}}(\boldsymbol{y}) \downarrow$ |  |  |  |  |  |
| $\boldsymbol{y}_{\mathbf{1}}$ | $\frac{4}{32}$ | $\frac{2}{32}$ | $\frac{1}{32}$ | $\frac{1}{32}$ | $\frac{8}{32}$ |
| $\boldsymbol{y}_{\mathbf{2}}$ | $\frac{3}{32}$ | $\frac{6}{32}$ | $\frac{3}{32}$ | $\frac{3}{32}$ | $\frac{15}{32}$ |
| $\boldsymbol{y}_{\mathbf{3}}$ | $\frac{9}{32}$ | 0 | 0 | 0 | $\frac{9}{32}$ |
| $\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{x}) \boldsymbol{\rightarrow}$ | $\frac{16}{32}$ | $\frac{8}{32}$ | $\frac{4}{32}$ | $\frac{4}{32}$ | $\frac{32}{32}$ |

$$
\mathbb{E}[X \mid Y]
$$

is a random variable $f(Y)$ whose value is $f(y)=\mathbb{E}[X \mid Y=y]$ when $Y=y$
－Naturally generalized to $\mathbb{E}[X \mid Y, Z]$ for random variables $X, Y, Z$
－Examples：
－ $\mathbb{E}[X \mid Y]$ ：average height of the country of a random person on earth
－ $\mathbb{E}[X \mid Y, Z]$ ：average height of the gender of the country of a random person

## Conditional Expectation（条件期望）

－For random variables $X, Y$ ，the conditional expectation：

| $\boldsymbol{y}$ | $\boldsymbol{X}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $p_{Y}(y) \downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{1}$ | $\frac{4}{32}$ | $\frac{2}{32}$ | $\frac{1}{32}$ | $\frac{1}{32}$ | $\frac{8}{32}$ |  |
| $\boldsymbol{y}_{\mathbf{2}}$ | $\frac{3}{32}$ | $\frac{6}{32}$ | $\frac{3}{32}$ | $\frac{3}{32}$ | $\frac{15}{32}$ |  |
| $\boldsymbol{y}_{3}$ | $\frac{9}{32}$ | 0 | 0 | 0 | $\frac{9}{32}$ |  |
| $\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{x})$ | $\rightarrow$ | $\frac{16}{32}$ | $\frac{8}{32}$ | $\frac{4}{32}$ | $\frac{4}{32}$ | $\frac{32}{32}$ |

$$
\mathbb{E}[X \mid Y]
$$

is a random variable $f(Y)$ whose value is $f(y)=\mathbb{E}[X \mid Y=y]$ when $Y=y$
－Law of Total Expectation： $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$
．Proof： $\mathbb{E}[\mathbb{E}[X \mid Y]]=\sum \mathbb{E}[X \mid Y=y] \operatorname{Pr}(Y=y) \quad$（by definition）

$$
=\mathbb{E}[X] \quad \text { (law of total expectation) }
$$

## Random Family Tree

- $X_{0}, X_{1}, X_{2}, \ldots$ is defined by $X_{0}=1$ and $X_{n+1}=\sum_{j=1}^{X_{n}} \xi_{j}^{(n)}$
where $\xi_{j}^{(n)} \in \mathbb{Z}_{\geq 0}$ are i.i.d. random variables with mean value $\mu=\mathbb{E}\left[\xi_{j}^{(n)}\right]$
- $X_{0}=1$ and $\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[\xi_{1}^{(0)}\right]=\mu$
- $\mathbb{E}\left[X_{n} \mid X_{n-1}=k\right]=\mathbb{E}\left[\sum_{j=1}^{k} \xi_{j}^{(n-1)} \mid X_{n-1}=k\right]=k \mu \Longrightarrow \mathbb{E}\left[X_{n} \mid X_{n-1}\right]=X_{n-1} \mu$
- $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right]=\mathbb{E}\left[X_{n-1} \mu\right]=\mathbb{E}\left[X_{n-1}\right] \cdot \mu=\mu^{n}$

$$
\Longrightarrow \mathbb{E}\left[\sum_{n \geq 0} X_{n}\right]=\sum_{n \geq 0} \mathbb{E}\left[X_{n}\right]=\sum_{n \geq 0} \mu^{n}= \begin{cases}\frac{1}{1-\mu} & \text { if } 0<\mu<1 \\ \infty & \text { if } \mu \geq 1\end{cases}
$$

## Jensen’s Inequality

- For general (non-linear) function $f(X)$ of random variable $X$ we don't have $\mathbb{E}[f(X)]=f(\mathbb{E}[X])$
- But if the convexity of $f$ is known, then the Jensen's inequality applies:
- $f$ is convex $\Longleftrightarrow f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$

$$
\Longrightarrow \mathbb{E}[f(X)] \geq f(\mathbb{E}[X])
$$

- $f$ is concave $\Longleftrightarrow f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)$

$$
\Longrightarrow \mathbb{E}[f(X)] \leq f(\mathbb{E}[X])
$$

## Monotonicity of Expectation

- For random variables $X$ and $Y$, for $c \in \mathbb{R}$ :
( $Y$ stochastically dominates $X$ )
- If $X \leq Y$ a.s. (almost surely, i.e. $\operatorname{Pr}(X \leq Y)=1$ ), then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
- If $X \leq c(X \geq c)$ a.s., then $\mathbb{E}[X] \leq c(\mathbb{E}[X] \geq c)$
- $\mathbb{E}[|X|] \geq|\mathbb{E}[X]| \geq 0$

$$
\text { Proof: } \begin{aligned}
\mathbb{E}[X] & =\sum_{x} x \operatorname{Pr}(X=x)=\sum_{x} x \sum_{y} \operatorname{Pr}((X, Y)=(x, y)) \\
& =\sum_{x} x \sum_{y \geq x} \operatorname{Pr}((X, Y)=(x, y))=\sum_{y} \sum_{x \leq y} x \operatorname{Pr}((X, Y)=(x, y)) \\
& \leq \sum_{y} \sum_{x \leq y} y \operatorname{Pr}((X, Y)=(x, y)) \leq \sum_{y} y \operatorname{Pr}(Y=y)=\mathbb{E}[Y]
\end{aligned}
$$

## Averaging Principle

- $\operatorname{Pr}(X \geq \mathbb{E}[X])>0 \Longleftarrow$ if $\operatorname{Pr}(X<c)=1$ then $\mathbb{E}[X]<c$
- $\operatorname{Pr}(X \leq \mathbb{E}[X])>0 \Longleftarrow$ if $\operatorname{Pr}(X>c)=1$ then $\mathbb{E}[X]>c$
- By the Probabilistic Method:
$\exists \omega \in \Omega$ such that $X(\omega) \geq \mathbb{E}[X]$
$\exists \omega \in \Omega$ such that $X(\omega) \leq \mathbb{E}[X]$



## Maximum Cut

- For an undirected graph $G(V, E)$ :
- Find an $S \subseteq V$ with largest cut $\delta S \triangleq\{\{u, v\} \in E \mid u \in S \wedge v \notin S\}$
- NP-hard problem (very unlikely to have efficient algorithms)

The average cut generated by pairwise independent bits is $\geq|E| / 2$.
Proposition: There always exists a large enough cut of size $|\delta S| \geq|E| / 2$.
pairwise
Proof: Let $Y_{v} \in\{0,1\}$, for $v \in V$, be mutually independent uniform random bits.
Each $v \in V$ joins $S$ iff $Y_{v}=1$. Then it holds that $|\delta S|=\sum_{\{u, v\} \in E} I\left(Y_{u} \neq Y_{v}\right)$.
By linearity of expectation: $\mathbb{E}[|\delta S|]=\sum_{\{u, v\} \in E} \operatorname{Pr}\left(Y_{u} \neq Y_{v}\right)=|E| / 2$.
Due to the probabilistic method: There exists such $S \subseteq V$ with $|\delta S| \geq|E| / 2$.

## Maximum Cut

- For an undirected graph $G(V, E)$ :
- Find an $S \subseteq V$ with largest cut $\delta S \triangleq\{\{u, v\} \in E \mid u \in S \wedge v \notin S\}$
- NP-hard problem (very unlikely to have efficient algorithms)

```
Parity Search:
for all \(\boldsymbol{b} \in\{0,1\}^{\left[\log _{2}(n+1)\right]}\) :
    initialize \(S_{b}=\varnothing\);
    for \(i=1,2, \ldots, n\) :
        if \(\bigoplus_{j:\left\lfloor i / 2^{j}\right\rfloor \bmod 2=1} b_{j}=1\) then \(v_{i}\) joins \(S_{\boldsymbol{b}} ;\)
return the \(S_{b}\) with the largest cut \(\delta S_{b}\);
```

Guarantees to return an $S \subseteq V$ with $|\delta S| \geq|E| / 2$.

