Advanced Algorithms (Fall 2023) Greedy and Local Search

Lecturers: 尹一通, 刘景铖, 栗师 Nanjing University

Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint
 - 3 Local Search
 - Warmup Problem: 2-Approximation for Maximum-Cut
 - Local Search for Uncapacitated Facility Location Problem
 - Local Search for UFL: Analysis for Connection Cost
 - Local Search for UFL: Analysis for Facility Cost

Maximum-Weight Spanning Tree Problem

Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^E$

Output: the spanning tree T of G with the maximum total weight

Kruskal's Algorithm for Maximum-Weight Spanning Tree

- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\boldsymbol E}$ in non-increasing order of weights ${\boldsymbol w}$
- 3: for each edge (u,v) in the order \mathbf{do}
- 4: if u and v are not connected by a path of edges in F then
- 5: $F \leftarrow F \cup \{(u, v)\}$

6: return (V, F)

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges Input: Graph G = (V, E) and edge weights $w \in \mathbb{Z}_{>0}^{E}$ a set $F_0 \subseteq E$ of edges, that does not contain a cycle Output: the maximum-weight spanning tree $T = (V, E_T)$ of Gsatisfying $F_0 \subseteq E_T$

Lemma (Key Lemma) Given an instance $(G = (V, E), w, F_0)$ of the MST with pre-selected edges problem, let e^* be the maximum weight edge in $E \setminus F_0$ such that $F_0 \cup \{e^*\}$ does not contain a cycle. Then there is an optimum solution $T = (V, E_T)$ to the instance with $e^* \in E_T$.

Proof of Correctness of Kruskal's Algorithm

Greedy Algorithms: Maximum-Weight Independent Set in Matroids

• Recap: Maximum-Weight Spanning Tree Problem

• Matroids and Maximum-Weight Independent Set in Matroids

- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Q: Does the greedy algorithm work for more general problems?

A General Maximization Problem Input: E: the ground set of elements $w \in \mathbb{Z}_{>0}^{E}$: weight vector on elements S: an (implicitly given) family of subsets of E • $\emptyset \in S$ • S is downward closed: if $A \in S, B \subsetneq A$, then $B \in S$. Output: $A \in S$ that maximizes $\sum_{e \in A} w_e$

• maximum-weight spanning tree: S = family of forests

Greedy Algorithm

- 1: $A \leftarrow \emptyset$
- 2: sort elements in ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 3: for each element e in the order do
- 4: **if** $A \cup \{e\} \in S$ **then** $A \leftarrow A \cup \{e\}$
- 5: return A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements *E*, where every element has a value and a cost, and a cost budget *C*, the goal is to find a maximum value subset of items with cost at most *C*
- Maximum Weight Bipartite Graph Matching
- Matroids: cases where greedy algorithm is optimum

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}) , where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:

- (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
- Some transformation (augmentation / exchange property) If A, B ∈ I and |B| < |A|, then there exists $e ∈ A \setminus B$ such that $B \cup \{e\} ∈ I$.

Lemma Let G = (V, E). $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $\bullet \ |B| < |A| \Rightarrow (V,B) \text{ has more CC than } (V,A).$
- Some edge in A connects two different CC of (V, B).

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

•
$$c_1 = c_2 = 10, c_3 = 20, C = 20.$$

•
$$\{1,2\},\{3\} \in \mathcal{I}$$
, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

• Complete bipartite graph between $\{a_1, a_2\}$ and $\{b_1, b_2\}$.

•
$$\{(a_1, b_1), (a_2, b_2)\}, \{(a_1, b_2)\} \in \mathcal{I}.$$

Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.

Lemma (Key Lemma)

- given: matroid $\mathcal{M} = (E, \mathcal{I})$, weights $w \in \mathbb{Z}^E_{>0}$, $A \in \mathcal{I}$,
- \bullet goal: find a maximum weight independent set containing A
- $e^* = \arg \max_{e \in E \setminus A: A \cup \{e\} \in \mathcal{I}} w_e$, assuming e^* exists
- ${\ensuremath{\, \circ }}$ Then, some optimum solution contains e^*

Proof.

- let S ⊇ A, S ∈ I be an optimum solution, e* ∉ S
 1: S' ← A ∪ {e*}
 2: while |S'| < |S| do
 3: let e be any element in S \ S' with S' ∪ {e} ∈ I
 ▷ e exists due to exchange property
 4: S' ← S ∪ {e}
- $\bullet~S^\prime$ and S differ by exactly one element
- $w(S') := \sum_{e \in S'} w_e \ge w(S) \implies S'$ is also optimum

Examples of Matroids

- E: the ground set \mathcal{I} : the family of independent sets
- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

 $\mathcal{I} = \{ A \subseteq E : |A| \le k \}.$

• Partition Matroid: partition (E_1, E_2, \cdots, E_t) of E, positive integers k_1, k_2, \cdots, k_t

 $\mathcal{I} = \{ A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t] \}.$

• Laminar Matroid: laminar family of subsets of E{ E_1, E_2, \cdots, E_t }, positive integers k_1, k_2, \cdots, k_t $\mathcal{I} = \{A \subseteq E : |A \cap E_i| \le k_i, \forall i \in [t]\}.$

Def. A family $\{E_1, E_2, \dots, E_t\}$ of subsets of E is said to be laminar if for every two distinct subsets E_i, E_j in the family, we have $E_i \cap E_j = \emptyset$ or $E_i \subsetneq E_j$ or $E_j \subsetneq E_i$.

• $\left\{\{1\},\{1,2\},\{3,4\},\{5\},\{3,4,5,6\},\{1,2,3,4,5,6\}\right\}$ is a laminar family.

Examples of Matroids

- E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph G = (V, E)

 $\mathcal{I} = \{A \subseteq E : (V, A) \text{ is a forest}\}$

• Transversal Matroid: a bipartite graph $G = (E \uplus B, \mathcal{E})$

 $\mathcal{I} = \{A \subseteq E : \text{there is a matching in } G \text{ covering } A\}$

• Linear Matroid: a vector $\vec{v_e} \in \mathbb{R}^d$ for every $e \in E$

 $\mathcal{I} = \{A \subseteq E : \text{vectors } \{\vec{v}_e\}_{e \in A} \text{ are linearly independent} \}$

Other Terminologies Related To a Matroid $\mathcal{M} = (E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal indepent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof.

By exchange property.

Def. Given a matroid $\mathcal{M} = (E, \mathcal{I})$, the rank of a subset A of E, denoted as $r_{\mathcal{M}}(A)$, is defined as the size of the maximum independent subset of A. $r_{\mathcal{M}} : 2^E \to \mathbb{Z}_{\geq 0}$ is called the rank function of \mathcal{M} .

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems

- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- $(\ln n + 1)$ -Approximation for Set-Cover
- $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
- $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Vertex Cover Problem

Def. Given a graph G = (V, E), a vertex cover of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.

Vertex-Cover Problem Input: G = (V, E)Output: a vertex cover C with minimum |C|

Natural Greedy Algorithm for Vertex-Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let v be the vertex of the maximum degree in (V, E')
- $\texttt{4:} \qquad C \leftarrow C \cup \{v\},$
- 5: remove all edges incident to v from E'
- 6: **return** *C*

Theorem Greedy algorithm is an $(\ln n + 1)$ -approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm

2-Approximation Algorithm for Vertex Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let (u, v) be any edge in E'
- $\texttt{4:} \qquad C \leftarrow C \cup \{u,v\}$
- 5: remove all edges incident to u and v from E'
- 6: **return** *C*
- \bullet counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
 - $\bullet\,$ optimum solution C^* must cover edge (u,v), using either u or v
 - we select both, so we are always ahead of the optimum solution
 - we use at most 2 times more vertices than C^* does

2-Approximation Algorithm for Vertex Cover

- 1: $E' \leftarrow E, C \leftarrow \emptyset$
- 2: while $E' \neq \emptyset$ do
- 3: let (u, v) be any edge in E'
- $\texttt{4:} \qquad C \leftarrow C \cup \{u,v\}$
- 5: remove all edges incident to u and v from E'

6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- $\bullet \ {\rm Let} \ E'$ be the set of edges (u,v) considered in Step 3
- \bullet Observation: E' is a matching and |C|=2|E'|
- $\bullet\,$ To cover E', the optimum solution needs |E'| vertices

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - $\bullet\ f\mbox{-}\mbox{Approximation}$ for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Set Cover with Bounded Frequency *f* **Input:** U, |U| = n: ground set $S_1, S_2, \cdots, S_m \subseteq U$ every $j \in U$ appears in at most f subsets in $\{S_1, S_2, \cdots, S_n\}$ **Output:** minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Vertex Cover = Set Cover with Frequency 2

- edges \Leftrightarrow elements
- vertices \Leftrightarrow sets
- every edge (element) can be covered by 2 vertices (sets)

 $f\mbox{-}Approximation$ Algorithm for Set Cover with Frequency f

- 1: $C \leftarrow \emptyset$
- 2: while $\bigcup_{i \in C} S_i \neq U$ do
- 3: let e be any element in $U \setminus \bigcup_{i \in C} S_i$
- $4: \qquad C \leftarrow C \cup \{i \in [m] : e \in S_i\}$

5: **return** *C*

Theorem The algorithm is a *f*-approximation algorithm.

Proof.

- $\bullet \ {\rm Let} \ U'$ be the set of all elements e considered in Step 3
- \bullet Observation: no set S_i contains two elements in U^\prime
- $\bullet\,$ To cover U', the optimum solution needs |U'| sets
- $\bullet \ C \leq f \cdot |U'|$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems

- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- $(\ln n + 1)$ -Approximation for Set-Cover
- $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
- $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Set Cover

Input: U, |U| = n: ground set $S_1, S_2, \cdots, S_m \subseteq U$

Output: minimum size set $C \subseteq [m]$ such that $\bigcup_{i \in C} S_i = U$

Greedy Algorithm for Set Cover

1:
$$C \leftarrow \emptyset, U' \leftarrow U$$

2: while
$$U' \neq \emptyset$$
 do

3: choose the *i* that maximizes $|U' \cap S_i|$

$$4: \qquad C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$$

5: **return** *C*

• g: minimum number of sets needed to cover U

Lemma Let $u_t, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$u_t \le \left(1 - \frac{1}{g}\right) \cdot u_{t-1}.$$

Proof.

 \bullet Consider the g sets S_1^*,S_2^*,\cdots,S_g^* in optimum solution

•
$$S_1^* \cup S_2^* \cup \dots \cup S_g^* = U$$

• at beginning of step t, some set in S_1^*,S_2^*,\cdots,S_g^* must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements

•
$$u_t \le u_{t-1} - \frac{u_{t-1}}{g} = \left(1 - \frac{1}{g}\right) u_{t-1}.$$

Proof of $(\ln n + 1)$ -approximation.

• Let
$$t = \lceil g \cdot \ln n \rceil$$
. $u_0 = n$. Then
 $u_t \le \left(1 - \frac{1}{g}\right)^{g \cdot \ln n} \cdot n < e^{-\ln n} \cdot n = n \cdot \frac{1}{n} = 1.$

• So $u_t = 0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n \rceil}{g} \leq \ln n + 1$.

• A more careful analysis gives a H_n -approximation, where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is the *n*-th harmonic number.

•
$$\ln(n+1) < H_n < \ln n + 1.$$

$(1-c)\ln n$ -hardness for any $c = \Omega(1)$

Let c>0 be any constant. There is no polynomial-time $(1-c)\ln n\text{-approximation}$ algorithm for set-cover, unless

- NP \subseteq quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]
- P = NP. [Dinur, Steuer 2014]

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems

- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- $(\ln n + 1)$ -Approximation for Set-Cover
- $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
- $(1 \frac{\mathbf{I}}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: U, |U| = n: ground set, $S_1, S_2, \dots, S_m \subseteq U, \quad k \in [m]$ Output: $C \subseteq [m], |C| = k$ with the maximum $\bigcup_{i \in C} S_i$

Greedy Algorithm for Maximum Coverage

- 1: $C \leftarrow \emptyset, U' \leftarrow U$
- 2: for $t \leftarrow 1$ to k do
- 3: choose the i that maximizes $|U' \cap S_i|$
- $4: \qquad C \leftarrow C \cup \{i\}, U' \leftarrow U' \setminus S_i$

5: return C

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for maximum coverage.

Proof.

- $\bullet \ o:$ max. number of elements that can be covered by k sets.
- p_t : #(covered elements) by greedy algorithm after step t
- $p_t \ge p_{t-1} + \frac{o p_{t-1}}{k}$ • $o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = (1 - \frac{1}{k})(o - p_{t-1})$ • $o - p_k \le (1 - \frac{1}{k})^k (o - p_0) \le \frac{1}{e} \cdot o$ • $p_k \ge (1 - \frac{1}{e}) \cdot o$
- The $(1 \frac{1}{e})$ -approximation extends to a more general problem.

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids

2 Greedy Algorithms: Set Cover and Related Problems

- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- $(\ln n + 1)$ -Approximation for Set-Cover
- $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
- $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f : 2^{[n]} \to \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:

$$\begin{array}{ll} (1) & \forall A, B \subseteq [n]: \\ & f(A \cup B) + f(A \cap B) \leq f(A) + f(B). \end{array} \\ (2) & \forall A \subseteq B \subsetneq [n], i \in [n] \setminus B: \\ & f(B \cup \{i\}) - f(B) \leq f(A \cup \{i\}) - f(A). \end{array} \\ (3) & \forall A \subseteq [n], i, j \in [n] \setminus A, i \neq j: \\ & f(A \cup \{i, j\}) + f(A) \leq f(A \cup \{i\}) + f(A \cup \{j\}). \end{array}$$

• (2): diminishing marginal values: the marginal value by getting *i* when I have *B* is at most that when I have *A* ⊆ *B*.

•
$$(1) \Rightarrow (2) \Rightarrow (3)$$
, $(3) \Rightarrow (2) \Rightarrow (1)$

Examples of Sumodular Functions

• linear function:
$$f(S) = \sum_{i \in S} w_i, \forall S \subseteq [n]$$

- budget-additive function: $f(S) = \min\left\{\sum_{i \in G} w_i, B\right\}, \forall S \subseteq [n]$
- coverage function: given sets $S_1, S_2, \cdots, S_n \subseteq \Omega$,

$$f(C) := \left| \bigcup_{i \in C} S_i \right|, \forall C \subseteq [n]$$

 \bullet matroid rank function: given a matroid $\mathcal{M} = ([n], \mathcal{I})$

$$r_{\mathcal{M}}(A) = \max\{|A'| : A' \subseteq A, A' \in \mathcal{I}\}, \forall A \subseteq [n]$$

• cut function: given graph G = ([n], E)

$$f(A) = \left| E(A, [n] \setminus A) \right|, \forall A \subseteq [n]$$

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables X_1, X_2, \cdots, X_n

$$f(S) := H(X_i : i \in S), \forall S \subseteq [n]$$

Def. A submodular function $f: 2^{[n]} \to \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq [n]$.

Def. A submodular function $f : 2^{[n]} \to \mathbb{R}$ is said to be symmetric if $f(A) = f([n] \setminus A)$ for every $A \subseteq [n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric

$(1 - \frac{1}{e})$ -Approximation for Submodular Maximization with Cardinality Constraint

Submodular Maximization under a Cardinality Constraint

Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$, $k \in [n]$ Output: A subset $S \subseteq [n]$ with |S| = k, so as to maximize f(S)

• We can assume $f(\emptyset) = 0$

Greedy Algorithm for the Problem

 $1: S \leftarrow \emptyset$

- 2: for $t \leftarrow 1$ to k do
- 3: choose the i that maximizes $f(S \cup \{i\})$
- $4: \qquad S \leftarrow S \cup \{i\}$

5: return S

Theorem Greedy algorithm gives $(1 - \frac{1}{e})$ -approximation for submodular-maximization under a cardinality constraint.

Proof.

- o: optimum value
- $\bullet \ p_t:$ value obtained by greedy algorithm after step t
- need to prove: $p_t \ge p_{t-1} + \frac{o p_{t-1}}{k}$

•
$$o - p_t \le o - p_{t-1} - \frac{o - p_{t-1}}{k} = \left(1 - \frac{1}{k}\right)(o - p_{t-1})$$

•
$$o - p_k \leq \left(1 - \frac{1}{k}\right)^k (o - p_0) \leq \frac{1}{e} \cdot o$$

•
$$p_k \ge \left(1 - \frac{1}{e}\right) \cdot o$$

Def. A set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq [n]$, we have $f(A \cup B) \leq f(A) + f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$ is sub-additive.

Proof.

For $A, B \subseteq [n]$, we have $f(A \cup B) + f(A \cap B) \leq f(A) + f(B)$. So, $f(A \cup B) \leq f(A) + f(B)$ as $f(A \cap B) \geq 0$. **Lemma** Let $f: 2^{[n]} \to \mathbb{R}$ be submodular. Let $S \subseteq [n]$, and $f_S(A) = f(S \cup A) - f(S)$ for every $A \subseteq [n]$. (f_S is the marginal value function for set S.) Then f_S is also submodular.

Proof.

• Let
$$A, B \subseteq [n] \setminus S$$
; it suffices to consider ground set $[n] \setminus S$.
 $f_S(A \cup B) + f_S(A \cap B) - f_S(A) + f_S(B)$
 $= f(S \cup A \cup B) - f(S) + f(S \cup (A \cap B)) - f(S)$
 $- (f(S \cup A) - f(S) + f(S \cup B) - f(S))$
 $= f(S \cup A \cup B) + f(S \cup (A \cap B)) - f(S \cup A) - f(S \cup B)$
 ≤ 0

• The last inequality is by $S \cup A \cup B = (S \cup A) \cup (S \cup B)$, $S \cup (A \cap B) = (S \cup A) \cap (S \cup B)$ and submodularity of f.

Proof of $p_t \ge p_{t-1} + \frac{o-p_{t-1}}{k}$.

- $S^* \subseteq [n]$: optimum set, $|S^*| = k$, $o = f(S^*)$
- S: set chosen by the algorithm at beginning of time step t|S| = t - 1, $p_{t-1} = f(S)$
- f_S is submodular and thus sub-additive

$$f_S(S^*) \le \sum_{i \in S^*} f_S(i) \quad \Rightarrow \quad \exists i \in S^*, f_S(i) \ge \frac{1}{k} f_S(S^*)$$

• for the *i*, we have

$$f(S \cup \{i\}) - f(S) \ge \frac{1}{k}(f(S^*) - f(S))$$
$$p_t \ge f(S \cup \{i\}) \ge p_{t-1} + \frac{1}{k}(o - p_{t-1})$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Local Search for Maximum-Cut

Maximum-Cut

- **Input:** Graph G = (V, E)
- **Output:** partition of V into $(S, T = V \setminus S)$ so as to maximize |E(S,T)|, $E(S,T) = \{uv \in E : u \in S \land v \in T\}$.

Def. A solution (S,T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.

Local-Search for Maximum-Cut

- $\texttt{1:} \ (S,T) \gets \texttt{any cut}$
- 2: while $\exists v \in V$, changing side of v increases cut value do
- 3: switch v to the other side in (S,T)
- 4: return (S,T)

Lemma Local search gives a 2-approximation for maximum-cut.

• d_v : degree of v

Proof.

- $\forall v \in S : E(v, S) \le E(v, T) \Rightarrow |E(v, S)| \ge \frac{1}{2}d_v$
- $\forall v \in T : E(v,T) \le E(v,S) \Rightarrow |E(v,T)| \ge \frac{1}{2}d_v$
- adding all inequalities:

$$2|E(S,T)| \ge \frac{1}{2} \sum_{v \in V} d_v = |E|.$$

• So $|E(S,T)| \ge \frac{1}{2}|E| \ge \frac{1}{2}$ (value of optimum cut).

• The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

```
1: S \leftarrow \emptyset, T \leftarrow \emptyset
```

- 2: for every $v \in V$, in arbitrary order do
- 3: adding v to S or T so as to maximize |E(S,T)|

```
4: return (S,T)
```

- [Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)
- Under Unique-Game-Conjecture (UGC), the ratio is best possible

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - $(1 \frac{1}{e})$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Uncapacitated Facility Location Input: F: Facilities C: Clients d: metric over $F \cup C$ $(f_i)_{i \in F}$: facility costs Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_i + \sum_{j \in C} d(j, S)$ d(j, S): smallest distance between j and a facility in S

- Best-approximation ratio: 1.488-Approximation [Li, 2011]
- 1.463-hardness, $1.463\approx$ root of $x=1+2e^{-x}$

•
$$\operatorname{cost}(S) := \sum_{i \in S} f_i + \sum_{j \in C} d(j, S), \forall S \subseteq F$$

Local Search Algorithm for Uncapacitated Facility Location

- 1: $S \leftarrow \text{arbitrary set of facilities}$
- 2: while exists $S' \subseteq F$ with $|S \setminus S'| \le 1$, $|S' \setminus S| \le 1$ and $\cot(S') < \cot(S)$ do

3:
$$S' \leftarrow S$$

4: return S

• The algorithm runs in pseodu-polynomial time, but we ignore the issue for now.

 \boldsymbol{S} is a local optimum, under the following local operations

- $\operatorname{add}(i), i \notin S: S \leftarrow S \cup \{i\}$
- delete(i), $i \in S$: $S \leftarrow S \setminus \{i\}$
- $\bullet \ \operatorname{swap}(i,i'), i \in S, i' \notin S \colon S \leftarrow S \setminus \{i\} \cup \{i'\}$

- S: the local optimum returned by the algorithm
- S^* : the (unknown) optimum solution

$$F := \sum_{i \in S} f_i \qquad \qquad C := \sum_{j \in C} d(j, S)$$
$$F^* := \sum_{i \in S^*} f_i \qquad \qquad C^* := \sum_{j \in C} d(j, S^*)$$

Lemma (analysis for connection cost) $C \leq F^* + C^*$

Lemma (analysis for facility cost) $F \leq F^* + 2C^*$

So,
$$F + C \le 2F^* + 3C^* \le 3(F^* + C^*)$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $(1 \frac{1}{e})$ -Approximation for Maximum Coverage
 - $\left(1-\frac{\mathbf{I}}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Analysis of C

 \bullet adding i^{\ast} does not increase the cost:

$$\sum_{j\in\sigma^{*-1}(i^*)}c_{\sigma(j)j}\leq f_{i^*}+\sum_{j\in\sigma^{*-1}(i^*)}c_{i^*j}$$

 $\bullet\,$ summing up over all $i^*\in F^*$, we get

$$\sum_{j \in J} d(\sigma(j), j) \le \sum_{i^* \in F^*} f_{i^*} + \sum_{j \in J} d(\sigma^*(j), j)$$
$$C \le F^* + C^*$$

- Greedy Algorithms: Maximum-Weight Independent Set in Matroids
 - Recap: Maximum-Weight Spanning Tree Problem
 - Matroids and Maximum-Weight Independent Set in Matroids
- 2 Greedy Algorithms: Set Cover and Related Problems
 - 2-Approximation Algorithm for Vertex Cover
 - f-Approximation for Set-Cover with Frequency f
 - $(\ln n + 1)$ -Approximation for Set-Cover
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Maximum Coverage
 - $\left(1-\frac{1}{e}\right)$ -Approximation for Submodular Maximization under a Cardinality Constraint

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Analysis of F

- $\phi(i^*), i^* \in S^*$: closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i) = \emptyset$: consider delete(i)
 - $j \in \sigma^{-1}(i)$ reconnected to $i^* := \phi(\sigma^*(j))$
 - reconnection distance is at most

 $c_{i^*j} + c_{i^*\phi(i^*)} \le c_{i^*j} + c_{i^*i}$ $\le c_{i^*j} + c_{i^*j} + c_{ij} = 2c_{i^*j} + c_{ij}$

- distance increment is at most $2c_{i^*j}$
- by local optimality:

$$f_i \le 2\sum_{j\in\sigma^{-1}(i)} c_{\sigma^*(j)j}$$

Analysis of F

- $\phi(i^*), i^* \in S^*:$ closest facility in S to i^*
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i

•
$$\phi(i^*) = i, \psi(i) \neq i^*$$
: consider $\operatorname{add}(i^*)$

- $\sigma(j)=i, \sigma^*(j)=i^*:$ reconnect j to i^*
- by local optimality:

$$0 \le f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{*-1}(i^*)} (c_{i^*j} - c_{\sigma(j)j})$$

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi(i') = i, \psi(i) = i'$: consider swap(i, i')
 - σ(j) = i, φ(σ*(j)) ≠ i: reconnect j to it distance increment is at most 2c_{σ*(j)j}
 - σ(j) = i, φ(σ*(j)) = i: reconnect j to i' distance increment is at most

 $c_{ij} + c_{ii'} - c_{ij} = c_{ii'} \le c_{i\sigma^*(j)} \le c_{ij} + c_{\sigma^*(j)j}$

$$f_{i} \leq f_{i'} + 2 \sum_{j \in \sigma^{-1}(i): \phi(\sigma^{*}(j)) \neq i} c_{\sigma^{*}(j)j} + \sum_{j \in \sigma^{-1}(i): \phi(\sigma^{*}(j)) = i} (c_{ij} + c_{\sigma^{*}(j)j})$$

• $i \in S$ is not paired: $f_i \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^*(j)j}$

- $i^* \in S^*$ is not paired: $0 \le f_{i^*} + \sum_{j \in \sigma^{-1}(\phi(i^*)) \cap \sigma^{*-1}(i^*)} (c_{i^*j} c_{\sigma(j)j})$
- $i \in S$ and $i' \in S^*$ are paired:

$$f_i \le f_{i'} + 2\sum_{j \in \sigma^{-1}(i):\phi(\sigma^*(j)) \neq i} c_{\sigma^*(j)j} + \sum_{j \in \sigma^{-1}(i):\phi(\sigma^*(j))=i} (c_{ij} + c_{\sigma^*(j)j})$$

• summing all the inequalities:

$$\sum_{i \in S} f_i \leq \sum_{i^* \in S^*} f_{i^*} + 2 \sum_{\substack{j \in D: \phi(\sigma^*(j)) \neq \sigma(j)}} c_{\sigma^*(j)j} + \sum_{\substack{j \in D: \phi(\sigma^*(j)) = \sigma(j)}} (c_{\sigma^*(j)j} - c_{\sigma(j)j} + c_{\sigma(j)j} + c_{\sigma^*(j)j}) + 2$$
$$F \leq F^* + 2C^*$$

58/59

$$C \le F^* + C^*, \qquad F \le F^* + 2C^* \Rightarrow \qquad F + C \le 2F^* + 3C^* \le 3(F^* + C^*)$$

Exercise: scaling facility costs by some $\lambda > 1$ can give a $(1 + \sqrt{2})$ -approximation.

• Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location

- 1: $S \leftarrow \text{arbitrary set of facilities, } \delta \leftarrow \frac{\epsilon}{4|F|}$
- 2: while exists $S' \subseteq F$ with $|S \setminus S'| \le 1$, $|S' \setminus S| \le 1$ and $\cot(S') < (1 \delta)\cot(S)$ do
- 3: $S' \leftarrow S$
- 4: return S