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Recap

What next? 
Random walks on undirected graphs

• Mixing time

• More examples: random sampling

Electrical networks

• Electrical flows

• Effective resistance

• Hitting time and commute time of random walks

Previous lecture:
Random walks on undirected graphs

• Fundamental theorem of Markov chains

• Spectral analysis

• Examples of random walks in algorithms:
• Finding bipartite matching

• Return time
• Pagerank

• Can be simulated by random walks
• Mixing time

• 2-SAT
• Hitting time



Mixing Time

From the fundamental theorem of Markov chain, we know that 𝑝! → 𝜋 = #⃗
$%

as 𝑡 → ∞ regardless of 𝑝&

We would like to understand how fast it converges to 𝜋

Recall how we measure closeness: 𝑑'( 𝑝! , 𝜋 = )
$
𝑝! − 𝜋 ) =

)
$
∑*+), 𝑝! 𝑖 − 𝜋 𝑖

Definition.  The 𝝐-mixing time of the random walk is defined as the smallest 𝑡 such that
𝑝! − 𝜋 ) ≤ 𝜖 ∀ 𝑝&.

We will bound the mixing time using the spectral gap, defined as 𝜆 = min 1 − 𝛼$, 1 − |𝛼,|

Theorem.  For any finite, connected, non-bipartite graph, 

𝑝! → 𝜋 = #⃗
$%

 as 𝑡 → ∞ regardless of 𝑝&.



Mixing Time by Spectral Gap

Theorem.  The 𝜖-mixing time is upper bounded by !
"
log #

$
, where 𝜆 = min 1 − 𝛼%, 1 − |𝛼#| . 

For simplicity we give the proof only for 𝑑-regular graphs: 

Let 𝑣!, 𝑣%, … , 𝑣# be an orthonormal basis of 𝐴. Then 𝑝& = 𝑐!𝑣! + 𝑐%𝑣% + …+ 𝑐#𝑣#, and
𝑝' = 𝑊'𝑝& = 𝑐!𝛼!'𝑣! + 𝑐%𝛼%'𝑣% +⋯+ 𝑐#𝛼#'𝑣#

By Cauchy-Schwarz, 𝑝! − 𝜋 ! ≤ 𝑛 𝑝' − 𝜋 $
𝑝! − 𝜋 %

% = 𝑐"𝛼"!𝑣" +⋯+ 𝑐#𝛼#! 𝑣# %
% = 𝑐%%𝛼%%' 𝑣% %

% +⋯+ 𝑐#"𝛼#"! 𝑣# "
"

= 𝑐""𝛼""! +⋯+ 𝑐!
"𝛼!

"# ≤ 1 − 𝜆 "# 𝑐"
" +⋯+ 𝑐!

"

Note that 𝑝$ is a distribution, 𝑝& %
% = ∑0 𝑝& 𝑖 % ≤ ∑0 𝑝& 𝑖 = 𝑝& ! = 1

So 𝑝' − 𝜋 $
$ ≤ 1 − 𝜆 %' ⇒ 𝑝' − 𝜋 ) ≤ 𝑛 1 − 𝜆 ! ≤ 𝑛 𝑒%&!

When the spectral gap is a constant (i.e. 𝜆 = Ω(1)), then the random walk converges in 𝑂 log #
$

steps.

When the graph is regular with 𝜆 = Ω(1), we can sample an almost uniform vertex in 𝑂(log 𝑛) steps.

Aside: for general graphs, 𝑣!, 𝑣", … , 𝑣# is an an orthonormal basis of 𝒜, which incurs an extra 𝑛 factor

𝑥 B ≔ 𝑥C𝑥



Mixing Time for Lazy Random Walks

Theorem.  The 𝜖-mixing time is upper bounded by !
"
log #

$
, where 𝜆 is the spectral gap. 

In lazy random walks, the spectral gap is simply "'
%

, where 𝜆% is the second eigenvalue of ℒ.

From Cheeger’s inequality, we know that 𝜆% ≥
1 2 '

%
. 

Theorem.  The 𝜖-mixing time is of lazy random walks is upper bounded by %
1 2 ' log

#
$

.

This implies that lazy random walks mix fast in an expander graph, a very important result.

𝜑 𝐺 ≈ constant



Further applications: Random Sampling
We have seen algorithmic questions that concerns finding a solution, deciding if a solution exists, finding an optimal solution etc
There is an entire area that concerns on a very different task: sampling a solution according to certain distributions

One of the most important applications for random walks is in designing fast sampling algorithms
More often than not, the main question concerns the mixing time of these random walks

For examples,

• Card shuffling
• Sampling a graph coloring
• Sampling a perfect matching in a bipartite graph 

• Approximating 0-1 permanent

• Sampling a spanning tree
• Generating a maze for fun

• Approximate counting/inference



Card Shuffling

Say we have a deck of 52 cards.  How do you get a random permutation using simple operations?
Let’s say the simple operation is to choose a random card and put it at the top of the deck.

1. Does it converge to the uniform distribution of all permutations?

2. How many steps are enough to get an almost uniform distribution?

These questions can be understood as questions about random walks on the big “state” graph.

Then the first question is about stationary distribution, and the second question is about mixing time.

A famous result is 7 “riffle” shuffling will get an almost uniform permutation

• “Trailing the dovetail shuffle to its lair”, by Dave Bayer and Persi Diaconis

Cut-off phenomenon



Graph coloring

Given an undirected graph with max. degree Δ and 𝑘 colors
Goal: generate a 𝑘-coloring uniformly at random

This is presumably harder than deciding if there is a 𝑘-coloring 
Nevertheless, the following random walk has a stationary distribution uniform over all 𝑘-colorings:
• Start with any 𝑘-coloring 𝜎
• Pick a vertex 𝑣 and a color 𝑐 uniformly at random, recolor 𝑣 with 𝑐 if it is legal; otherwise do 

nothing;

This Markov chain is irreducible provided that 𝑘 ≥ Δ + 2, and aperiodic 

Conjecture: If 𝑘 ≥ Δ + 2, the above random walk mixes in poly(𝑛).
We will see a coupling argument assuming 𝑘 ≥ 2Δ + 1

This is known as the Metropolis chain
Other chains: Glauber dynamics, Wang–Swendsen–Kotecký chain, …



Random Combinatorial Objects
We can design a Markov chain to generate a random combinatorial object efficiently.
Another simple example is the basis-exchange walk algorithm to generate a random spanning tree.

Sampling algorithms are known for many combinatorial objects (e.g. colorings, perfect matchings, discrepancy 
minimization)

It is usually easy to construct a Markov chain so that the limiting distribution is uniform
But it is much more difficult to prove that the mixing time is fast
There are books that just focus on mixing time:

• Markov Chains and Mixing Times, by Levin and Peres

• Counting and Markov Chains, by Jerrum

Many methods are developed, including coupling, conductance, second eigenvalue, etc

https://www.math.cmu.edu/~af1p/Teaching/MCC17/Papers/JerrumBook


Cheeger’s Inequality in Markov chains

It is interesting to see how Cheeger’s inequality can be used.

When we want to bound 𝜙(𝐺), say in constructing expander graphs,

we can come up with algebraic constructions and bound 𝜆< instead

When we want to bound 𝜆<, say in bounding the mixing time,

we can analyze combinatorial problems and bound 𝜙(𝐺) instead

An alternative perspective like this is exactly what makes it so powerful



Electrical networks
Electrical flows, effective resistance, hitting time and cover time



Why hitting time and cover time?

Hitting time
• Finding bipartite matching

• Use random walk to find an augmenting cycle
• Interested in the first return time, in expectation

• 2SAT, and more generally the Moser-Tardos algorithm
• Can be seen as a random walk over all assignments
• Interested in the first time of hitting a satisfying assignment, in expectation

Cover time? Imagine you want to explore the graph
Using DFS/BFS, you need time 𝑂 𝐸 + |𝑉| and space 𝑂( 𝑉 )

What if we use random walk instead? 
Space = 𝑂(log 𝑛), expected running time = cover time ≤ 𝑂( 𝑉 |𝐸|)

In fact, U. Feige showed that there is an entire spectrum of time-space trade-off: 
For every 𝑠 there is an algorithm using space 𝑠 and time ;𝑂 F G

H
that covers all vertices w.h.p.

https://core.ac.uk/download/pdf/82332441.pdf


Electrical Flow

An electrical network is an undirected graph where every edge is a resistor of resistance 𝑟I.

The electrical flows on this network are governed by two laws:

1) Kirchhoff’s law: The sum of incoming currents is equal to the sum of outgoing currents.

2) Ohm’s law: There exists a voltage vector 𝜙: 𝑉 → ℝ such that 𝜙 𝑢 − 𝜙 𝑣 = 𝑖JK𝑟JK for all 𝑒 ∈ 𝐸,

where 𝑖JK is positive in the forward direction and negative in the backward direction

Given an electrical network, how do you compute these quantities?

Not every graph is series-parallel

https://www.graphclasses.org/classes/gc_275.html


Matrix formulation of electrical networks

Input: graph 𝐺 = (𝑉, 𝐸), resistance 𝑟; or conductance 𝑤; = 1/𝑟; for 𝑒 ∈ 𝐸, demand 𝑏< for 𝑣 ∈ 𝑉.

Output: the current/flow 𝑖=< on each edge 𝑢𝑣 ∈ 𝐸, and the voltage 𝜙< on each vertex 𝑣 ∈ 𝑉.

Ohm’s law: 𝜙 𝑢 − 𝜙 𝑣 = 𝑖=<𝑟=< ⇔ 𝑖=< = 𝑤=< 𝜙 𝑢 − 𝜙 𝑣 for all 𝑢𝑣 ∈ 𝐸.

Kirchhoff’s law: The sum of incoming flows is equal to the sum of outgoing flows.

K
=:<=∈@

𝑖<= = 𝑏< , ∀𝑣 ∈ 𝑉

Combined:

𝑏K = G
J:KJ∈G

𝑖KJ = K
=:<=∈@

𝑤=< 𝜙 𝑣 − 𝜙 𝑢 = degA(𝑣)𝜙 𝑣 − K
=:<=∈@

𝑤=<𝜙 𝑢

where degA(𝑣) = ∑=:<=∈@𝑤=< is a weighted degree. Specifically, if 𝑤34 = 1, the above is simply 𝑏 = 𝐿𝜙

𝑏! > 0 if injecting a flow; source
𝑏! < 0 if outputting a flow; sink
𝑏! = 0 everywhere else

In general, we have a weighted Laplacian



Matrix formulation of electrical networks

Given resistor network, we inject 1A current into a node 𝑠, and let the current flow out of a node 𝑡

How do you compute the voltages? Solve the equations 𝑏 = 𝐿𝜙
Now that we have the voltages 𝜙, by Ohm’s law, the current 𝑖=< = 𝑤=< 𝜙 𝑢 − 𝜙 𝑣

Consider the incidence matrix 𝐵, we have 𝚤 = 𝑊𝐵'𝜙 for a diagonal matrix 𝑊 of conductances

Then the Laplacian can also be written as:

𝐿 =K
;

𝑤;𝑏;𝑏;' = 𝐵𝑊𝐵'

Then 𝑏 = 𝐿𝜙 = 𝐵𝑊𝐵'𝜙 = 𝐵𝚤, which is exactly the law of flow conservation (Kirchhoff’s law)

To relate electrical quantities to random walks, we observe that they follow the same set of equations
Question: is there always a solution to these equations? Are they unique?



Solution Space and Pseudo-inverse of 𝐿

𝐿 is not of full rank, so inverse doesn’t exist, e.g. can’t say 𝑥 = 𝐿B)𝑏 is the unique solution.

But if 𝐺 is connected (WLOG), then the nullspace of 𝐿 is spanned by 1, and we can characterize the solutions.

Claim. If 𝐿𝑥 = 𝑏, then 𝑏 ⊥ 1.

Proof:

Suppose 𝐿𝑥 = 𝑏, where 𝑥 = ∑* 𝑐*𝑣*. Then 𝐿𝑥 = ∑*C$ 𝑐*𝜆*𝑣* is orthogonal to 𝑣) =
)
,
1

This makes sense for electrical flow, because the sum of demands should be equal to zero.



Solution Space and Pseudo-inverse of 𝐿

Claim. If 𝑏 ⊥ 1, then there exists 𝑥 such that 𝐿𝑥 = 𝑏.

Proof: Let 𝑏 = ∑*+$, 𝑎* 𝑣*. Consider 𝑥 = ∑*+$, D5
E5
𝑣*. Then 𝐿𝑥 = ∑*+$, 𝑎* 𝑣* = 𝑏.

The pseudo-inverse of 𝐿 is defined as 𝐿Ɨ ≔ ∑*+$, )
E5
𝑣*𝑣*'.

𝐿Ɨ maps any vector 𝑏 ⊥ 1 to the unique vector 𝑥 such that 𝐿𝑥 = 𝑏 and 𝑥 ⊥ 1.

So, the set of all solutions for 𝐿𝑥 = 𝑏 is 𝐿Ɨ𝑏 + 𝑐1 𝑐 ∈ ℝ , a “translation” of the solution 𝐿Ɨ𝑏.  (So, 𝚤 is unique.)

In particular, if we fix the value of one node, e.g. 𝑥! = 0, then there is a unique solution.

Any Laplacian system can be thought of as an electrical flow problem!



Effective resistance

The effective resistance 𝑅OPP 𝑠, 𝑡 between vertices 𝑠 and 𝑡 is defined as 𝜙 𝑠 − 𝜙(𝑡),

where 𝜙 satisfies 𝐿𝜙 = 𝑏 for a demand 𝑏 sending one unit of electrical flow from 𝑠 to 𝑡.

We should think of it as the resistance of the whole graph as a single big resistor.

Claim. 𝑅OPP 𝑠, 𝑡 = 𝑏HQC𝐿Ɨ𝑏HQ where 𝑏HQ ∈ ℝS with 𝑏HQ 𝑠 = 1, 𝑏HQ 𝑡 = −1, and zero otherwise.

Proof: 𝑅OPP 𝑠, 𝑡 = 𝑏HQC𝜙 = 𝑏HQC𝐿Ɨ𝑏HQ



Energy
The energy of an electrical flow is defined as

Ɛ 𝚤 ≔ +
"∈$

𝑖"% ⋅ 𝑟"

Intuitively, if we think of the graph as a big resistor, then Ɛ 𝚤 = 𝑅&'' 𝑠, 𝑡 .

Claim. Ɛ 𝚤 = 𝑅&'' 𝑠, 𝑡 , where 𝚤 is a one-unit electrical flow from 𝑠 to 𝑡.

Proof: 

+
"∈$

𝑖"% ⋅ 𝑟" =+
"

𝜙 𝑢 − 𝜙 𝑣 %

𝑟"
= 𝜙(𝐿𝜙

where 𝜙 satisfies 𝐿𝜙 = 𝑏)*, so that 𝜙 = 𝐿Ɨ𝑏)*.  Thus, Ɛ 𝚤 = 𝑏)*(𝐿Ɨ𝑏)* = 𝑅&'' 𝑠, 𝑡

In words, the effective resistance between 𝑠 and 𝑡 is the energy of a one-unit electrical 𝑠-𝑡 flow.



Thompson’s Principle

Theorem.  𝑅GHH 𝑠, 𝑡 ≤ Ɛ �⃗� where �⃗� is a one-unit 𝑠-𝑡 flow.

For simplicity we assume 𝑟; = 1, ∀𝑟;
Proof (sketch):

Consider min Ɛ �⃗� = min∑;∈@ 𝑔;$, s.t. 𝐵�⃑� = 𝑏I!
As a convex constrained optimization problem, it is minimized when the gradient of the Lagrangian is zero:

∃𝜙 ∈ ℝ, 𝑠. 𝑡. 𝐵J𝜙 = �⃑�
This is precisely the Ohm’s law: �⃑� is a flow determined by a voltage vector 𝜙

This means that �⃑� is an electrical flow

(For an elementary proof, consider �⃗� = 𝚤 + 𝑐, then try to show that the cross-terms are zero in the energy)

So, the one unit 𝑠-𝑡 electrical flow is the flow that minimizes the energy among all one unit 𝑠-𝑡 flow. 



Rayleigh’s Monotonicity Principle

Theorem.   If 𝑟K ≥ 𝑟, then 𝑅GHH,M6 𝑠, 𝑡 ≥ 𝑅GHH,M⃗ 𝑠, 𝑡 .

Proof: Let 𝚤 be a one-unit s-t electrical flow in the network of resistors 𝑟, and 𝑖′ be that of resistors 𝑟′

𝑅GHH,M⃗ 𝑠, 𝑡 = ƐM⃗ 𝚤 ≤ ƐM⃗ 𝑖′ ≤ ƐMK 𝑖′ = 𝑅GHH,M6 𝑠, 𝑡

The first inequality follows from Thompson’s principle, and the second from 𝑟K ≥ 𝑟 and ƐM⃗ 𝚤 ≔ ∑;∈@ 𝑖;$ ⋅ 𝑟;

This is very intuitive, increasing the resistance of an edge could never decrease the effective resistance,

and decreasing the resistance of an edge could never increase the effective resistance.



Effective Resistances as Distances

Effective resistance is probably a better distance function to measure how close are two nodes

Especially for random walks

It is known that effective resistances satisfy the triangle inequality

Lemma. 𝑅OPP 𝑎, 𝑏 + 𝑅OPP 𝑏, 𝑐 ≥ 𝑅OPP 𝑎, 𝑐 for any 𝑎, 𝑏, 𝑐



Random Walks on Undirected Graphs

We study some interesting quantities about random walks in undirected graphs.

1. Hitting time: 𝐻=,< ≔ min 𝑡 ≥ 1 | 𝑋) = 𝑢 𝑎𝑛𝑑 𝑋! = 𝑣 and ℎ=,< = 𝔼[𝐻=,<].

2. Commute time: 𝐶=,< ≔ ℎ=,< + ℎ<,=.

3. Cover time: cover< is defined as expected time to visit every vertex at least once 

if the random walk starts at 𝑣, and coverN ≔ max
O

cover<



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶),* = 2𝑚𝑅&'' 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺
Proof:

Fix any node 𝑡, let ℎ-,* be the hitting time from node 𝑢 to node 𝑡, then ∀𝑢 ≠ 𝑡
ℎ-,* = 1 +

1
𝑑-

2
!∼-

ℎ!,* ⇒ 𝑑-ℎ-,* −2
!∼-

ℎ!,* = 𝑑-

Consider the vector ℎ∗,* , it satisfies:

𝐷 − 𝐴 ℎ-,*

ℎ*,*

= 𝑑-

𝑑* − 2𝑚
Note that we have artificially added one row of equation on ℎ*,*
To ensure there is a solution, we have to make sure that the right hand side sum up to 0
(To be cont’d..)



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶I,! = 2𝑚𝑅GHH 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺
Proof (cont’d):

Fix any node 𝑠, let ℎ=,I be the hitting time from node 𝑢 to node 𝑠, then ∀𝑢 ≠ 𝑠

ℎ=,I = 1 +
1
𝑑=

K
<∼=

ℎ<,I ⇒ 𝑑=ℎ=,I −K
<∼=

ℎ<,I = 𝑑=

Consider the vector ℎ∗,I , it satisfies:

𝐷 − 𝐴
ℎI,I
ℎ=,I

ℎ!,I

=

𝑑I − 2𝑚
𝑑=

𝑑!
Again, we have artificially added one row of equation on ℎI,I
(To be cont’d..)



Commute Time

Theorem.  For any two vertices 𝑠 and 𝑡,   𝐶I,! = 2𝑚𝑅GHH 𝑠, 𝑡 ,   where 𝑚 = 𝐸 𝐺
Proof (cont’d):

𝐿 ℎ∗,! − ℎ∗,I =

𝑑I
𝑑=
⋮

𝑑! − 2𝑚
−

𝑑I − 2𝑚
𝑑=
⋮
𝑑!

=
2𝑚
0
⋮

−2𝑚

Thus,
T U∗,0VU∗,1

BW
= 𝑏H,Q

Recall that 𝐿𝜙 = 𝑏I! has a solution that is unique up to translation

Let 𝜙 = R∗,9BR∗,:
$%

,	we	have

𝑅GHH 𝑠, 𝑡 = 𝜙 𝑠 − 𝜙 𝑡 =
ℎI,! − ℎI,I

2𝑚 −
ℎ!,! − ℎ!,I

2𝑚 =
ℎH,Q + ℎQ,H

2𝑚 =
𝐶I,!
2𝑚



Cover Time

Corollary. 𝐶=,< ≤ 2𝑚 for every edge 𝑢𝑣 ∈ 𝐸.

Proof: Notice that 𝑅GHH 𝑢, 𝑣 ≤ 1 for every edge 𝑢𝑣 ∈ 𝐸. Then it follows from 𝐶=,< = 2𝑚𝑅GHH 𝑢, 𝑣 ≤ 2𝑚

Theorem.  The cover time of a connected graph is at most 2𝑚(𝑛 − 1).

Proof: Consider any spanning tree 𝑇. 

Then the cover time is at most traversing the time to commute along each tree edges of 𝑇.



Approximating Cover Time by Resistance 
Diameter
Theorem.  Let 𝑅 𝐺 ≔ max

=,<
𝑅GHH 𝑢, 𝑣 be the resistance diameter. Then, 

𝑚 ⋅ 𝑅 𝐺 ≤ cover 𝐺 ≤ 2𝑒S𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 + 𝑛

Proof: Firstly, 

cover 𝐺 ≥ max ℎ=< , ℎ<= ≥
𝐶=<
2 = 𝑚𝑅=<

For the upperbound, notice that the maximum commute time from any vertex is at most 2𝑚𝑅 𝐺
If the random walk is run for 2𝑒S𝑚 ⋅ 𝑅 𝐺 , by Markov’s inequality, the probability that a vertex is not visited is 
at most 1/𝑒S

If we repeat this ln 𝑛 times, the probability that a vertex is not visited is at most 1/𝑛S

By a union bound, the probability that there exists a vertex not visited is at most 1/𝑛$

In such cases, we can pay for another pessimistic cover time of 𝑛S

Combined, we have cover 𝐺 ≤ 2𝑒S𝑚 ⋅ 𝑅 𝐺 ⋅ ln 𝑛 + )
,;
𝑛S



Graph Connectivity

Theorem. There is an 𝑂 𝑛S time algorithm to solve 𝑠-𝑡 connectivity using only 𝑂(log 𝑛) space

Using random walk, the space requirement is 𝑂(log 𝑛) and expected running time is 𝑂 𝑉 𝐸 = 𝑂 𝑛S

You may wonder, is randomness necessary for checking graph connectivity in log-space? 

Definition. A sequence 𝜎 is (𝑑, 𝑛)-universal if for every labeled connected 𝑑-regular graphs and every starting 
vertex 𝑠, the walk defined by 𝜎 started from 𝑠 covers every vertices

Theorem. There exists (𝑑, 𝑛)-universal sequence of length 𝑂 𝑛S𝑑$ log 𝑛𝑑 for undirected graphs

HINT: Cover time is at most 𝑂(𝑛$𝑑) for 𝑑-regular graphs

Reingold’s Theorem For undirected graphs, one can explicitly construct such a universal sequence in log-space 

It is an open problem to derandomize log-space connectivity
Though likely not through “directed” universal sequences

https://dl.acm.org/doi/10.1145/1391289.1391291

