Advanced Algorithms（Fall 2023）
 Greedy and Local Search

Lecturers：尹一通，刘景铖，栗师
Nanjing University

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Maximum-Weight Spanning Tree Problem
Input: Graph $G=(V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^{E}$
Output: the spanning tree T of G with the maximum total weight

Maximum-Weight Spanning Tree Problem

Input: Graph $G=(V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^{E}$
Output: the spanning tree T of G with the maximum total weight

Maximum-Weight Spanning Tree Problem

Input: Graph $G=(V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^{E}$
Output: the spanning tree T of G with the maximum total weight

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup\{(u, v)\}$
6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup\{(u, v)\}$
6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5:

$$
F \leftarrow F \cup\{(u, v)\}
$$

6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then 5: $\quad F \leftarrow F \cup\{(u, v)\}$
6: return (V, F)

Kruskal's Algorithm for Maximum-Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: sort edges in E in non-increasing order of weights w
3: for each edge (u, v) in the order do
4: \quad if u and v are not connected by a path of edges in F then
5: $F \leftarrow F \cup\{(u, v)\}$
6: return (V, F)

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges
Input: Graph $G=(V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^{E}$
a set $F_{0} \subseteq E$ of edges, that does not contain a cycle
Output: the maximum-weight spanning tree $T=\left(V, E_{T}\right)$ of G satisfying $F_{0} \subseteq E_{T}$

Proof of Correctness of Kruskal's Algorithm

Maximum-Weight Spanning Tree (MST) with Pre-Selected Edges
Input: Graph $G=(V, E)$ and edge weights $w \in \mathbb{Z}_{>0}^{E}$
a set $F_{0} \subseteq E$ of edges, that does not contain a cycle
Output: the maximum-weight spanning tree $T=\left(V, E_{T}\right)$ of G satisfying $F_{0} \subseteq E_{T}$

Lemma (Key Lemma) Given an instance $\left(G=(V, E), w, F_{0}\right)$ of the MST with pre-selected edges problem, let e^{*} be the maximum weight edge in $E \backslash F_{0}$ such that $F_{0} \cup\left\{e^{*}\right\}$ does not contain a cycle. Then there is an optimum solution $T=\left(V, E_{T}\right)$ to the instance with $e^{*} \in E_{T}$.

Proof of Correctness of Kruskal's Algorithm

Proof of Key Lemma.
(

Proof of Correctness of Kruskal's Algorithm

Proof of Key Lemma.

Proof of Correctness of Kruskal's Algorithm

Proof of Key Lemma.

Proof of Correctness of Kruskal's Algorithm

Proof of Key Lemma.

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- (1- $\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Q: Does the greedy algorithm work for more general problems?

Q: Does the greedy algorithm work for more general problems?
A General Maximization Problem
Input: E : the ground set of elements
$w \in \mathbb{Z}_{>0}^{E}$: weight vector on elements
\mathcal{S} : an (implicitly given) family of subsets of E

- $\emptyset \in \mathcal{S}$
- \mathcal{S} is downward closed: if $A \in \mathcal{S}, B \subsetneq A$, then $B \in \mathcal{S}$.

Output: $A \in \mathcal{S}$ that maximizes $\sum_{e \in A} w_{e}$

Q: Does the greedy algorithm work for more general problems?
A General Maximization Problem
Input: E : the ground set of elements
$w \in \mathbb{Z}_{>0}^{E}$: weight vector on elements
\mathcal{S} : an (implicitly given) family of subsets of E

- $\emptyset \in \mathcal{S}$
- \mathcal{S} is downward closed: if $A \in \mathcal{S}, B \subsetneq A$, then $B \in \mathcal{S}$.

Output: $A \in \mathcal{S}$ that maximizes $\sum_{e \in A} w_{e}$

- maximum-weight spanning tree: $\mathcal{S}=$ family of forests

Greedy Algorithm

1: $A \leftarrow \emptyset$
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: \quad if $A \cup\{e\} \in \mathcal{S}$ then $A \leftarrow A \cup\{e\}$
5: return A

Greedy Algorithm

1: $A \leftarrow \emptyset$
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: \quad if $A \cup\{e\} \in \mathcal{S}$ then $A \leftarrow A \cup\{e\}$
5: return A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has a value and a cost, and a cost budget C, the goal is to find a maximum value subset of items with cost at most C

Greedy Algorithm

1: $A \leftarrow \emptyset$
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: \quad if $A \cup\{e\} \in \mathcal{S}$ then $A \leftarrow A \cup\{e\}$
5: return A

Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has a value and a cost, and a cost budget C, the goal is to find a maximum value subset of items with cost at most C
- Maximum Weight Bipartite Graph Matching

Greedy Algorithm

1: $A \leftarrow \emptyset$
2: sort elements in E in non-decreasing order of weights w
3: for each element e in the order do
4: \quad if $A \cup\{e\} \in \mathcal{S}$ then $A \leftarrow A \cup\{e\}$
5: return A
Examples where Greedy Algorithm is Not Optimum

- Knapsack Packing: given elements E, where every element has a value and a cost, and a cost budget C, the goal is to find a maximum value subset of items with cost at most C
- Maximum Weight Bipartite Graph Matching
- Matroids: cases where greedy algorithm is optimum

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}), where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:
(1) $\emptyset \in \mathcal{I}$.
(2) (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
(3) (augmentation/exchange property) If $A, B \in \mathcal{I}$ and $|B|<|A|$, then there exists $e \in A \backslash B$ such that $B \cup\{e\} \in \mathcal{I}$.

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}), where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:
(1) $\emptyset \in \mathcal{I}$.
(2) (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
(3) (augmentation/exchange property) If $A, B \in \mathcal{I}$ and $|B|<|A|$, then there exists $e \in A \backslash B$ such that $B \cup\{e\} \in \mathcal{I}$.

Lemma Let $G=(V, E) . F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Def. A (finite) matroid \mathcal{M} is a pair (E, \mathcal{I}), where E is a finite set (called the ground set) and \mathcal{I} is a family of subsets of E (called independent sets) with the following properties:
(1) $\emptyset \in \mathcal{I}$.
(2) (downward-closed property) If $B \subsetneq A \in \mathcal{I}$, then $B \in \mathcal{I}$.
(0) (augmentation/exchange property) If $A, B \in \mathcal{I}$ and $|B|<|A|$, then there exists $e \in A \backslash B$ such that $B \cup\{e\} \in \mathcal{I}$.

Lemma Let $G=(V, E) . F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest. Then (E, \mathcal{I}) is a matroid, and it is called a graphic matroid.

Proof of Exchange Property.

- $|B|<|A| \Rightarrow(V, B)$ has more CC than (V, A).
- Some edge in A connects two different CC of (V, B).

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_{1}=c_{2}=10, c_{3}=20, C=20$.
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property

- $c_{1}=c_{2}=10, c_{3}=20, C=20$.
- $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$.
- $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\},\left\{\left(a_{1}, b_{2}\right)\right\} \in \mathcal{I}$.

> Feasible Family for Knapsack Packing Does Not Satisfy Augmentation Property
> - $c_{1}=c_{2}=10, c_{3}=20, C=20$.
> - $\{1,2\},\{3\} \in \mathcal{I}$, but $\{1,3\},\{2,3\} \notin \mathcal{I}$.

Feasible Family for Bipartite Matching Does Not Satisfy Augmentation Property

- Complete bipartite graph between $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$.
- $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\},\left\{\left(a_{1}, b_{2}\right)\right\} \in \mathcal{I}$.

Theorem The greedy algorithm gives optimum solution for the maximum-weight independent set problem in a matroid.

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists
- Then, some optimum solution contains e^{*}

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists
- Then, some optimum solution contains e^{*}

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^{*} \notin S$

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists
- Then, some optimum solution contains e^{*}

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^{*} \notin S$

1: $S^{\prime} \leftarrow A \cup\left\{e^{*}\right\}$
2: while $\left|S^{\prime}\right|<|S|$ do
3: let e be any element in $S \backslash S^{\prime}$ with $S^{\prime} \cup\{e\} \in \mathcal{I}$
$\triangleright e$ exists due to exchange property
4: $\quad S^{\prime} \leftarrow S \cup\{e\}$

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists
- Then, some optimum solution contains e^{*}

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^{*} \notin S$

1: $S^{\prime} \leftarrow A \cup\left\{e^{*}\right\}$
2: while $\left|S^{\prime}\right|<|S|$ do
3: let e be any element in $S \backslash S^{\prime}$ with $S^{\prime} \cup\{e\} \in \mathcal{I}$
$\triangleright e$ exists due to exchange property

$$
\text { 4: } \quad S^{\prime} \leftarrow S \cup\{e\}
$$

- S^{\prime} and S differ by exactly one element

Lemma (Key Lemma)

- given: matroid $\mathcal{M}=(E, \mathcal{I})$, weights $w \in \mathbb{Z}_{>0}^{E}, A \in \mathcal{I}$,
- goal: find a maximum weight independent set containing A
- $e^{*}=\arg \max _{e \in E \backslash A: A \cup\{e\} \in \mathcal{I}} w_{e}$, assuming e^{*} exists
- Then, some optimum solution contains e^{*}

Proof.

- let $S \supseteq A, S \in \mathcal{I}$ be an optimum solution, $e^{*} \notin S$

1: $S^{\prime} \leftarrow A \cup\left\{e^{*}\right\}$
2: while $\left|S^{\prime}\right|<|S|$ do
3: let e be any element in $S \backslash S^{\prime}$ with $S^{\prime} \cup\{e\} \in \mathcal{I}$
$\triangleright e$ exists due to exchange property

$$
\text { 4: } \quad S^{\prime} \leftarrow S \cup\{e\}
$$

- S^{\prime} and S differ by exactly one element
- $w\left(S^{\prime}\right):=\sum_{e \in S^{\prime}} w_{e} \geq w(S) \Longrightarrow S^{\prime}$ is also optimum

Examples of Matroids

- E : the ground set
\mathcal{I} : the family of independent sets

Examples of Matroids

- E : the ground set

\mathcal{I} : the family of independent sets

- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$
\mathcal{I}=\{A \subseteq E:|A| \leq k\}
$$

Examples of Matroids

- E : the ground set

\mathcal{I} : the family of independent sets

- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$
\mathcal{I}=\{A \subseteq E:|A| \leq k\}
$$

- Partition Matroid: partition $\left(E_{1}, E_{2}, \cdots, E_{t}\right)$ of E, positive integers $k_{1}, k_{2}, \cdots, k_{t}$

$$
\mathcal{I}=\left\{A \subseteq E:\left|A \cap E_{i}\right| \leq k_{i}, \forall i \in[t]\right\}
$$

Examples of Matroids

- E : the ground set
\mathcal{I} : the family of independent sets
- Uniform Matroid: $k \in \mathbb{Z}_{>0}$.

$$
\mathcal{I}=\{A \subseteq E:|A| \leq k\} .
$$

- Partition Matroid: partition $\left(E_{1}, E_{2}, \cdots, E_{t}\right)$ of E, positive integers $k_{1}, k_{2}, \cdots, k_{t}$

$$
\mathcal{I}=\left\{A \subseteq E:\left|A \cap E_{i}\right| \leq k_{i}, \forall i \in[t]\right\} .
$$

- Laminar Matroid: laminar family of subsets of E $\left\{E_{1}, E_{2}, \cdots, E_{t}\right\}$, positive integers $k_{1}, k_{2}, \cdots, k_{t}$

$$
\mathcal{I}=\left\{A \subseteq E:\left|A \cap E_{i}\right| \leq k_{i}, \forall i \in[t]\right\} .
$$

Def. A family $\left\{E_{1}, E_{2}, \cdots, E_{t}\right\}$ of subsets of E is said to be laminar if for every two distinct subsets E_{i}, E_{j} in the family, we have $E_{i} \cap E_{j}=\emptyset$ or $E_{i} \subsetneq E_{j}$ or $E_{j} \subsetneq E_{i}$.

- $\{\{1\},\{1,2\},\{3,4\},\{5\},\{3,4,5,6\},\{1,2,3,4,5,6\}\}$ is a laminar family.

Examples of Matroids

- E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph $G=(V, E)$

$$
\mathcal{I}=\{A \subseteq E:(V, A) \text { is a forest }\}
$$

Examples of Matroids

- E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph $G=(V, E)$

$$
\mathcal{I}=\{A \subseteq E:(V, A) \text { is a forest }\}
$$

- Transversal Matroid: a bipartite graph $G=(E \uplus B, \mathcal{E})$
$\mathcal{I}=\{A \subseteq E:$ there is a matching in G covering $A\}$

Examples of Matroids

- E: the ground set
\mathcal{I} : the family of independent sets
- Graphic Matroid: graph $G=(V, E)$

$$
\mathcal{I}=\{A \subseteq E:(V, A) \text { is a forest }\}
$$

- Transversal Matroid: a bipartite graph $G=(E \uplus B, \mathcal{E})$

$$
\mathcal{I}=\{A \subseteq E: \text { there is a matching in } G \text { covering } A\}
$$

- Linear Matroid: a vector $\vec{v}_{e} \in \mathbb{R}^{d}$ for every $e \in E$

$$
\mathcal{I}=\left\{A \subseteq E: \text { vectors }\left\{\vec{v}_{e}\right\}_{e \in A} \text { are linearly independent }\right\}
$$

Examples of Matroids

- E: the ground set \mathcal{I} : the family of independent sets
- Graphic Matroid: graph $G=(V, E)$

$$
\mathcal{I}=\{A \subseteq E:(V, A) \text { is a forest }\}
$$

- Transversal Matroid: a bipartite graph $G=(E \uplus B, \mathcal{E})$

$$
\mathcal{I}=\{A \subseteq E: \text { there is a matching in } G \text { covering } A\}
$$

- Linear Matroid: a vector $\vec{v}_{e} \in \mathbb{R}^{d}$ for every $e \in E$

$$
\mathcal{I}=\left\{A \subseteq E: \text { vectors }\left\{\vec{v}_{e}\right\}_{e \in A} \text { are linearly independent }\right\}
$$

Relationship between matroids

Other Terminologies Related To a Matroid $\mathcal{M}=(E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal indepent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Other Terminologies Related To a Matroid $\mathcal{M}=(E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal indepent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof.

By exchange property.

Other Terminologies Related To a Matroid $\mathcal{M}=(E, \mathcal{I})$

- A subset of E that is not independent is dependent.
- A maximal indepent set is called a basis (plural: bases)
- A minimal dependent set is called a circuit

Lemma All bases of a matroid have the same size.

Proof.
 By exchange property.

Def. Given a matroid $\mathcal{M}=(E, \mathcal{I})$, the rank of a subset A of E, denoted as $r_{\mathcal{M}}(A)$, is defined as the size of the maximum independent subset of $A . r_{\mathcal{M}}: 2^{E} \rightarrow \mathbb{Z}_{\geq 0}$ is called the rank function of \mathcal{M}.

Outline

(1) Greedy Agorithms: Vaximum-Veight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1)$-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- (1- $\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Outline

(1) Greedy Algorithms: Vaximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1)$-Approximation for Set-Cover
- (1- $\frac{1}{c}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Vertex Cover Problem

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.

Vertex Cover Problem

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $C \subseteq V$ such that for every $(u, v) \in E$ then $u \in C$ or $v \in C$.

Vertex-Cover Problem
Input: $G=(V, E)$
Output: a vertex cover C with minimum $|C|$

First Try: A "Natural" Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: let v be the vertex of the maximum degree in $\left(V, E^{\prime}\right)$
4: $\quad C \leftarrow C \cup\{v\}$,
5: remove all edges incident to v from E^{\prime}
6: return C

First Try: A "Natural" Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: let v be the vertex of the maximum degree in $\left(V, E^{\prime}\right)$
4: $\quad C \leftarrow C \cup\{v\}$,
5: remove all edges incident to v from E^{\prime}
6: return C

Theorem Greedy algorithm is an $(\ln n+1)$-approximation for vertex-cover.

First Try: A "Natural" Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: let v be the vertex of the maximum degree in $\left(V, E^{\prime}\right)$
4: $\quad C \leftarrow C \cup\{v\}$,
5: \quad remove all edges incident to v from E^{\prime}
6: return C

Theorem Greedy algorithm is an $(\ln n+1)$-approximation for vertex-cover.

- We prove it for the more general set cover problem

First Try: A "Natural" Greedy Algorithm

Natural Greedy Algorithm for Vertex-Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: let v be the vertex of the maximum degree in $\left(V, E^{\prime}\right)$
4: $\quad C \leftarrow C \cup\{v\}$,
5: \quad remove all edges incident to v from E^{\prime}
6: return C

Theorem Greedy algorithm is an $(\ln n+1)$-approximation for vertex-cover.

- We prove it for the more general set cover problem
- The logarithmic factor is tight for this algorithm

2-Approximation Algorithm for Vertex Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

2-Approximation Algorithm for Vertex Cover
1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

- counter-intuitive: adding both u and v to C seems wasteful

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2 -approximation ratio:

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
- optimum solution C^{*} must cover edge (u, v), using either u or v

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
- optimum solution C^{*} must cover edge (u, v), using either u or v
- we select both, so we are always ahead of the optimum solution

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

- counter-intuitive: adding both u and v to C seems wasteful
- intuition for the 2-approximation ratio:
- optimum solution C^{*} must cover edge (u, v), using either u or v
- we select both, so we are always ahead of the optimum solution
- we use at most 2 times more vertices than C^{*} does

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$

2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$

2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- Let E^{\prime} be the set of edges (u, v) considered in Step 3

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- Let E^{\prime} be the set of edges (u, v) considered in Step 3
- Observation: E^{\prime} is a matching and $|C|=2\left|E^{\prime}\right|$

2-Approximation Algorithm for Vertex Cover

1: $E^{\prime} \leftarrow E, C \leftarrow \emptyset$
2: while $E^{\prime} \neq \emptyset$ do
3: \quad let (u, v) be any edge in E^{\prime}
4: $\quad C \leftarrow C \cup\{u, v\}$
5: \quad remove all edges incident to u and v from E^{\prime}
6: return C

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Proof.

- Let E^{\prime} be the set of edges (u, v) considered in Step 3
- Observation: E^{\prime} is a matching and $|C|=2\left|E^{\prime}\right|$
- To cover E^{\prime}, the optimum solution needs $\left|E^{\prime}\right|$ vertices

Outline

(1) Greedy Algorithms: Vaximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Set Cover

Input: $U,|U|=n$: ground set

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U
$$

Output: minimum size set $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$

Set Cover with Bounded Frequency f

Input: $U,|U|=n$: ground set
$S_{1}, S_{2}, \cdots, S_{m} \subseteq U$
every $j \in U$ appears in at most f subsets in $\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$
Output: minimum size set $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$

Set Cover with Bounded Frequency f

Input: $U,|U|=n$: ground set

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U
$$

$$
\text { every } j \in U \text { appears in at most } f \text { subsets in }
$$

$$
\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}
$$

Output: minimum size set $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$

Vertex Cover $=$ Set Cover with Frequency 2

- edges \Leftrightarrow elements
- vertices \Leftrightarrow sets
- every edge (element) can be covered by 2 vertices (sets)
f-Approximation Algorithm for Set Cover with Frequency f
1: $C \leftarrow \emptyset$
2: while $\bigcup_{i \in C} S_{i} \neq U$ do
3: \quad let e be any element in $U \backslash \bigcup_{i \in C} S_{i}$
4: $\quad C \leftarrow C \cup\left\{i \in[m]: e \in S_{i}\right\}$
5: return C

f-Approximation Algorithm for Set Cover with Frequency f

1: $C \leftarrow \emptyset$
2: while $\bigcup_{i \in C} S_{i} \neq U$ do
3: \quad let e be any element in $U \backslash \bigcup_{i \in C} S_{i}$
4: $\quad C \leftarrow C \cup\left\{i \in[m]: e \in S_{i}\right\}$
5: return C

Theorem The algorithm is a f-approximation algorithm.

f-Approximation Algorithm for Set Cover with Frequency f

1: $C \leftarrow \emptyset$
2: while $\bigcup_{i \in C} S_{i} \neq U$ do
3: \quad let e be any element in $U \backslash \bigcup_{i \in C} S_{i}$
4: $\quad C \leftarrow C \cup\left\{i \in[m]: e \in S_{i}\right\}$
5: return C

Theorem The algorithm is a f-approximation algorithm.

Proof.

- Let U^{\prime} be the set of all elements e considered in Step 3
- Observation: no set S_{i} contains two elements in U^{\prime}
- To cover U^{\prime}, the optimum solution needs $\left|U^{\prime}\right|$ sets
- $C \leq f \cdot\left|U^{\prime}\right|$

Outline

(1) Greedy Algorithms: Vaximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- (1- $\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Set Cover
Input: $U,|U|=n$: ground set

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U
$$

Output: minimum size set $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$

Set Cover

Input: $U,|U|=n$: ground set

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U
$$

Output: minimum size set $C \subseteq[m]$ such that $\bigcup_{i \in C} S_{i}=U$

Greedy Algorithm for Set Cover

1: $C \leftarrow \emptyset, U^{\prime} \leftarrow U$
2: while $U^{\prime} \neq \emptyset$ do
3: \quad choose the i that maximizes $\left|U^{\prime} \cap S_{i}\right|$
4: $\quad C \leftarrow C \cup\{i\}, U^{\prime} \leftarrow U^{\prime} \backslash S_{i}$
5: return C

- g : minimum number of sets needed to cover U

Lemma Let $u_{t}, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$
u_{t} \leq\left(1-\frac{1}{g}\right) \cdot u_{t-1}
$$

- g : minimum number of sets needed to cover U

Lemma Let $u_{t}, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$
u_{t} \leq\left(1-\frac{1}{g}\right) \cdot u_{t-1}
$$

Proof.

- Consider the g sets $S_{1}^{*}, S_{2}^{*}, \cdots, S_{g}^{*}$ in optimum solution
- $S_{1}^{*} \cup S_{2}^{*} \cup \cdots \cup S_{g}^{*}=U$
- g : minimum number of sets needed to cover U

Lemma Let $u_{t}, t \in \mathbb{Z}_{\geq 0}$ be the number of uncovered elements after t steps. Then for every $t \geq 1$, we have

$$
u_{t} \leq\left(1-\frac{1}{g}\right) \cdot u_{t-1}
$$

Proof.

- Consider the g sets $S_{1}^{*}, S_{2}^{*}, \cdots, S_{g}^{*}$ in optimum solution
- $S_{1}^{*} \cup S_{2}^{*} \cup \cdots \cup S_{g}^{*}=U$
- at beginning of step t, some set in $S_{1}^{*}, S_{2}^{*}, \cdots, S_{g}^{*}$ must contain $\geq \frac{u_{t-1}}{g}$ uncovered elements
- $u_{t} \leq u_{t-1}-\frac{u_{t-1}}{g}=\left(1-\frac{1}{g}\right) u_{t-1}$.

Proof of $(\ln n+1)$-approximation.

- Let $t=\lceil g \cdot \ln n\rceil . u_{0}=n$. Then

$$
u_{t} \leq\left(1-\frac{1}{g}\right)^{g \cdot \ln n} \cdot n<e^{-\ln n} \cdot n=n \cdot \frac{1}{n}=1
$$

- So $u_{t}=0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n\rceil}{g} \leq \ln n+1$.

Proof of $(\ln n+1)$-approximation.

- Let $t=\lceil g \cdot \ln n\rceil . u_{0}=n$. Then

$$
u_{t} \leq\left(1-\frac{1}{g}\right)^{g \cdot \ln n} \cdot n<e^{-\ln n} \cdot n=n \cdot \frac{1}{n}=1
$$

- So $u_{t}=0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n\rceil}{g} \leq \ln n+1$.
- A more careful analysis gives a H_{n}-approximation, where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the n-th harmonic number.
- $\ln (n+1)<H_{n}<\ln n+1$.

Proof of $(\ln n+1)$-approximation.

- Let $t=\lceil g \cdot \ln n\rceil . u_{0}=n$. Then

$$
u_{t} \leq\left(1-\frac{1}{g}\right)^{g \cdot \ln n} \cdot n<e^{-\ln n} \cdot n=n \cdot \frac{1}{n}=1
$$

- So $u_{t}=0$, approximation ratio $\leq \frac{\lceil g \cdot \ln n\rceil}{g} \leq \ln n+1$.
- A more careful analysis gives a H_{n}-approximation, where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the n-th harmonic number.
- $\ln (n+1)<H_{n}<\ln n+1$.
$(1-c) \ln n$-hardness for any $c=\Omega(1)$
Let $c>0$ be any constant. There is no polynomial-time $(1-c) \ln n$-approximation algorithm for set-cover, unless
- NP \subseteq quasi-poly-time, [Lund, Yannakakis 1994; Feige 1998]
- $P=$ NP. [Dinur, Steuer 2014]

Outline

(1) Greedy Algorithms: Vaximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- ($\ln n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost
- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements
- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: $U,|U|=n$: ground set,

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U, \quad k \in[m]
$$

Output: $C \subseteq[m],|C|=k$ with the maximum $\bigcup_{i \in C} S_{i}$

- set cover: use smallest number of sets to cover all elements.
- maximum coverage: use k sets to cover maximum number of elements

Maximum Coverage

Input: $U,|U|=n$: ground set,

$$
S_{1}, S_{2}, \cdots, S_{m} \subseteq U, \quad k \in[m]
$$

Output: $C \subseteq[m],|C|=k$ with the maximum $\bigcup_{i \in C} S_{i}$
Greedy Algorithm for Maximum Coverage
1: $C \leftarrow \emptyset, U^{\prime} \leftarrow U$
2: for $t \leftarrow 1$ to k do
3: \quad choose the i that maximizes $\left|U^{\prime} \cap S_{i}\right|$
4: $\quad C \leftarrow C \cup\{i\}, U^{\prime} \leftarrow U^{\prime} \backslash S_{i}$
5: return C

Theorem Greedy algorithm gives $\left(1-\frac{1}{e}\right)$-approximation for maximum coverage.

Theorem Greedy algorithm gives $\left(1-\frac{1}{e}\right)$-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- $p_{t}: \#$ (covered elements) by greedy algorithm after step t

Theorem Greedy algorithm gives ($1-\frac{1}{e}$)-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- p_{t} : \#(covered elements) by greedy algorithm after step t
- $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$

Theorem Greedy algorithm gives ($1-\frac{1}{e}$)-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- p_{t} : \#(covered elements) by greedy algorithm after step t
- $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$
- $o-p_{t} \leq o-p_{t-1}-\frac{o-p_{t-1}}{k}=\left(1-\frac{1}{k}\right)\left(o-p_{t-1}\right)$

Theorem Greedy algorithm gives ($1-\frac{1}{e}$)-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- $p_{t}: \#$ (covered elements) by greedy algorithm after step t
- $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$
- $o-p_{t} \leq o-p_{t-1}-\frac{o-p_{t-1}}{k}=\left(1-\frac{1}{k}\right)\left(o-p_{t-1}\right)$
- $o-p_{k} \leq\left(1-\frac{1}{k}\right)^{k}\left(o-p_{0}\right) \leq \frac{1}{e} \cdot o$

Theorem Greedy algorithm gives ($1-\frac{1}{e}$)-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- $p_{t}: \#$ (covered elements) by greedy algorithm after step t
- $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$
- $o-p_{t} \leq o-p_{t-1}-\frac{o-p_{t-1}}{k}=\left(1-\frac{1}{k}\right)\left(o-p_{t-1}\right)$
- $o-p_{k} \leq\left(1-\frac{1}{k}\right)^{k}\left(o-p_{0}\right) \leq \frac{1}{e} \cdot o$
- $p_{k} \geq\left(1-\frac{1}{e}\right) \cdot o$

Theorem Greedy algorithm gives ($1-\frac{1}{e}$)-approximation for maximum coverage.

Proof.

- o: max. number of elements that can be covered by k sets.
- $p_{t}: \#$ (covered elements) by greedy algorithm after step t
- $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$
- $o-p_{t} \leq o-p_{t-1}-\frac{o-p_{t-1}}{k}=\left(1-\frac{1}{k}\right)\left(o-p_{t-1}\right)$
- $o-p_{k} \leq\left(1-\frac{1}{k}\right)^{k}\left(o-p_{0}\right) \leq \frac{1}{e} \cdot o$
- $p_{k} \geq\left(1-\frac{1}{e}\right) \cdot o$
- The $\left(1-\frac{1}{e}\right)$-approximation extends to a more general problem.

Outline

(1) Greedy Agorithms: Vaximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- (1- $\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \rightarrow \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:
(1) $\forall A, B \subseteq[n]$:

$$
f(A \cup B)+f(A \cap B) \leq f(A)+f(B)
$$

(2) $\forall A \subseteq B \subsetneq[n], i \in[n] \backslash B$:

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A) .
$$

(3) $\forall A \subseteq[n], i, j \in[n] \backslash A, i \neq j$:

$$
f(A \cup\{i, j\})+f(A) \leq f(A \cup\{i\})+f(A \cup\{j\}) .
$$

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \rightarrow \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:
(1) $\forall A, B \subseteq[n]$:

$$
f(A \cup B)+f(A \cap B) \leq f(A)+f(B)
$$

(2) $\forall A \subseteq B \subsetneq[n], i \in[n] \backslash B$:

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A) .
$$

(3) $\forall A \subseteq[n], i, j \in[n] \backslash A, i \neq j$:

$$
f(A \cup\{i, j\})+f(A) \leq f(A \cup\{i\})+f(A \cup\{j\}) .
$$

- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.

Def. Let $n \in \mathbb{Z}_{>0}$. A set function $f: 2^{[n]} \rightarrow \mathbb{R}$ is called submodular if it satisfies one of the following three equivalent conditions:
(1) $\forall A, B \subseteq[n]$:

$$
f(A \cup B)+f(A \cap B) \leq f(A)+f(B)
$$

(2) $\forall A \subseteq B \subsetneq[n], i \in[n] \backslash B$:

$$
f(B \cup\{i\})-f(B) \leq f(A \cup\{i\})-f(A) .
$$

(3) $\forall A \subseteq[n], i, j \in[n] \backslash A, i \neq j$:

$$
f(A \cup\{i, j\})+f(A) \leq f(A \cup\{i\})+f(A \cup\{j\}) .
$$

- (2): diminishing marginal values: the marginal value by getting i when I have B is at most that when I have $A \subseteq B$.
- $(1) \Rightarrow(2) \Rightarrow(3)$,
$(3) \Rightarrow(2) \Rightarrow(1)$

Examples of Sumodular Functions

- linear function: $f(S)=\sum_{i \in S} w_{i}, \forall S \subseteq[n]$

Examples of Sumodular Functions

- linear function: $f(S)=\sum_{i \in S} w_{i}, \forall S \subseteq[n]$
- budget-additive function: $f(S)=\min \left\{\sum_{i \in S} w_{i}, B\right\}, \forall S \subseteq[n]$

Examples of Sumodular Functions

- linear function: $f(S)=\sum_{i \in S} w_{i}, \forall S \subseteq[n]$
- budget-additive function: $f(S)=\min \left\{\sum_{i \in S} w_{i}, B\right\}, \forall S \subseteq[n]$
- coverage function: given sets $S_{1}, S_{2}, \cdots, S_{n} \subseteq \Omega$,

$$
f(C):=\left|\bigcup_{i \in C} S_{i}\right|, \forall C \subseteq[n]
$$

Examples of Sumodular Functions

- linear function: $f(S)=\sum_{i \in S} w_{i}, \forall S \subseteq[n]$
- budget-additive function: $f(S)=\min \left\{\sum_{i \in S} w_{i}, B\right\}, \forall S \subseteq[n]$
- coverage function: given sets $S_{1}, S_{2}, \cdots, S_{n} \subseteq \Omega$,

$$
f(C):=\left|\bigcup_{i \in C} S_{i}\right|, \forall C \subseteq[n]
$$

- matroid rank function: given a matroid $\mathcal{M}=([n], \mathcal{I})$

$$
r_{\mathcal{M}}(A)=\max \left\{\left|A^{\prime}\right|: A^{\prime} \subseteq A, A^{\prime} \in \mathcal{I}\right\}, \forall A \subseteq[n]
$$

Examples of Sumodular Functions

- linear function: $f(S)=\sum_{i \in S} w_{i}, \forall S \subseteq[n]$
- budget-additive function: $f(S)=\min \left\{\sum_{i \in S} w_{i}, B\right\}, \forall S \subseteq[n]$
- coverage function: given sets $S_{1}, S_{2}, \cdots, S_{n} \subseteq \Omega$,

$$
f(C):=\left|\bigcup_{i \in C} S_{i}\right|, \forall C \subseteq[n]
$$

- matroid rank function: given a matroid $\mathcal{M}=([n], \mathcal{I})$

$$
r_{\mathcal{M}}(A)=\max \left\{\left|A^{\prime}\right|: A^{\prime} \subseteq A, A^{\prime} \in \mathcal{I}\right\}, \forall A \subseteq[n]
$$

- cut function: given graph $G=([n], E)$

$$
f(A)=|E(A,[n] \backslash A)|, \forall A \subseteq[n]
$$

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables $X_{1}, X_{2}, \cdots, X_{n}$

$$
f(S):=H\left(X_{i}: i \in S\right), \forall S \subseteq[n]
$$

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables $X_{1}, X_{2}, \cdots, X_{n}$

$$
f(S):=H\left(X_{i}: i \in S\right), \forall S \subseteq[n]
$$

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq[n]$.

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables $X_{1}, X_{2}, \cdots, X_{n}$

$$
f(S):=H\left(X_{i}: i \in S\right), \forall S \subseteq[n]
$$

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq[n]$.

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be symmetric if $f(A)=f([n] \backslash A)$ for every $A \subseteq[n]$.

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables $X_{1}, X_{2}, \cdots, X_{n}$

$$
f(S):=H\left(X_{i}: i \in S\right), \forall S \subseteq[n]
$$

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq[n]$.

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be symmetric if $f(A)=f([n] \backslash A)$ for every $A \subseteq[n]$.

- coverage, matroid rank and entropy functions are monotone

Examples of Sumodular Functions

- linear function, budget-additive function, coverage function,
- matroid rank function, cut function
- entropy function: given random variables $X_{1}, X_{2}, \cdots, X_{n}$

$$
f(S):=H\left(X_{i}: i \in S\right), \forall S \subseteq[n]
$$

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be monotone if $f(A) \leq f(B)$ for every $A \subseteq B \subseteq[n]$.

Def. A submodular function $f: 2^{[n]} \rightarrow \mathbb{R}$ is said to be symmetric if $f(A)=f([n] \backslash A)$ for every $A \subseteq[n]$.

- coverage, matroid rank and entropy functions are monotone
- cut function is symmetric

$\left(1-\frac{1}{e}\right)$-Approximation for Submodular

 Maximization with Cardinality ConstraintSubmodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}, \quad k \in[n]$
Output: A subset $S \subseteq[n]$ with $|S|=k$, so as to maximize $f(S)$

$\left(1-\frac{1}{e}\right)$-Approximation for Submodular

 Maximization with Cardinality ConstraintSubmodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}, \quad k \in[n]$
Output: A subset $S \subseteq[n]$ with $|S|=k$, so as to maximize $f(S)$

- We can assume $f(\emptyset)=0$

$\left(1-\frac{1}{e}\right)$-Approximation for Submodular

 Maximization with Cardinality ConstraintSubmodular Maximization under a Cardinality Constraint
Input: An oracle to a non-negative monotone submodular function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}, \quad k \in[n]$
Output: A subset $S \subseteq[n]$ with $|S|=k$, so as to maximize $f(S)$

- We can assume $f(\emptyset)=0$

Greedy Algorithm for the Problem
1: $S \leftarrow \emptyset$
2: for $t \leftarrow 1$ to k do
3: \quad choose the i that maximizes $f(S \cup\{i\})$
4: $\quad S \leftarrow S \cup\{i\}$
5: return S

Theorem Greedy algorithm gives $\left(1-\frac{1}{e}\right)$-approximation for submodular-maximization under a cardinality constraint.

Theorem Greedy algorithm gives $\left(1-\frac{1}{e}\right)$-approximation for submodular-maximization under a cardinality constraint.

Proof.

- o: optimum value
- p_{t} : value obtained by greedy algorithm after step t
- need to prove: $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$
- $o-p_{t} \leq o-p_{t-1}-\frac{o-p_{t-1}}{k}=\left(1-\frac{1}{k}\right)\left(o-p_{t-1}\right)$
- $o-p_{k} \leq\left(1-\frac{1}{k}\right)^{k}\left(o-p_{0}\right) \leq \frac{1}{e} \cdot o$
- $p_{k} \geq\left(1-\frac{1}{e}\right) \cdot o$

Def. A set function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq[n]$, we have $f(A \cup B) \leq f(A)+f(B)$.

Def. A set function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq[n]$, we have $f(A \cup B) \leq f(A)+f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive.

Def. A set function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive if for every two sets $A, B \subseteq[n]$, we have $f(A \cup B) \leq f(A)+f(B)$.

Lemma A non-negative submodular set function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ is sub-additive.

Proof.

For $A, B \subseteq[n]$, we have $f(A \cup B)+f(A \cap B) \leq f(A)+f(B)$. So, $f(A \cup B) \leq f(A)+f(B)$ as $f(A \cap B) \geq 0$.

Lemma Let $f: 2^{[n]} \rightarrow \mathbb{R}$ be submodular. Let $S \subseteq[n]$, and $f_{S}(A)=f(S \cup A)-f(S)$ for every $A \subseteq[n]$. (f_{S} is the marginal value function for set S.) Then f_{S} is also submodular.

Lemma Let $f: 2^{[n]} \rightarrow \mathbb{R}$ be submodular. Let $S \subseteq[n]$, and $f_{S}(A)=f(S \cup A)-f(S)$ for every $A \subseteq[n]$. (f_{S} is the marginal value function for set S.) Then f_{S} is also submodular.

Proof.

- Let $A, B \subseteq[n] \backslash S$; it suffices to consider ground set $[n] \backslash S$.

$$
\begin{aligned}
& f_{S}(A \cup B)+f_{S}(A \cap B)-f_{S}(A)+f_{S}(B) \\
= & f(S \cup A \cup B)-f(S)+f(S \cup(A \cap B))-f(S) \\
& -(f(S \cup A)-f(S)+f(S \cup B)-f(S)) \\
= & f(S \cup A \cup B)+f(S \cup(A \cap B))-f(S \cup A)-f(S \cup B) \\
\leq & 0
\end{aligned}
$$

- The last inequality is by $S \cup A \cup B=(S \cup A) \cup(S \cup B)$, $S \cup(A \cap B)=(S \cup A) \cap(S \cup B)$ and submodularity of f.

Proof of $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$.

- $S^{*} \subseteq[n]$: optimum set, $\left|S^{*}\right|=k, o=f\left(S^{*}\right)$
- S : set chosen by the algorithm at beginning of time step t

$$
|S|=t-1, p_{t-1}=f(S)
$$

Proof of $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$.

- $S^{*} \subseteq[n]$: optimum set, $\left|S^{*}\right|=k, o=f\left(S^{*}\right)$
- S : set chosen by the algorithm at beginning of time step t

$$
|S|=t-1, p_{t-1}=f(S)
$$

- f_{S} is submodular and thus sub-additive

$$
f_{S}\left(S^{*}\right) \leq \sum_{i \in S^{*}} f_{S}(i) \quad \Rightarrow \quad \exists i \in S^{*}, f_{S}(i) \geq \frac{1}{k} f_{S}\left(S^{*}\right)
$$

Proof of $p_{t} \geq p_{t-1}+\frac{o-p_{t-1}}{k}$.

- $S^{*} \subseteq[n]:$ optimum set, $\left|S^{*}\right|=k, o=f\left(S^{*}\right)$
- S : set chosen by the algorithm at beginning of time step t

$$
|S|=t-1, p_{t-1}=f(S)
$$

- f_{S} is submodular and thus sub-additive

$$
f_{S}\left(S^{*}\right) \leq \sum_{i \in S^{*}} f_{S}(i) \quad \Rightarrow \quad \exists i \in S^{*}, f_{S}(i) \geq \frac{1}{k} f_{S}\left(S^{*}\right)
$$

- for the i, we have

$$
\begin{aligned}
f(S \cup\{i\})-f(S) & \geq \frac{1}{k}\left(f\left(S^{*}\right)-f(S)\right) \\
p_{t} & \geq f(S \cup\{i\}) \geq p_{t-1}+\frac{1}{k}\left(o-p_{t-1}\right)
\end{aligned}
$$

Outline

(1) Greedy Agorithms: Maximum-Weight Independent Set in

Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint

(3) Local Search

- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- (ln $n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Local Search for Maximum-Cut

Maximum-Cut
Input: Graph $G=(V, E)$
Output: partition of V into $(S, T=V \backslash S)$ so as to maximize $|E(S, T)|, E(S, T)=\{u v \in E: u \in S \wedge v \in T\}$.

Local Search for Maximum-Cut

Maximum-Cut
Input: Graph $G=(V, E)$
Output: partition of V into $(S, T=V \backslash S$) so as to maximize

$$
|E(S, T)|, E(S, T)=\{u v \in E: u \in S \wedge v \in T\}
$$

Def. A solution (S, T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.

Local Search for Maximum-Cut

Maximum-Cut
Input: Graph $G=(V, E)$
Output: partition of V into $(S, T=V \backslash S$) so as to maximize

$$
|E(S, T)|, E(S, T)=\{u v \in E: u \in S \wedge v \in T\}
$$

Def. A solution (S, T) is a local-optimum if moving any vertex to its opposite side can not increase the cut value.

Local-Search for Maximum-Cut
1: $(S, T) \leftarrow$ any cut
2: while $\exists v \in V$, changing side of v increases cut value do
3: \quad switch v to the other side in (S, T)
4: return (S, T)

Lemma Local search gives a 2-approximation for maximum-cut.

Lemma Local search gives a 2-approximation for maximum-cut.

- d_{v} : degree of v

Proof.

- $\forall v \in S: E(v, S) \leq E(v, T) \Rightarrow|E(v, S)| \geq \frac{1}{2} d_{v}$
- $\forall v \in T: E(v, T) \leq E(v, S) \Rightarrow|E(v, T)| \geq \frac{1}{2} d_{v}$

Lemma Local search gives a 2-approximation for maximum-cut.

- d_{v} : degree of v

Proof.

- $\forall v \in S: E(v, S) \leq E(v, T) \Rightarrow|E(v, S)| \geq \frac{1}{2} d_{v}$
- $\forall v \in T: E(v, T) \leq E(v, S) \Rightarrow|E(v, T)| \geq \frac{1}{2} d_{v}$
- adding all inequalities:

$$
2|E(S, T)| \geq \frac{1}{2} \sum_{v \in V} d_{v}=|E|
$$

- So $|E(S, T)| \geq \frac{1}{2}|E| \geq \frac{1}{2}$ (value of optimum cut).
- The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
2: for every $v \in V$, in arbitrary order do
3: \quad adding v to S or T so as to maximize $|E(S, T)|$
4: return (S, T)

- The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
2: for every $v \in V$, in arbitrary order do
3: \quad adding v to S or T so as to maximize $|E(S, T)|$
4: return (S, T)

- [Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)
- The following algorithm also gives a 2-approximation

Greedy Algorithm for Maximum-Cut

1: $S \leftarrow \emptyset, T \leftarrow \emptyset$
2: for every $v \in V$, in arbitrary order do
3: \quad adding v to S or T so as to maximize $|E(S, T)|$
4: return (S, T)

- [Goemans-Williamson] 0.878-approximation via Semi-definite programming (SDP)
- Under Unique-Game-Conjecture (UGC), the ratio is best possible

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- ($\ln n+1$)-Approximation for Set-Cover
- (1- $\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost
-

Uncapacitated Facility Location

Input: F : Facilities $\quad C$: Clients
d : metric over $F \cup C \quad\left(f_{i}\right)_{i \in F}$: facility costs

Uncapacitated Facility Location

Input: F : Facilities C : Clients
d : metric over $F \cup C \quad\left(f_{i}\right)_{i \in F}$: facility costs
Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_{i}+\sum_{j \in C} d(j, S)$ $d(j, S)$: smallest distance between j and a facility in S

Uncapacitated Facility Location

Input: F : Facilities C : Clients
d : metric over $F \cup C \quad\left(f_{i}\right)_{i \in F}$: facility costs
Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_{i}+\sum_{j \in C} d(j, S)$ $d(j, S)$: smallest distance between j and a facility in S

Uncapacitated Facility Location

Input: F : Facilities C : Clients
d : metric over $F \cup C \quad\left(f_{i}\right)_{i \in F}$: facility costs
Output: $S \subseteq F$, so as to minimize $\sum_{i \in S} f_{i}+\sum_{j \in C} d(j, S)$ $d(j, S)$: smallest distance between j and a facility in S

- Best-approximation ratio: 1.488-Approximation [Li, 2011]
- 1.463-hardness, $1.463 \approx$ root of $x=1+2 e^{-x}$
- $\operatorname{cost}(S):=\sum_{i \in S} f_{i}+\sum_{j \in C} d(j, S), \forall S \subseteq F$

Local Search Algorithm for Uncapacitated Facility Location

1: $S \leftarrow$ arbitrary set of facilities
2: while exists $S^{\prime} \subseteq F$ with $\left|S \backslash S^{\prime}\right| \leq 1,\left|S^{\prime} \backslash S\right| \leq 1$ and $\operatorname{cost}\left(S^{\prime}\right)<\operatorname{cost}(S)$ do
3: $\quad S^{\prime \prime} \leftarrow S$
4: return S

- The algorithm runs in pseodu-polynomial time, but we ignore the issue for now.
- $\operatorname{cost}(S):=\sum_{i \in S} f_{i}+\sum_{j \in C} d(j, S), \forall S \subseteq F$

Local Search Algorithm for Uncapacitated Facility Location

1: $S \leftarrow$ arbitrary set of facilities
2: while exists $S^{\prime} \subseteq F$ with $\left|S \backslash S^{\prime}\right| \leq 1,\left|S^{\prime} \backslash S\right| \leq 1$ and $\operatorname{cost}\left(S^{\prime}\right)<\operatorname{cost}(S)$ do
3: $\quad S^{\prime \prime} \leftarrow S$
4: return S

- The algorithm runs in pseodu-polynomial time, but we ignore the issue for now.
S is a local optimum, under the following local operations
- $\operatorname{add}(i), i \notin S: S \leftarrow S \cup\{i\}$
- delete $(i), i \in S: S \leftarrow S \backslash\{i\}$
- $\operatorname{swap}\left(i, i^{\prime}\right), i \in S, i^{\prime} \notin S: S \leftarrow S \backslash\{i\} \cup\left\{i^{\prime}\right\}$
- S : the local optimum returned by the algorithm
- S^{*} : the (unknown) optimum solution

$$
\begin{array}{rlrl}
F & :=\sum_{i \in S} f_{i} & C & :=\sum_{j \in C} d(j, S) \\
F^{*} & :=\sum_{i \in S^{*}} f_{i} & C^{*} & :=\sum_{j \in C} d\left(j, S^{*}\right)
\end{array}
$$

- S : the local optimum returned by the algorithm
- S^{*} : the (unknown) optimum solution

$$
\begin{array}{rlrl}
F & :=\sum_{i \in S} f_{i} & C & :=\sum_{j \in C} d(j, S) \\
F^{*} & :=\sum_{i \in S^{*}} f_{i} & C^{*} & :=\sum_{j \in C} d\left(j, S^{*}\right)
\end{array}
$$

Lemma (analysis for connection cost) $C \leq F^{*}+C^{*}$

Lemma (analysis for facility cost) $F \leq F^{*}+2 C^{*}$

- S : the local optimum returned by the algorithm
- S^{*} : the (unknown) optimum solution

$$
\begin{array}{rlrl}
F & :=\sum_{i \in S} f_{i} & C & :=\sum_{j \in C} d(j, S) \\
F^{*} & :=\sum_{i \in S^{*}} f_{i} & C^{*} & :=\sum_{j \in C} d\left(j, S^{*}\right)
\end{array}
$$

Lemma (analysis for connection cost) $C \leq F^{*}+C^{*}$

Lemma (analysis for facility cost) $F \leq F^{*}+2 C^{*}$
So, $F+C \leq 2 F^{*}+3 C^{*} \leq 3\left(F^{*}+C^{*}\right)$

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- ($\ln n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Analysis of C

Analysis of C

- adding i^{*} does not increase the cost:

Analysis of C

- adding i^{*} does not increase the cost:

ㅁ Facilities

- Clients

Analysis of C

- adding i^{*} does not increase the cost:

$$
\sum_{j \in \sigma^{*-1}\left(i^{*}\right)} c_{\sigma(j) j} \leq f_{i^{*}}+\sum_{j \in \sigma^{*-1}\left(i^{*}\right)} c_{i^{*} j}
$$

- Clients

Analysis of C

- adding i^{*} does not increase the cost:

$$
\sum_{j \in \sigma^{*-1}\left(i^{*}\right)} c_{\sigma(j) j} \leq f_{i^{*}}+\sum_{j \in \sigma^{*-1}\left(i^{*}\right)} c_{i^{*} j}
$$

- summing up over all $i^{*} \in F^{*}$, we get

$$
\begin{gathered}
\sum_{j \in J} d(\sigma(j), j) \leq \sum_{i \in \in F^{*}} f_{i}+\sum_{j \in J} d\left(\sigma^{*}(j), j\right) \\
C \leq F^{*}+C^{*}
\end{gathered}
$$

Outline

(1) Greedy Algorithms: Maximum-Weight Independent Set in Matroids

- Recap: Maximum-Weight Spanning Tree Problem
- Matroids and Maximum-Weight Independent Set in Matroids
(2) Greedy Algorithms: Set Cover and Related Problems
- 2-Approximation Algorithm for Vertex Cover
- f-Approximation for Set-Cover with Frequency f
- ($\ln n+1$)-Approximation for Set-Cover
- ($1-\frac{1}{e}$)-Approximation for Maximum Coverage
- ($1-\frac{1}{e}$)-Approximation for Submodular Maximization under a Cardinality Constraint
(3) Local Search
- Warmup Problem: 2-Approximation for Maximum-Cut
- Local Search for Uncapacitated Facility Location Problem
- Local Search for UFL: Analysis for Connection Cost
- Local Search for UFL: Analysis for Facility Cost

Analysis of F

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i)=\emptyset$: consider delete (i)

ㅁ Facilities

- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i)=\emptyset$: consider delete (i)
- $j \in \sigma^{-1}(i)$ reconnected to $i^{*}:=\phi\left(\sigma^{*}(j)\right)$
- Facilities
- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i)=\emptyset$: consider delete (i)
- $j \in \sigma^{-1}(i)$ reconnected to $i^{*}:=\phi\left(\sigma^{*}(j)\right)$
- reconnection distance is at most

$$
\begin{gathered}
c_{i^{*} j}+c_{i^{*} \phi\left(i^{*}\right)} \leq c_{i^{*} j}+c_{i^{*} i} \\
\leq c_{i^{*} j}+c_{i^{*} j}+c_{i j}=2 c_{i^{*} j}+c_{i j}
\end{gathered}
$$

- Facilities
- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i)=\emptyset$: consider delete (i)
- $j \in \sigma^{-1}(i)$ reconnected to $i^{*}:=\phi\left(\sigma^{*}(j)\right)$
- reconnection distance is at most

$$
\begin{gathered}
c_{i^{*} j}+c_{i^{*} \phi\left(i^{*}\right)} \leq c_{i^{*} j}+c_{i^{*} i} \\
\leq c_{i^{*} j}+c_{i^{*} j}+c_{i j}=2 c_{i^{*} j}+c_{i j}
\end{gathered}
$$

- distance increment is at most $2 c_{i^{*} j}$
- Facilities
- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $i \in S, \phi^{-1}(i)=\emptyset:$ consider delete (i)
- $j \in \sigma^{-1}(i)$ reconnected to $i^{*}:=\phi\left(\sigma^{*}(j)\right)$
- reconnection distance is at most

$$
\begin{gathered}
c_{i^{*} j}+c_{i^{*} \phi\left(i^{*}\right)} \leq c_{i^{*} j}+c_{i^{*} i} \\
\leq c_{i^{*} j}+c_{i^{*} j}+c_{i j}=2 c_{i^{*} j}+c_{i j}
\end{gathered}
$$

- distance increment is at most $2 c_{i^{*} j}$
- by local optimality:

$$
f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}
$$

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi\left(i^{*}\right)=i, \psi(i) \neq i^{*}$: consider $\operatorname{add}\left(i^{*}\right)$
- Facilities
- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi\left(i^{*}\right)=i, \psi(i) \neq i^{*}$: consider $\operatorname{add}\left(i^{*}\right)$
- $\sigma(j)=i, \sigma^{*}(j)=i^{*}$: reconnect j to i^{*}
- Facilities
- Clients

Analysis of F

- $\phi\left(i^{*}\right), i^{*} \in S^{*}$: closest facility in S to i^{*}
- $\psi(i), i \in S$: closest facility in $\phi^{-1}(i)$ to i
- $\phi\left(i^{*}\right)=i, \psi(i) \neq i^{*}$: consider $\operatorname{add}\left(i^{*}\right)$
- $\sigma(j)=i, \sigma^{*}(j)=i^{*}$: reconnect j to i^{*}
- by local optimality:

$$
0 \leq f_{i^{*}}+\sum_{j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)}
$$

Analysis of F

- Facilities
- Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi\left(i^{\prime}\right)=i, \psi(i)=i^{\prime}$: consider $\operatorname{swap}\left(i, i^{\prime}\right)$
- Facilities
- Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi\left(i^{\prime}\right)=i, \psi(i)=i^{\prime}$: consider $\operatorname{swap}\left(i, i^{\prime}\right)$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right) \neq i$: reconnect j to it distance increment is at most $2 c_{\sigma^{*}(j) j}$
- Facilities
- Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi\left(i^{\prime}\right)=i, \psi(i)=i^{\prime}$: consider $\operatorname{swap}\left(i, i^{\prime}\right)$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right) \neq i$: reconnect j to it distance increment is at most $2 c_{\sigma^{*}(j) j}$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right)=i$: reconnect j to i^{\prime}
- Facilities
- Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi\left(i^{\prime}\right)=i, \psi(i)=i^{\prime}$: consider $\operatorname{swap}\left(i, i^{\prime}\right)$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right) \neq i$: reconnect j to it distance increment is at most $2 c_{\sigma^{*}(j) j}$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right)=i$: reconnect j to i^{\prime} distance increment is at most

$$
c_{i j}+c_{i i^{\prime}}-c_{i j}=c_{i i^{\prime}} \leq c_{i \sigma^{*}(j)} \leq c_{i j}+c_{\sigma^{*}(j) j}
$$

- Facilities
- Clients

Analysis of F

- $i \in S, \phi^{-1}(i) \neq \emptyset, \phi\left(i^{\prime}\right)=i, \psi(i)=i^{\prime}$: consider $\operatorname{swap}\left(i, i^{\prime}\right)$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right) \neq i$: reconnect j to it distance increment is at most $2 c_{\sigma^{*}(j) j}$
- $\sigma(j)=i, \phi\left(\sigma^{*}(j)\right)=i$: reconnect j to i^{\prime} distance increment is at most

$$
c_{i j}+c_{i i^{\prime}}-c_{i j}=c_{i i^{\prime}} \leq c_{i \sigma^{*}(j)} \leq c_{i j}+c_{\sigma^{*}(j) j}
$$

- $\quad f_{i} \leq f_{i^{\prime}}+2$

$$
j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i
$$

$$
+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+\quad \sum \quad\left(c_{i^{*} j}-c_{\sigma(j) j}\right)$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+\quad \sum \quad\left(c_{i^{*} j}-c_{\sigma(j) j}\right)$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D: \phi\left(\sigma^{*}(j)\right) \neq \sigma(j)} c_{\sigma^{*}(j) j}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D: \phi\left(\sigma^{*}(j)\right) \neq \sigma(j)} c_{\sigma^{*}(j) j}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+\quad \sum \quad\left(c_{i^{*} j}-c_{\sigma(j) j}\right)$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}
$$

- summing all the inequalities:

$$
\begin{aligned}
\sum_{i \in S} f_{i} \leq & \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D: \phi\left(\sigma^{*}(j)\right) \neq \sigma(j)} c_{\sigma^{*}(j) j} \\
& +\sum_{j \in D: \phi\left(\sigma^{*}(j)\right)=\sigma(j)}\left(c_{\sigma^{*}(j) j}-c_{\sigma(j) j}+c_{\sigma(j) j}+c_{\sigma^{*}(j) j}\right)
\end{aligned}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D: \phi\left(\sigma^{*}(j)\right) \neq \sigma(j)} c_{\sigma^{*}(j) j}+2 \sum_{j \in D: \phi\left(\sigma^{*}(j)\right)=\sigma(j)} c_{\sigma^{*}(j) j}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+\quad \sum \quad\left(c_{i^{*} j}-c_{\sigma(j) j}\right)$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D} c_{\sigma^{*}(j) j}
$$

- $i \in S$ is not paired: $f_{i} \leq 2 \sum_{j \in \sigma^{-1}(i)} c_{\sigma^{*}(j) j}$
- $i^{*} \in S^{*}$ is not paired: $0 \leq f_{i^{*}}+\quad \sum \quad\left(c_{i^{*} j}-c_{\sigma(j) j}\right)$

$$
j \in \sigma^{-1}\left(\phi\left(i^{*}\right)\right) \cap \sigma^{*-1}\left(i^{*}\right)
$$

- $i \in S$ and $i^{\prime} \in S^{*}$ are paired:

$$
f_{i} \leq f_{i^{\prime}}+2 \sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right) \neq i} c_{\sigma^{*}(j) j}+\sum_{j \in \sigma^{-1}(i): \phi\left(\sigma^{*}(j)\right)=i}\left(c_{i j}+c_{\sigma^{*}(j) j}\right)
$$

- summing all the inequalities:

$$
\begin{gathered}
\sum_{i \in S} f_{i} \leq \sum_{i^{*} \in S^{*}} f_{i^{*}}+2 \sum_{j \in D} c_{\sigma^{*}(j) j} \\
F \leq F^{*}+2 C^{*}
\end{gathered}
$$

$$
\begin{aligned}
& C \leq F^{*}+C^{*}, \quad F \leq F^{*}+2 C^{*} \\
\Rightarrow \quad & F+C \leq 2 F^{*}+3 C^{*} \leq 3\left(F^{*}+C^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C \leq F^{*}+C^{*}, \quad F \leq F^{*}+2 C^{*} \\
\Rightarrow \quad & F+C \leq 2 F^{*}+3 C^{*} \leq 3\left(F^{*}+C^{*}\right)
\end{aligned}
$$

Exercise: scaling facility costs by some $\lambda>1$ can give a $(1+\sqrt{2})$-approximation.

$$
\begin{aligned}
& C \leq F^{*}+C^{*}, \quad F \leq F^{*}+2 C^{*} \\
\Rightarrow \quad & F+C \leq 2 F^{*}+3 C^{*} \leq 3\left(F^{*}+C^{*}\right)
\end{aligned}
$$

Exercise: scaling facility costs by some $\lambda>1$ can give a $(1+\sqrt{2})$-approximation.

- Handling pseudo-polynomial running time issue:

Local Search Algorithm for Uncapacitated Facility Location
1: $S \leftarrow$ arbitrary set of facilities, $\delta \leftarrow \frac{\epsilon}{||F|}$
2: while exists $S^{\prime} \subseteq F$ with $\left|S \backslash S^{\prime}\right| \leq 1,\left|S^{\prime} \backslash S\right| \leq 1$ and $\operatorname{cost}\left(S^{\prime}\right)<(1-\delta) \operatorname{cost}(S)$ do
3: $\quad S^{\prime \prime} \leftarrow S$
4: return S

