
Advanced Algorithm 2023 Fall Take-Home Final

Due date: noon January 9th, 2024 UTC +8

Max-Cut in random graph
In this question, we analyze the Greedy algorithm for Max-Cut on G(n, 1/2). Recall that in

G(n, 1/2), each edge is present i.i.d with probability 1/2.

(1) Prove that with high probability, a graph drawn from G(n, 1/2) has a maximum cut at most
n2

8 + O(n1.5).

(2) Recall that at iteration i of the greedy algorithm, the vertex vi joins either S or T to maximize
E(S, T). Let ai, bi be the number of edges vi is connected to S and T respectively. Show that
E [|ai − bi|] ≥ Ω(

√
i).

(3) Show that Var [|ai − bi|] = O(i).

(4) Conclude that with probability at least 0.99, the greedy algorithm will find a cut of value at least
n2

8 + Ω(n1.5).

Almost k-wise independence
We show that there exists a small sample space that guarantees “almost k-wise independence”.
Fix any ε > 0. A random n-bit string x⃗ is said to be “k-wise ε-independent” if ∀⃗b ∈ {0, 1}n, S ∈ ([n]k ),∣∣∣∣Pr

[
∀j ∈ S, xj = bj

]
− 1

2k

∣∣∣∣ < ε.

Fix any integers n, k with n > k and ε > 0. Prove that for m = O( 2kk ln n
ε2 ), there are bit strings

y(1), . . . , y(m), each of length n, such that if we pick i uniformly at random from [m], then y(i) is “k-wise
ε-independent”.

HINT: you only need a proof of existence, not an explicit construction. Partial credit will be
awarded if you can show existence for m ≪ 2n whenever k ≪ n.
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List Coloring and Lovász local lemma
Let G = (V, E) be an undirected graph and suppose each v ∈ V is associated with a set S(v) of

32r colors, where r ≥ 1. Suppose, in addition, that for each v ∈ V and c ∈ S(v) there are at most r

neighbors u of v such that c lies in S(u). Use local lemma to prove that there exists a proper coloring
of G assigning to each vertex v a color from its class S(v) such that, for any edge (u, v) ∈ E, the colors
assigned to u and v are different. Furthermore, give a polynomial time randomized algorithm to find
such a coloring.

Spectrum and Cuts
Given G and H on the same vertex set V.

(1) If LG ⪯ LH, prove that |EG(S, S̄)| ≤ |EH(S, S̄)| for every S ⊆ V.

(2) Prove that the converse is not true, by constructing G, H such that |EG(S, S̄)| ≤ |EH(S, S̄)| for
every S ⊆ V, but LG ̸⪯ LH.

Effective resistance and Connectedness
We consider unweighted graphs in this question.

(1) A corollary of Menger’s theorem in graph theory is that: a graph is k-edge connected if between
any pairs of vertices, there are at least k edge disjoint paths connecting them. Let G be a connected
graph with maximum effective resistance over edges R. In other words, R := maxuv∈E(G) Reff(u, v).
Show that G must be 1/R-edge connected.

(2) Show that the converse to the above is not true.

(3) Show that for any simple unweighted graph G and any edge (u, v) ∈ E(G), the effective resistance
between u, v satisfies Reff(u, v) ≥ 1

deg(u)+1 +
1

deg(v)+1 .

(4) Let G be a d-regular graph. The second largest eigenvalue of its adjacency matrix is α2 = εd for
some constant ε ∈ (0, 1). Prove that for any pair of vertices u, v, the effective resistance between
them satisfies Reff(u, v) ≥ 1

(1−ε)d .

Universal Routing
Consider a game between a (galactic) taxi driver and a passenger. The passenger wants to visit n

cities in space, each at least once, in as little time as possible. The taxi driver wants to delay the tour
for as long as possible, so that they can charge a higher fare. In each city, there are exactly d routes
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leading to d different cities. The passenger must choose one from these d routes to decide where to go
next. However, the passenger does not know the map, nor the name of the cities: they have no idea
where these routes are leading to. Each route has a unique label from 1 to d. The taxi driver will follow
the label consistently, that is, the next time they come back to the same city, these d routes have the
same unique labels. It takes 1 unit of time to move between cities.

(1) Prove that there is a randomized strategy for the passenger to visit every city at least once, and it
takes at most O(n2d) time in expectation.

(2) Prove that there is a deterministic strategy for the passenger to visit every city at least once, and
it takes at most O(n3d2 ln(nd)) time. In other words, such a deterministic strategy is universal
and applicable to every possible labelling and layouts of n cities.

HINT: You only need to show the existence of such a strategy. You might find it helpful to think
about the probability that your randomized strategy keeps failing after repeating nd ln(nd) times.

(3) Suppose that d = n, that is, the underlying map is a labeled complete graph with self-loops, but
with unknown labels. Find a deterministic strategy for the passenger to visit every city at least
once within O(n3 ln(n)) time.

Greedy and Local Search
(1) Given two matroids M1 = (U1, I1) and M2 = (U2, I2) with U1 ∩ U2 = ∅, the direct sum of M1

and M2, denoted as M1 ⊕M2, is defined as (U1 ∪ U2, {A1 ∪ A2 : A1 ∈ I1, A2 ∈ I2}). Prove that
M1 ⊕M2 is a matroid.

(2) Recall that in the max-coverage problem, we are given a ground set U with |U| = n, m subsets
S1, S2, · · · , Sm of U, and an integer k ∈ [m]. Our goal is to find a set C ⊆ [m] of size k so as to
maximize |⋃i∈C Si|.

For two constants α ≥ 1, β ≥ 1, an algorithm is an (α, β)-bicriteria approximation algorithm if it
outputs a set C ⊆ [m] of size at most ⌈αk⌉, such that |⋃i∈C Si| ≥ β · opt, where opt is the maximum
number of elements that can be covered using k subsets, i.e., the value of the given instance.

Given a constant α ≥ 1, design an efficient (α, 1 − e−α)-bicriteria approximation algorithm for the
max-coverage problem; prove that it achieves this goal.

Linear Programming and Linear Programming Rounding
(1) A doctor wants to combine three food kinds such that the mixture’s vitamin content includes

a minimum of 8 elements of vitamin A, 10 elements of vitamin B and 8 elements of vitamin C.
There are three food kinds, ‘I’, ‘II’ and ‘III’. The following table gives the units of vitamin A, B
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and C contained in per kilogram of food kind ‘I’, ‘II’ and ‘III’, and the price (in US dollars) for per
kilogram of each food kind.

Food kind Vitamin A Vitamin B Vitamin C Price

I 2 3 1 5
II 1 4 2 7
III 4 2 3 10

Requirement 8 10 8

You need to minimize the price of a combination satisfying the requirement. Write down the linear
program that solves the problem. (You do not need to solve the LP).

(2) Given a graph G = (V, E) and an integer k ≥ 1, the graph G is said to be k-orientable if we
can obtain a directed graph G⃗ = (V, E⃗) by choosing a direction for every edge in G, so that the
in-degree of every vertex v ∈ V is at most k in G⃗.

Design a polynomial time algorithm that, given a graph G = (V, E) and an integer k ≥ 1, decides
if G is k-orientable or not. Prove its correctness.

Primal Dual
(1) Write down the dual LP for your LP to problem (1) in the “Linear Programming and Linear

Programming Rounding” section.

(2) Recall that in the maximum flow problem, we are given a directed graph G = (V, E), with a source
s ∈ V and a sink t ∈ E. We are given a capacity ce ∈ Z>0 for every edge e ∈ E. Consider the
natural linear program for the maximum flow problem.

max ∑
e∈δin(t)

xe

xe ≤ ce ∀e ∈ E

∑
e∈δout(v)

xe − ∑
e∈δin(v)

xe = 0 ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E

Write down the dual LP for the above LP. Explain why the LP is solving the following problem:
give every edge e ∈ E a length ye ≥ 0 so that the shortest s → t path in G with respect to lengths
(ye)e∈E is at least 1, so as to minimize ∑e∈E ceye. To get a full score for the problem, you need to
prove the statement directly.
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