Probability Theory and Mathematical Statistics

Jingcheng Liu

Goals

- A quick introduction to the mathematics behind statistics
- Understand basic terminology
- Know how to formulate a statistical problem

What is statistics

Q 研究表明

WEB IMAGES VIDEOS ACADEMIC DICT MAPS

About 27，800，000 results Any time v
研究人员招募了 36 名健康成年人，并将其随机分配到发酵或高纤维饮食方案小组中，使其维持该方案 10 周，并在实验开展前 3 周，采取分组饮食后 10 周，以及结束实验饮食方案4周后，采集参与者血液和粪便样本进行分析。研究人员发现，这两种饮食方式对肠道微生物和免疫系统产生了不同影响。食用酸奶，发酵白干酪，泡菜和其他发酵疏菜及相关饮品等，会增加人体微生物多样性，食用量越大，影响越强。＂这是一个惊人的发现。＂斯坦福大学微生物学和免疫学副教授Justin Sonnenburg说，该研究说明了简单的饮食改变是如何重塑健康人体内的微生物群的。

新研究表明发酵食品益处多－－－－中国科学院
숭 www．cas．cn／kj／202107／t20210714＿4798455．shtml

Was this helpful？

楁研究表明：2050年全球8．4亿多人腰痛，女性病例高于男性 ．．．
https：／／www．thepaper．cn／newsDetail＿forward＿23233269 v
Web May 26，2023－一项基于 30 多年数据的分析表明，全球腰痛病例数量正在增加。•模型显示，到2050年，由于人口增长和人口老龄化，将有8．43亿人受到这种疾病的影响。．相关论文将发表于 6月刊的《柳叶刀－风湿病学》。．由于腰痛是全球人类致残的主要原因，研究人员．

俍ishearch Fings Are False
John P. A. loannidis
Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed. 0020124

Article	Authors	Metrics	Comments	Media Coverage
\approx				

Correction

Abstract
Modeling the Framework for False Positive Findings
Bias
Testing by Several
Independent Teams

Corollaries

Most Research Findings Are False for Most Research Designs and for Most Fields
Claimed Research Findings May Often Be Simply Accurate Measures of the Prevailing Bias

How Can We Improve the Situation?
References

- Correction

25 Aug 2022: loannidis JPA (2022) Correction: Why Most Published Research Findings Are False. PLOS Medicine 19(8): e1004085. https://doi.org/10.1371/journal.pmed. 1004085 I View correction

Abstract

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is les likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.

See:

https://xkcd.com/882/

Note: there is even a talk show lamenting about "p-hacking"

7
he problems with food questionnaires go even deeper. They aren't just unreliable, they also produce huge data sets with many, many variables. The resulting cornucopia of possible variable combinations makes it easy to p-hack your way to sexy (and false) results, as we learned when we invited readers to take an FFQ and answer a few other questions about themselves. We ended up with 54 complete responses and then looked for associations - much as researchers look for links between foods and dreaded diseases. It was silly easy to find them.

Our shocking new study finds that ...

EATING OR DRINKING	IS LINKED TO	P-VALUE
Raw tomatoes	Judaism	<0.0001
Egg rolls	Dog ownership	<0.0001
Energy drinks	Smoking	<0.0001
Potato chips	Higher score on SAT math vs. verbal	0.0001
Soda	Weird rash in the past year	0.0002
Shellfish	Right-handedness	0.0002
Lemonade	Belief that "Crash" deserved to win best picture	0.0004
Fried/breaded fish	Democratic Party affiliation	0.0007
Beer	Frequent smoking	0.0013
Coffee	Cat ownership	0.0016
Table salt	Positive relationship with Internet service provider	0.0014
Steak with fat trimmed	Lack of belief in a god	0.0030
Iced tea	Belief that "Crash" didn't deserve to win best picture	0.0043
Bananas	Higher score on SAT verbal vs. math	0.0073
Cabbage	Innie bellybutton	0.0097

The Statistical Crisis in Science

Data-dependent analysis-a "garden of forking paths"- explains why many statistically significant comparisons don't hold up.

```
Andrew Gelman and Eric Loken
```

 here is a growing realization
that reported "statisticiclly sim that report
nficicat
pubicion
Researcher con. Researchers typically exerpess of p-value: the probability that a per
ceived result is actually the result

This multiple compprisons issue is
ell known in statistics and has been

Science Isn't Broken

It's just a hell of a lot harder than we give it credit for.

> By Christie Aschwanden
> Graphics by Ritchie King
> Filed under Scientific Method

Hack Your Way To Scientific Glory

You're a social scientist with a hunch: The U.S. economy is affected by whether Republicans or Democrats are in office. Try to show that a connection exists, using real data going back to or Democrats are in office. Try to show that a connection exists, using real data going back to are "statistically significant" by achieving a low enough p-value.

https://fivethirtyeight.com/features/science-isnt-broken/

Sally Clark's case

Sally Clark was convicted for murdering her two sons, when both died within weeks after birth Her conviction was largely based on a mis-use of statistics, for ruling out sudden infant death syndrome

- Recall the "Dominating false positive" example during probability lectures
$\operatorname{Pr}[$ a rare natural event \mid innocence $] \neq \operatorname{Pr}[$ innocence \mid a rare natural event $]$

See also: https://en.wikipedia.org/wiki/Sally Clark

- https://en.wikipedia.org/wiki/Base rate fallacy
- https://en.wikipedia.org/wiki/Prosecutor\'s fallacy
- TED talk by Peter Donnelly: How stats fool juries

What is statistics: more examples

- Travel insurance: Should you purchase insurance for your next flight?
- The same flight has a delay record of 53%
- The insurance starts paying whenever the flight is delayed for more than 10 minutes
- Clinical trial:
- Treatment I: "100\% effective", cured 3 out of 3.
- Treatment II: "95\% effective", cured 19 out of 20.
- Treatment III: "90\% effective", cured 90 out of 100.
- Which treatment is more effective?
- Dam construction in hydrology:
- Dam should be high enough for most floods
- Should not be unnecessarily high (expensive)

What is common in these questions?

- In expectation
- Need to quantify chance (Is it worth it? Is it effective?)
- Significance of our conclusion

Probability vs. Statistics

In probability, we often consider a well-defined/idealized random experiment.

- Flip a fair/unbiased coin
- Roll a fair/unloaded dice
- Draw a card

Probability vs. Statistics

In statistics, we first need a (probabilistic) model of the real world. Randomness can come from:

- the probabilistic model (biased coin, flight delay)
- using "simple process" + "noise" in the modelling

A statistic is anything that can be computed from collected data. The goal is often to make inferences from collected data.

Statistical mechanics, but not probabilistic mechanics; Probabilistic combinatorics, but not statistical combinatorics (not to confuse with combinatorial statistics)

Probability vs. Statistics

In probability: Compute probabilities from a parametric model with known parameters
Previous studies found the treatment is 80% effective. Then we expect that for a study of 100 patients, on average 80 will be cured. And the probability that at least 65 will be cured is at least 99.99%.

In statistics: Estimate the probability of parameters given a parametric model and collected data from it
Observe that 78/100 patients were cured. We will be able to conclude that: if we repeat this experiment, then we are 95% confident that the number of cured patients are between 69 to 87 .

Bayesian inference

We associate a prior distribution to the unknown model and parameters

Then we apply Bayes' law to transfer this from the collected data to a distribution on the unknown parameters.

This is called the posterior distribution.

Types of problems:

- Estimation
- Hypothesis testing
$P\left(\begin{array}{l|l|l}\text { I'M NEAR } \\ \text { THE OCEAN } & \text { I PICKED UP } \\ \text { ASEASHELL }\end{array}\right)=$
$P\left(\begin{array}{l|l}I \\ \text { PICKED UP } \\ \text { ASEASHELL } & \text { IMM NEAR } \\ \text { THE OCEAN }\end{array}\right) P\binom{$ IM NERR }{ THE OCENN }

STATISTICALLY SPEAKING, IF YOU PICK UPA SEASHELL AND DONT HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Bayesian inference: a toy model

Say we model the problem of predicting flight delays as independent Bernoulli's with unknown parameter p

We observe 100 times.
Given that there were 55 delays, what is a good estimate for p ?
How about $\hat{p}=0.55$?
In general, a statistical model is a parametric probabilistic model

Maximum likelihood estimates (MLE)

MLE asks:
Which parameter maximizes the chances of seeing the observed data?

This is known as a point estimate.
Compare with: outputting an interval, or an estimated p.d.f.

In our toy model of independent Bernoulli's with unknown parameter p

$$
\operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55} p^{55}(1-p)^{45}
$$

Likelihood, or likelihood function

Maximum likelihood estimates (MLE)

MLE asks:
Which parameter maximizes the chances of seeing the observed data?

In our toy model of independent Bernoulli's with unknown parameter p

$$
\begin{gathered}
\operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55} p^{55}(1-p)^{45} \\
\frac{d}{d p} \operatorname{Pr}[55 \text { heads } \mid p]=\binom{100}{55}\left(55 p^{54}(1-p)^{45}-45 p^{55}(1-p)^{44}\right)
\end{gathered}
$$

Setting derivative to 0 we have $\hat{p}=0.55$

Maximum likelihood estimates (MLE)

MLE = sample mean holds for

- n independent Bernoulli's with unknown parameter p
- Poisson with unknown parameter
- Gaussian
(derivations are similar)

Algorithms for MLE: often iterative, see Expectation-Maximization algorithm

Maximum likelihood estimates (MLE)

Many real-world applications:
Lifetime of a light bulb, or your hard disk: often modelled by an exponential distribution with unknown parameter

Mark and recapture method for estimating the size of a population: recall balls and bins experiments

Maximum A Posteriori (MAP)

We are estimating p given data
Why maximize $\operatorname{Pr}[$ data $\mid p]$ instead of $\operatorname{Pr}[p \mid$ data $]$?

Recall Bayes' law:
likelihood
Prior

$$
\begin{gathered}
\begin{array}{c}
\text { Posterior } \\
\operatorname{Pr}[p \mid \text { data }]
\end{array}=\frac{\operatorname{Pr}[\text { data } p] \operatorname{Pr}[p]}{\operatorname{Pr}[\text { data }]}
\end{gathered}
$$

Need to choose a prior
Different priors lead to different estimate

Minimum mean squared error estimators

Mean squared error: in our toy model, if p is random and \hat{p} is a constant

$$
\mathbb{E}(\hat{p}-p)^{2}
$$

Observe that $\mathbb{E}(\hat{p}-p)^{2}=\operatorname{var}(p)+(\mathbb{E} p-\hat{p})^{2}$ is minimized when

$$
\hat{p}:=\mathbb{E} p
$$

If \hat{p} depends on the data, the mean squared error is then:

$$
\mathbb{E}\left[(\hat{p}-p)^{2} \mid \text { data }\right]
$$

By a similar argument, MMSE is given by $\hat{p}:=\mathbb{E}[p \mid$ data $]$

