组合数学 (Fall 2016)/Problem Set 4

From TCS Wiki
Jump to navigation Jump to search

Problem 1

Prove the following independent set version of the Turan theorem:

  • Let [math]\displaystyle{ G(V,E) }[/math] be a graph of [math]\displaystyle{ n=|V| }[/math] vertices and [math]\displaystyle{ m=|E| }[/math] edges. [math]\displaystyle{ G }[/math] must have an independent set [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ |S|\ge \frac{n^2}{2m+n} }[/math].
  1. Show that this theorem is a corollary to the Turan theorem for cliques.
  2. Prove the theorem directly for the independent sets by the probabilistic method along with the Cauchy-Schwartz theorem, without using the Turan theorem.

Problem 2

(Matching vs. Star)

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)

Problem 3

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 4

Let [math]\displaystyle{ n\le 2k }[/math] and let [math]\displaystyle{ \mathcal{F}\subseteq{[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family such that [math]\displaystyle{ A\cup B\neq [n] }[/math] for all [math]\displaystyle{ A,B\in\mathcal{F} }[/math]. Show that [math]\displaystyle{ |\mathcal{F}|\le\left(1-\frac{k}{n}\right){n\choose k} }[/math].