Combinatorics (Fall 2010)
Jump to navigation
Jump to search
This is the page for the class Combinatorics for the Fall 2010 semester. Students who take this class should check this page periodically for content updates and new announcements.
Announcement
- (2011/01/04) 期末考试:2011年1月10日下午2点至4点,馆I-104。考试形式为闭卷考试。最终成绩由作业成绩和考试成绩共同得出。由于试卷有限,从没有交过作业的人将不具有参加期末考试的资格。
- (2010/12/31) 选修这门课的研究生:负责教务的老师通知,我只需要将你们的学号和成绩报给她就可以。因此程序上不需要你们做任何事。
- (2010/12/31) 今天(最后一课)有两位补交第五次作业的同学作业没有写名字,请email告诉我名字学号。
- (2010/12/24) 前四次作业的交作业名单已公布,请大家注意查看。
- (2010/12/24) 第六次作业已发布,12月31日交。这次作业不是必须。
- (2010/12/17) 第五次作业已发布。12月24日交,只有一个星期。
- (2010/12/03) There will be a guest lecture by Professor Zhi-Wei Sun on Dec 3's class.
- (2010/11/28) 第四次作业due date推迟至12月10日。
- (2010/11/19) 第四次作业已发布
- (2010/11/17) 第二次作业答案公布。
Course info
- Instructor : 尹一通
- email: yitong.yin@gmail.com, yinyt@nju.edu.cn, yinyt@lamda.nju.edu.cn
- office: MMW 406.
- Teaching fellow: 林木丰
- email: forest.sky.sea@gmail.com
- Class meeting: 10am-12 am, Friday; 馆I-105.
- Office hour: 2-5pm, Saturday; MMW 406.
Syllabus
先修课程 Prerequisites
- 离散数学(Discrete Mathematics)
- 线性代数(Linear Algebra)
- 概率论(Probability Theory)
Course materials
Policies
Assignments
- (2010/09/17) Problem set 1 due on Sept 25, in class.
- (2010/10/15) Problem set 2 due on Oct 29, in class.
- (2010/10/29) Problem set 3 due on Nov 12, in class.
- (2010/11/19) Problem set 4
due on Nov 26, in classpostponed: due on Dec 10, in class. - (2010/12/16) Problem set 5 due on Dec 24, in class.
- (2010/12/24) Problem set 6 the "makeup", due on Dec 31, in class. (optional)
Lecture Notes
- Basic enumeration | slides
- Partitions, Sieve methods | slides
- Generating functions | slides
- Existence, the probabilistic method | slides
- Random graphs | slides
- Extremal graphs | slides
- Finite set systems | slides
- Extremal set theory | slides
- Extremal set theory II | slides
- Ramsey theory | slides
- Optimization | slides
- Guest lecture by Professor Zhi-Wei Sun
- Flow and matching | slides
- Duality, Matroid | slides
- Graph spectrum, expanders | slides
- The Szemeredi regularity lemma | slides
Concepts
- Binomial coefficient
- Composition of a number
- Combinations with repetition, [math]\displaystyle{ k }[/math]-multisets on a set
- Stirling number of the second kind
- Partition of a number
- The twelvefold way
- Ferrers diagram (and the MathWorld link)
- The principle of inclusion-exclusion (and more generally the sieve method)
- Derangement, and Problème des ménages
- Generating function and formal power series
- Fibonacci number
- Newton's formula
- Catalan number
- Double counting and the handshaking lemma
- Cayley's formula
- Pigeonhole principle
- The Probabilistic Method
- Erdős–Rényi model for random graphs
- Graph property
- Some graph parameters: girth [math]\displaystyle{ g(G) }[/math], chromatic number [math]\displaystyle{ \chi(G) }[/math], Independence number [math]\displaystyle{ \alpha(G) }[/math], clique number [math]\displaystyle{ \omega(G) }[/math]
- Extremal graph theory
- Turán's theorem, Turán graph
- Two analytic inequalities:
- Erdős–Stone theorem (fundamental theorem of extremal graph theory)
- Dirac's theorem
- Hall's theorem (the marriage theorem)
- Birkhoff-Von Neumann theorem
- König-Egerváry theorem
- Dilworth's theorem
- Sperner system
- Erdős–Ko–Rado theorem
- VC dimension
- Kruskal–Katona theorem
- Ramsey theory