概率论 (Summer 2013)/Problem Set 5: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Zhangchihao
imported>Zhangchihao
Line 6: Line 6:


== Problem 3 ==
== Problem 3 ==
Consider the following random walk on <math>n</math>-dimensional hypercube: Assume we are now at the vertex <math>b_1b_2\dots b_n</math> where each <math>b_i\in\{0,1\}</math>, then
* With probability <math>\frac{1}{n+1}</math>, do nothing.
* Otherwise, with probability <math>\frac{1}{n+1}</math> for each coordinate <math>i</math>, flip <math>b_i</math>.
Prove by coupling that the mixing time of this markov chain is <math>O(n\ln n)</math>
== Problem 4 ==
== Problem 4 ==
== Problem 5 ==
== Problem 5 ==

Revision as of 09:54, 1 August 2013

Problem 1

Problem 2

Let [math]\displaystyle{ G(V,E) }[/math] be an undirected connected graph with maximum degree [math]\displaystyle{ \Delta }[/math].

  • Design an efficient, time reversible, ergodic random walk on [math]\displaystyle{ G }[/math] whose stationary distribution is the uniform distribution.
  • Let [math]\displaystyle{ \pi }[/math] be an arbitrary distribution on [math]\displaystyle{ V }[/math] such that [math]\displaystyle{ \pi(v)\gt 0 }[/math] for all [math]\displaystyle{ v\in V }[/math]. Design a time reversible, ergodic random walk on [math]\displaystyle{ G }[/math] whose stationary distribution is [math]\displaystyle{ \pi }[/math].

Problem 3

Consider the following random walk on [math]\displaystyle{ n }[/math]-dimensional hypercube: Assume we are now at the vertex [math]\displaystyle{ b_1b_2\dots b_n }[/math] where each [math]\displaystyle{ b_i\in\{0,1\} }[/math], then

  • With probability [math]\displaystyle{ \frac{1}{n+1} }[/math], do nothing.
  • Otherwise, with probability [math]\displaystyle{ \frac{1}{n+1} }[/math] for each coordinate [math]\displaystyle{ i }[/math], flip [math]\displaystyle{ b_i }[/math].

Prove by coupling that the mixing time of this markov chain is [math]\displaystyle{ O(n\ln n) }[/math]

Problem 4

Problem 5