组合数学 (Fall 2015)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
Line 5: Line 5:
#Prove the theorem directly by the probabilistic method, without using the Turan theorem.
#Prove the theorem directly by the probabilistic method, without using the Turan theorem.
# (optional) Try to explain when does the equality hold.
# (optional) Try to explain when does the equality hold.
== Problem 2 ==
(Matching vs. Star)
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.
Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.
(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)

Revision as of 11:55, 15 December 2015

Problem 1

Prove the following independent set version of the Turan theorem:

  • Let [math]\displaystyle{ G(V,E) }[/math] be a graph of [math]\displaystyle{ n=|V| }[/math] vertices and [math]\displaystyle{ m=|E| }[/math] edges. [math]\displaystyle{ G }[/math] must have an independent set [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ |S|\ge \frac{n^2}{2m+n} }[/math].
  1. Show that this theorem is a corollary to the Turan theorem for cliques.
  2. Prove the theorem directly by the probabilistic method, without using the Turan theorem.
  3. (optional) Try to explain when does the equality hold.

Problem 2

(Matching vs. Star)

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)