组合数学 (Fall 2016)/Problem Set 4

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 1

Prove the following independent set version of the Turan theorem:

  • Let [math]\displaystyle{ G(V,E) }[/math] be a graph of [math]\displaystyle{ n=|V| }[/math] vertices and [math]\displaystyle{ m=|E| }[/math] edges. [math]\displaystyle{ G }[/math] must have an independent set [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ |S|\ge \frac{n^2}{2m+n} }[/math].
  1. Show that this theorem is a corollary to the Turan theorem for cliques.
  2. Prove the theorem directly for the independent sets by the probabilistic method along with the Cauchy-Schwartz theorem, without using the Turan theorem.

Problem 2

(Matching vs. Star)

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)

Problem 3

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 4

Let [math]\displaystyle{ n\le 2k }[/math] and let [math]\displaystyle{ \mathcal{F}\subseteq{[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family such that [math]\displaystyle{ A\cup B\neq [n] }[/math] for all [math]\displaystyle{ A,B\in\mathcal{F} }[/math]. Show that [math]\displaystyle{ |\mathcal{F}|\le\left(1-\frac{k}{n}\right){n\choose k} }[/math].